summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/bpf/progs/verifier_scalar_ids.c
AgeCommit message (Collapse)Author
2024-10-01selftests/bpf: Verify that sync_linked_regs preserves subreg_defEduard Zingerman
This test was added because of a bug in verifier.c:sync_linked_regs(), upon range propagation it destroyed subreg_def marks for registers. The test is written in a way to return an upper half of a register that is affected by range propagation and must have it's subreg_def preserved. This gives a return value of 0 and leads to undefined return value if subreg_def mark is not preserved. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20240924210844.1758441-2-eddyz87@gmail.com
2024-07-29selftests/bpf: Tests for per-insn sync_linked_regs() precision trackingEduard Zingerman
Add a few test cases to verify precision tracking for scalars gaining range because of sync_linked_regs(): - check what happens when more than 6 registers might gain range in sync_linked_regs(); - check if precision is propagated correctly when operand of conditional jump gained range in sync_linked_regs() and one of linked registers is marked precise; - check if precision is propagated correctly when operand of conditional jump gained range in sync_linked_regs() and a other-linked operand of the conditional jump is marked precise; - add a minimized reproducer for precision tracking bug reported in [0]; - Check that mark_chain_precision() for one of the conditional jump operands does not trigger equal scalars precision propagation. [0] https://lore.kernel.org/bpf/CAEf4BzZ0xidVCqB47XnkXcNhkPWF6_nTV7yt+_Lf0kcFEut2Mg@mail.gmail.com/ Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240718202357.1746514-4-eddyz87@gmail.com
2024-07-29bpf: Remove mark_precise_scalar_ids()Eduard Zingerman
Function mark_precise_scalar_ids() is superseded by bt_sync_linked_regs() and equal scalars tracking in jump history. mark_precise_scalar_ids() propagates precision over registers sharing same ID on parent/child state boundaries, while jump history records allow bt_sync_linked_regs() to propagate same information with instruction level granularity, which is strictly more precise. This commit removes mark_precise_scalar_ids() and updates test cases in progs/verifier_scalar_ids to reflect new verifier behavior. The tests are updated in the following manner: - mark_precise_scalar_ids() propagated precision regardless of presence of conditional jumps, while new jump history based logic only kicks in when conditional jumps are present. Hence test cases are augmented with conditional jumps to still trigger precision propagation. - As equal scalars tracking no longer relies on parent/child state boundaries some test cases are no longer interesting, such test cases are removed, namely: - precision_same_state and precision_cross_state are superseded by linked_regs_bpf_k; - precision_same_state_broken_link and equal_scalars_broken_link are superseded by linked_regs_broken_link. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240718202357.1746514-3-eddyz87@gmail.com
2023-06-13selftests/bpf: Verify that check_ids() is used for scalars in regsafe()Eduard Zingerman
Verify that the following example is rejected by verifier: r9 = ... some pointer with range X ... r6 = ... unbound scalar ID=a ... r7 = ... unbound scalar ID=b ... if (r6 > r7) goto +1 r7 = r6 if (r7 > X) goto exit r9 += r6 *(u64 *)r9 = Y Also add test cases to: - check that check_alu_op() for BPF_MOV instruction does not allocate scalar ID if source register is a constant; - check that unique scalar IDs are ignored when new verifier state is compared to cached verifier state; - check that two different scalar IDs in a verified state can't be mapped to the same scalar ID in current state. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20230613153824.3324830-5-eddyz87@gmail.com
2023-06-13selftests/bpf: Check if mark_chain_precision() follows scalar idsEduard Zingerman
Check __mark_chain_precision() log to verify that scalars with same IDs are marked as precise. Use several scenarios to test that precision marks are propagated through: - registers of scalar type with the same ID within one state; - registers of scalar type with the same ID cross several states; - registers of scalar type with the same ID cross several stack frames; - stack slot of scalar type with the same ID; - multiple scalar IDs are tracked independently. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20230613153824.3324830-3-eddyz87@gmail.com