Age | Commit message (Collapse) | Author |
|
Use a dedicated counter to track the number of IRQs that can utilize IRQ
bypass instead of piggybacking the assigned device count. As evidenced by
commit 2edd9cb79fb3 ("kvm: detect assigned device via irqbypass manager"),
it's possible for a device to be able to post IRQs to a vCPU without said
device being assigned to a VM.
Leave the calls to kvm_arch_{start,end}_assignment() alone for the moment
to avoid regressing the MMIO stale data mitigation. KVM is abusing the
assigned device count when applying mmio_stale_data_clear, and it's not at
all clear if vDPA devices rely on this behavior. This will hopefully be
cleaned up in the future, as the number of assigned devices is a terrible
heuristic for detecting if a VM has access to host MMIO.
Link: https://lore.kernel.org/r/20250611224604.313496-55-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Hoist the logic for identifying the target vCPU for a posted interrupt
into common x86. The code is functionally identical between Intel and
AMD.
Tested-by: Sairaj Kodilkar <sarunkod@amd.com>
Link: https://lore.kernel.org/r/20250611224604.313496-30-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When updating IRTEs in response to a GSI routing or IRQ bypass change,
pass the new/current routing information along with the associated irqfd.
This will allow KVM x86 to harden, simplify, and deduplicate its code.
Since adding/removing a bypass producer is now conveniently protected with
irqfds.lock, i.e. can't run concurrently with kvm_irq_routing_update(),
use the routing information cached in the irqfd instead of looking up
the information in the current GSI routing tables.
Opportunistically convert an existing printk() to pr_info() and put its
string onto a single line (old code that strictly adhered to 80 chars).
Link: https://lore.kernel.org/r/20250611224604.313496-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
KVM VMX changes for 6.16:
- Explicitly check MSR load/store list counts to fix a potential overflow on
32-bit kernels.
- Flush shadow VMCSes on emergency reboot.
- Revert mem_enc_ioctl() back to an optional hook, as it's nullified when
SEV or TDX is disabled via Kconfig.
- Macrofy the handling of vt_x86_ops to eliminate a pile of boilerplate code
needed for TDX, and to optimize CONFIG_KVM_INTEL_TDX=n builds.
|
|
In preparation for a cleanup of the kvm_x86_ops struct for TDX, all vt_*
functions are expected to act as glue functions that route to either tdx_*
or vmx_* based on the VM type. Specifically, the pattern is:
vt_abc:
if (is_td())
return tdx_abc();
return vmx_abc();
But vt_apicv_pre_state_restore() does not follow this pattern. To
facilitate that cleanup, rename and move vt_apicv_pre_state_restore() into
posted_intr.c.
Opportunistically turn vcpu_to_pi_desc() back into a static function, as
the only reason it was exposed outside of posted_intr.c was for
vt_apicv_pre_state_restore().
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/kvm/Z6v9yjWLNTU6X90d@google.com/
Cc: Sean Christopherson <seanjc@google.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linxu.intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20250318-vverma7-cleanup_x86_ops-v2-2-701e82d6b779@intel.com
[sean: apply Chao's suggestions, massage shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track the PIR bitmap in posted interrupt descriptor structures as an array
of unsigned longs instead of using unionized arrays for KVM (u32s) versus
IRQ management (u64s). In practice, because the non-KVM usage is (sanely)
restricted to 64-bit kernels, all existing usage of the u64 variant is
already working with unsigned longs.
Using "unsigned long" for the array will allow reworking KVM's processing
of the bitmap to read/write in 64-bit chunks on 64-bit kernels, i.e. will
allow optimizing KVM by reducing the number of atomic accesses to PIR.
Opportunstically replace the open coded literals in the posted MSIs code
with the appropriate macro. Deliberately don't use ARRAY_SIZE() in the
for-loops, even though it would be cleaner from a certain perspective, in
anticipation of decoupling the processing from the array declaration.
No functional change intended.
Link: https://lore.kernel.org/r/20250401163447.846608-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Implement non-NMI interrupt injection for TDX via posted interrupt.
As CPU state is protected and APICv is enabled for the TDX guest, TDX
supports non-NMI interrupt injection only by posted interrupt. Posted
interrupt descriptors (PIDs) are allocated in shared memory, KVM can
update them directly. If target vCPU is in non-root mode, send posted
interrupt notification to the vCPU and hardware will sync PIR to vIRR
atomically. Otherwise, kick it to pick up the interrupt from PID. To
post pending interrupts in the PID, KVM can generate a self-IPI with
notification vector prior to TD entry.
Since the guest status of TD vCPU is protected, assume interrupt is
always allowed. Ignore the code path for event injection mechanism or
LAPIC emulation for TDX.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014757.897978-5-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The header clearly states that it does not want to be included directly,
only via '<linux/bitmap.h>'. Replace the include accordingly.
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Message-ID: <20241217070539.2433-2-wsa+renesas@sang-engineering.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a helper to retrieve the highest pending vector given a Posted
Interrupt descriptor. While the actual operation is straightforward, it's
surprisingly easy to mess up, e.g. if one tries to reuse lapic.c's
find_highest_vector(), which doesn't work with PID.PIR due to the APIC's
IRR and ISR component registers being physically discontiguous (they're
4-byte registers aligned at 16-byte intervals).
To make PIR handling more consistent with respect to IRR and ISR handling,
return -1 to indicate "no interrupt pending".
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
To prepare native usage of posted interrupts, move the PID declarations out
of VMX code such that they can be shared.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20240423174114.526704-2-jacob.jun.pan@linux.intel.com
|
|
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Massage VMX's implementation names for kvm_x86_ops to maximize use of
kvm-x86-ops.h. Leave cpu_has_vmx_wbinvd_exit() as-is to preserve the
cpu_has_vmx_*() pattern used for querying VMCS capabilities. Keep
pi_has_pending_interrupt() as vmx_dy_apicv_has_pending_interrupt() does
a poor job of describing exactly what is being checked in VMX land.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the posted interrupt pre/post_block logic into vcpu_put/load
respectively, using the kvm_vcpu_is_blocking() to determining whether or
not the wakeup handler needs to be set (and unset). This avoids updating
the PI descriptor if halt-polling is successful, reduces the number of
touchpoints for updating the descriptor, and eliminates the confusing
behavior of intentionally leaving a "stale" PI.NDST when a blocking vCPU
is scheduled back in after preemption.
The downside is that KVM will do the PID update twice if the vCPU is
preempted after prepare_to_rcuwait() but before schedule(), but that's a
rare case (and non-existent on !PREEMPT kernels).
The notable wart is the need to send a self-IPI on the wakeup vector if
an outstanding notification is pending after configuring the wakeup
vector. Ideally, KVM would just do a kvm_vcpu_wake_up() in this case,
but the scheduler doesn't support waking a task from its preemption
notifier callback, i.e. while the task is right in the middle of
being scheduled out.
Note, setting the wakeup vector before halt-polling is not necessary:
once the pending IRQ will be recorded in the PIR, kvm_vcpu_has_events()
will detect this (via kvm_cpu_get_interrupt(), kvm_apic_get_interrupt(),
apic_has_interrupt_for_ppr() and finally vmx_sync_pir_to_irr()) and
terminate the polling.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Return bools instead of ints for the posted interrupt "test" helpers.
The bit position of the flag being test does not matter to the callers,
and is in fact lost by virtue of test_bit() itself returning a bool.
Returning ints is potentially dangerous, e.g. "pi_test_on(pi_desc) == 1"
is safe-ish because ON is bit 0 and thus any sane implementation of
pi_test_on() will work, but for SN (bit 1), checking "== 1" would rely on
pi_test_on() to return 0 or 1, a.k.a. bools, as opposed to 0 or 2 (the
positive bit position).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For VMX, when a vcpu enters HLT emulation, pi_post_block will:
1) Add vcpu to per-cpu list of blocked vcpus.
2) Program the posted-interrupt descriptor "notification vector"
to POSTED_INTR_WAKEUP_VECTOR
With interrupt remapping, an interrupt will set the PIR bit for the
vector programmed for the device on the CPU, test-and-set the
ON bit on the posted interrupt descriptor, and if the ON bit is clear
generate an interrupt for the notification vector.
This way, the target CPU wakes upon a device interrupt and wakes up
the target vcpu.
Problem is that pi_post_block only programs the notification vector
if kvm_arch_has_assigned_device() is true. Its possible for the
following to happen:
1) vcpu V HLTs on pcpu P, kvm_arch_has_assigned_device is false,
notification vector is not programmed
2) device is assigned to VM
3) device interrupts vcpu V, sets ON bit
(notification vector not programmed, so pcpu P remains in idle)
4) vcpu 0 IPIs vcpu V (in guest), but since pi descriptor ON bit is set,
kvm_vcpu_kick is skipped
5) vcpu 0 busy spins on vcpu V's response for several seconds, until
RCU watchdog NMIs all vCPUs.
To fix this, use the start_assignment kvm_x86_ops callback to kick
vcpus out of the halt loop, so the notification vector is
properly reprogrammed to the wakeup vector.
Reported-by: Pei Zhang <pezhang@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210526172014.GA29007@fuller.cnet>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
allyesconfig results in:
ld: drivers/block/paride/paride.o: in function `pi_init':
(.text+0x1340): multiple definition of `pi_init'; arch/x86/kvm/vmx/posted_intr.o:posted_intr.c:(.init.text+0x0): first defined here
make: *** [Makefile:1164: vmlinux] Error 1
because commit:
commit 8888cdd0996c2d51cd417f9a60a282c034f3fa28
Author: Xiaoyao Li <xiaoyao.li@intel.com>
Date: Wed Sep 23 11:31:11 2020 -0700
KVM: VMX: Extract posted interrupt support to separate files
added another pi_init(), though one already existed in the paride code.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Extract the posted interrupt code so that it can be reused for Trust
Domain Extensions (TDX), which requires posted interrupts and can use
KVM VMX's implementation almost verbatim. TDX is different enough from
raw VMX that it is highly desirable to implement the guts of TDX in a
separate file, i.e. reusing posted interrupt code by shoving TDX support
into vmx.c would be a mess.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183112.3030-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|