summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
9 daysKVM: x86/mmu: Reject direct bits in gpa passed to KVM_PRE_FAULT_MEMORYPaolo Bonzini
Only let userspace pass the same addresses that were used in KVM_SET_USER_MEMORY_REGION (or KVM_SET_USER_MEMORY_REGION2); gpas in the the upper half of the address space are an implementation detail of TDX and KVM. Extracted from a patch by Sean Christopherson <seanjc@google.com>. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
9 daysKVM: x86/mmu: Embed direct bits into gpa for KVM_PRE_FAULT_MEMORYPaolo Bonzini
Bug[*] reported for TDX case when enabling KVM_PRE_FAULT_MEMORY in QEMU. It turns out that @gpa passed to kvm_mmu_do_page_fault() doesn't have shared bit set when the memory attribute of it is shared, and it leads to wrong root in tdp_mmu_get_root_for_fault(). Fix it by embedding the direct bits in the gpa that is passed to kvm_tdp_map_page(), when the memory of the gpa is not private. [*] https://lore.kernel.org/qemu-devel/4a757796-11c2-47f1-ae0d-335626e818fd@intel.com/ Reported-by: Xiaoyao Li <xiaoyao.li@intel.com> Closes: https://lore.kernel.org/qemu-devel/4a757796-11c2-47f1-ae0d-335626e818fd@intel.com/ Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-ID: <20250611001018.2179964-1-xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
9 daysKVM: SEV: Disable SEV-SNP support on initialization failureAshish Kalra
During platform init, SNP initialization may fail for several reasons, such as firmware command failures and incompatible versions. However, the KVM capability may continue to advertise support for it. The platform may have SNP enabled but if SNP_INIT fails then SNP is not supported by KVM. During KVM module initialization query the SNP platform status to obtain the SNP initialization state and use it as an additional condition to determine support for SEV-SNP. Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Co-developed-by: Pratik R. Sampat <prsampat@amd.com> Signed-off-by: Pratik R. Sampat <prsampat@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com> Message-ID: <20250512221634.12045-1-Ashish.Kalra@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
13 daystreewide, timers: Rename from_timer() to timer_container_of()Ingo Molnar
Move this API to the canonical timer_*() namespace. [ tglx: Redone against pre rc1 ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/aB2X0jCKQO56WdMt@gmail.com
2025-06-02Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull more kvm updates from Paolo Bonzini: Generic: - Clean up locking of all vCPUs for a VM by using the *_nest_lock() family of functions, and move duplicated code to virt/kvm/. kernel/ patches acked by Peter Zijlstra - Add MGLRU support to the access tracking perf test ARM fixes: - Make the irqbypass hooks resilient to changes in the GSI<->MSI routing, avoiding behind stale vLPI mappings being left behind. The fix is to resolve the VGIC IRQ using the host IRQ (which is stable) and nuking the vLPI mapping upon a routing change - Close another VGIC race where vCPU creation races with VGIC creation, leading to in-flight vCPUs entering the kernel w/o private IRQs allocated - Fix a build issue triggered by the recently added workaround for Ampere's AC04_CPU_23 erratum - Correctly sign-extend the VA when emulating a TLBI instruction potentially targeting a VNCR mapping - Avoid dereferencing a NULL pointer in the VGIC debug code, which can happen if the device doesn't have any mapping yet s390: - Fix interaction between some filesystems and Secure Execution - Some cleanups and refactorings, preparing for an upcoming big series x86: - Wait for target vCPU to ack KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN - Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM - Refine and harden handling of spurious faults - Add support for ALLOWED_SEV_FEATURES - Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y - Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits - Don't account temporary allocations in sev_send_update_data() - Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX - Advertise support to userspace for WRMSRNS and PREFETCHI - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing - Add a module param to control and enumerate support for device posted interrupts - Fix a potential overflow with nested virt on Intel systems running 32-bit kernels - Flush shadow VMCSes on emergency reboot - Add support for SNP to the various SEV selftests - Add a selftest to verify fastops instructions via forced emulation - Refine and optimize KVM's software processing of the posted interrupt bitmap, and share the harvesting code between KVM and the kernel's Posted MSI handler" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits) rtmutex_api: provide correct extern functions KVM: arm64: vgic-debug: Avoid dereferencing NULL ITE pointer KVM: arm64: vgic-init: Plug vCPU vs. VGIC creation race KVM: arm64: Unmap vLPIs affected by changes to GSI routing information KVM: arm64: Resolve vLPI by host IRQ in vgic_v4_unset_forwarding() KVM: arm64: Protect vLPI translation with vgic_irq::irq_lock KVM: arm64: Use lock guard in vgic_v4_set_forwarding() KVM: arm64: Mask out non-VA bits from TLBI VA* on VNCR invalidation arm64: sysreg: Drag linux/kconfig.h to work around vdso build issue KVM: s390: Simplify and move pv code KVM: s390: Refactor and split some gmap helpers KVM: s390: Remove unneeded srcu lock s390: Remove unneeded includes s390/uv: Improve splitting of large folios that cannot be split while dirty s390/uv: Always return 0 from s390_wiggle_split_folio() if successful s390/uv: Don't return 0 from make_hva_secure() if the operation was not successful rust: add helper for mutex_trylock RISC-V: KVM: use kvm_trylock_all_vcpus when locking all vCPUs KVM: arm64: use kvm_trylock_all_vcpus when locking all vCPUs x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementation ...
2025-05-29Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "As far as x86 goes this pull request "only" includes TDX host support. Quotes are appropriate because (at 6k lines and 100+ commits) it is much bigger than the rest, which will come later this week and consists mostly of bugfixes and selftests. s390 changes will also come in the second batch. ARM: - Add large stage-2 mapping (THP) support for non-protected guests when pKVM is enabled, clawing back some performance. - Enable nested virtualisation support on systems that support it, though it is disabled by default. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. While this has no functional impact, it ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups. LoongArch: - Don't flush tlb if the host supports hardware page table walks. - Add KVM selftests support. RISC-V: - Add vector registers to get-reg-list selftest - VCPU reset related improvements - Remove scounteren initialization from VCPU reset - Support VCPU reset from userspace using set_mpstate() ioctl x86: - Initial support for TDX in KVM. This finally makes it possible to use the TDX module to run confidential guests on Intel processors. This is quite a large series, including support for private page tables (managed by the TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs to userspace, and handling several special VM exits from the TDX module. This has been in the works for literally years and it's not really possible to describe everything here, so I'll defer to the various merge commits up to and including commit 7bcf7246c42a ('Merge branch 'kvm-tdx-finish-initial' into HEAD')" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits) x86/tdx: mark tdh_vp_enter() as __flatten Documentation: virt/kvm: remove unreferenced footnote RISC-V: KVM: lock the correct mp_state during reset KVM: arm64: Fix documentation for vgic_its_iter_next() KVM: arm64: np-guest CMOs with PMD_SIZE fixmap KVM: arm64: Stage-2 huge mappings for np-guests KVM: arm64: Add a range to pkvm_mappings KVM: arm64: Convert pkvm_mappings to interval tree KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest() KVM: arm64: Add a range to __pkvm_host_wrprotect_guest() KVM: arm64: Add a range to __pkvm_host_unshare_guest() KVM: arm64: Add a range to __pkvm_host_share_guest() KVM: arm64: Introduce for_each_hyp_page KVM: arm64: Handle huge mappings for np-guest CMOs KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET RISC-V: KVM: Remove scounteren initialization KVM: RISC-V: remove unnecessary SBI reset state ...
2025-05-28Merge branch 'kvm-lockdep-common' into HEADPaolo Bonzini
Introduce new mutex locking functions mutex_trylock_nest_lock() and mutex_lock_killable_nest_lock() and use them to clean up locking of all vCPUs for a VM. For x86, this removes some complex code that was used instead of lockdep's "nest_lock" feature. For ARM and RISC-V, this removes a lockdep warning when the VM is configured to have more than MAX_LOCK_DEPTH vCPUs, and removes a fair amount of duplicate code by sharing the logic across all architectures. Signed-off-by: Paolo BOnzini <pbonzini@redhat.com>
2025-05-27x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementationMaxim Levitsky
Use kvm_lock_all_vcpus instead of sev's own implementation. Because kvm_lock_all_vcpus uses the _nest_lock feature of lockdep, which ignores subclasses, there is no longer a need to use separate subclasses for source and target VMs. No functional change intended. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Message-ID: <20250512180407.659015-5-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-05-27Merge tag 'kvm-x86-svm-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM SVM changes for 6.16: - Wait for target vCPU to acknowledge KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN. - Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM. - Add support for ALLOWED_SEV_FEATURES. - Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y. - Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits. - Don't account temporary allocations in sev_send_update_data(). - Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold.
2025-05-27Merge tag 'kvm-x86-vmx-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM VMX changes for 6.16: - Explicitly check MSR load/store list counts to fix a potential overflow on 32-bit kernels. - Flush shadow VMCSes on emergency reboot. - Revert mem_enc_ioctl() back to an optional hook, as it's nullified when SEV or TDX is disabled via Kconfig. - Macrofy the handling of vt_x86_ops to eliminate a pile of boilerplate code needed for TDX, and to optimize CONFIG_KVM_INTEL_TDX=n builds.
2025-05-27Merge tag 'kvm-x86-pir-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 posted interrupt changes for 6.16: Refine and optimize KVM's software processing of the PIR, and ultimately share PIR harvesting code between KVM and the kernel's Posted MSI handler
2025-05-27Merge tag 'kvm-x86-mmu-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 MMU changes for 6.16: - Refine and harden handling of spurious faults. - Use kvm_x86_call() instead of open coding static_call().
2025-05-27Merge tag 'kvm-x86-misc-6.16' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.16: - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX. - Advertise support to userspace for WRMSRNS and PREFETCHI. - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing. - Add a module param to control and enumerate support for device posted interrupts. - Misc cleanups.
2025-05-27KVM: VMX: use __always_inline for is_td_vcpu and is_tdEdward Adam Davis
is_td() and is_td_vcpu() are used in no-instrumentation sections; use __always_inline instead of inline. vmlinux.o: error: objtool: vmx_handle_nmi+0x47: call to is_td_vcpu.isra.0() leaves .noinstr.text section Fixes: 7172c753c26a ("KVM: VMX: Move common fields of struct vcpu_{vmx,tdx} to a struct") Signed-off-by: Edward Adam Davis <eadavis@qq.com> Message-ID: <tencent_1A767567C83C1137829622362E4A72756F09@qq.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-05-26Merge tag 'x86-core-2025-05-25' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: "Boot code changes: - A large series of changes to reorganize the x86 boot code into a better isolated and easier to maintain base of PIC early startup code in arch/x86/boot/startup/, by Ard Biesheuvel. Motivation & background: | Since commit | | c88d71508e36 ("x86/boot/64: Rewrite startup_64() in C") | | dated Jun 6 2017, we have been using C code on the boot path in a way | that is not supported by the toolchain, i.e., to execute non-PIC C | code from a mapping of memory that is different from the one provided | to the linker. It should have been obvious at the time that this was a | bad idea, given the need to sprinkle fixup_pointer() calls left and | right to manipulate global variables (including non-pointer variables) | without crashing. | | This C startup code has been expanding, and in particular, the SEV-SNP | startup code has been expanding over the past couple of years, and | grown many of these warts, where the C code needs to use special | annotations or helpers to access global objects. This tree includes the first phase of this work-in-progress x86 boot code reorganization. Scalability enhancements and micro-optimizations: - Improve code-patching scalability (Eric Dumazet) - Remove MFENCEs for X86_BUG_CLFLUSH_MONITOR (Andrew Cooper) CPU features enumeration updates: - Thorough reorganization and cleanup of CPUID parsing APIs (Ahmed S. Darwish) - Fix, refactor and clean up the cacheinfo code (Ahmed S. Darwish, Thomas Gleixner) - Update CPUID bitfields to x86-cpuid-db v2.3 (Ahmed S. Darwish) Memory management changes: - Allow temporary MMs when IRQs are on (Andy Lutomirski) - Opt-in to IRQs-off activate_mm() (Andy Lutomirski) - Simplify choose_new_asid() and generate better code (Borislav Petkov) - Simplify 32-bit PAE page table handling (Dave Hansen) - Always use dynamic memory layout (Kirill A. Shutemov) - Make SPARSEMEM_VMEMMAP the only memory model (Kirill A. Shutemov) - Make 5-level paging support unconditional (Kirill A. Shutemov) - Stop prefetching current->mm->mmap_lock on page faults (Mateusz Guzik) - Predict valid_user_address() returning true (Mateusz Guzik) - Consolidate initmem_init() (Mike Rapoport) FPU support and vector computing: - Enable Intel APX support (Chang S. Bae) - Reorgnize and clean up the xstate code (Chang S. Bae) - Make task_struct::thread constant size (Ingo Molnar) - Restore fpu_thread_struct_whitelist() to fix CONFIG_HARDENED_USERCOPY=y (Kees Cook) - Simplify the switch_fpu_prepare() + switch_fpu_finish() logic (Oleg Nesterov) - Always preserve non-user xfeatures/flags in __state_perm (Sean Christopherson) Microcode loader changes: - Help users notice when running old Intel microcode (Dave Hansen) - AMD: Do not return error when microcode update is not necessary (Annie Li) - AMD: Clean the cache if update did not load microcode (Boris Ostrovsky) Code patching (alternatives) changes: - Simplify, reorganize and clean up the x86 text-patching code (Ingo Molnar) - Make smp_text_poke_batch_process() subsume smp_text_poke_batch_finish() (Nikolay Borisov) - Refactor the {,un}use_temporary_mm() code (Peter Zijlstra) Debugging support: - Add early IDT and GDT loading to debug relocate_kernel() bugs (David Woodhouse) - Print the reason for the last reset on modern AMD CPUs (Yazen Ghannam) - Add AMD Zen debugging document (Mario Limonciello) - Fix opcode map (!REX2) superscript tags (Masami Hiramatsu) - Stop decoding i64 instructions in x86-64 mode at opcode (Masami Hiramatsu) CPU bugs and bug mitigations: - Remove X86_BUG_MMIO_UNKNOWN (Borislav Petkov) - Fix SRSO reporting on Zen1/2 with SMT disabled (Borislav Petkov) - Restructure and harmonize the various CPU bug mitigation methods (David Kaplan) - Fix spectre_v2 mitigation default on Intel (Pawan Gupta) MSR API: - Large MSR code and API cleanup (Xin Li) - In-kernel MSR API type cleanups and renames (Ingo Molnar) PKEYS: - Simplify PKRU update in signal frame (Chang S. Bae) NMI handling code: - Clean up, refactor and simplify the NMI handling code (Sohil Mehta) - Improve NMI duration console printouts (Sohil Mehta) Paravirt guests interface: - Restrict PARAVIRT_XXL to 64-bit only (Kirill A. Shutemov) SEV support: - Share the sev_secrets_pa value again (Tom Lendacky) x86 platform changes: - Introduce the <asm/amd/> header namespace (Ingo Molnar) - i2c: piix4, x86/platform: Move the SB800 PIIX4 FCH definitions to <asm/amd/fch.h> (Mario Limonciello) Fixes and cleanups: - x86 assembly code cleanups and fixes (Uros Bizjak) - Misc fixes and cleanups (Andi Kleen, Andy Lutomirski, Andy Shevchenko, Ard Biesheuvel, Bagas Sanjaya, Baoquan He, Borislav Petkov, Chang S. Bae, Chao Gao, Dan Williams, Dave Hansen, David Kaplan, David Woodhouse, Eric Biggers, Ingo Molnar, Josh Poimboeuf, Juergen Gross, Malaya Kumar Rout, Mario Limonciello, Nathan Chancellor, Oleg Nesterov, Pawan Gupta, Peter Zijlstra, Shivank Garg, Sohil Mehta, Thomas Gleixner, Uros Bizjak, Xin Li)" * tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (331 commits) x86/bugs: Fix spectre_v2 mitigation default on Intel x86/bugs: Restructure ITS mitigation x86/xen/msr: Fix uninitialized variable 'err' x86/msr: Remove a superfluous inclusion of <asm/asm.h> x86/paravirt: Restrict PARAVIRT_XXL to 64-bit only x86/mm/64: Make 5-level paging support unconditional x86/mm/64: Make SPARSEMEM_VMEMMAP the only memory model x86/mm/64: Always use dynamic memory layout x86/bugs: Fix indentation due to ITS merge x86/cpuid: Rename hypervisor_cpuid_base()/for_each_possible_hypervisor_cpuid_base() to cpuid_base_hypervisor()/for_each_possible_cpuid_base_hypervisor() x86/cpu/intel: Rename CPUID(0x2) descriptors iterator parameter x86/cacheinfo: Rename CPUID(0x2) descriptors iterator parameter x86/cpuid: Rename cpuid_get_leaf_0x2_regs() to cpuid_leaf_0x2() x86/cpuid: Rename have_cpuid_p() to cpuid_feature() x86/cpuid: Set <asm/cpuid/api.h> as the main CPUID header x86/cpuid: Move CPUID(0x2) APIs into <cpuid/api.h> x86/msr: Add rdmsrl_on_cpu() compatibility wrapper x86/mm: Fix kernel-doc descriptions of various pgtable methods x86/asm-offsets: Export certain 'struct cpuinfo_x86' fields for 64-bit asm use too x86/boot: Defer initialization of VM space related global variables ...
2025-05-26Merge tag 'v6.16-p1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 Pull crypto updates from Herbert Xu: "API: - Fix memcpy_sglist to handle partially overlapping SG lists - Use memcpy_sglist to replace null skcipher - Rename CRYPTO_TESTS to CRYPTO_BENCHMARK - Flip CRYPTO_MANAGER_DISABLE_TEST into CRYPTO_SELFTESTS - Hide CRYPTO_MANAGER - Add delayed freeing of driver crypto_alg structures Compression: - Allocate large buffers on first use instead of initialisation in scomp - Drop destination linearisation buffer in scomp - Move scomp stream allocation into acomp - Add acomp scatter-gather walker - Remove request chaining - Add optional async request allocation Hashing: - Remove request chaining - Add optional async request allocation - Move partial block handling into API - Add ahash support to hmac - Fix shash documentation to disallow usage in hard IRQs Algorithms: - Remove unnecessary SIMD fallback code on x86 and arm/arm64 - Drop avx10_256 xts(aes)/ctr(aes) on x86 - Improve avx-512 optimisations for xts(aes) - Move chacha arch implementations into lib/crypto - Move poly1305 into lib/crypto and drop unused Crypto API algorithm - Disable powerpc/poly1305 as it has no SIMD fallback - Move sha256 arch implementations into lib/crypto - Convert deflate to acomp - Set block size correctly in cbcmac Drivers: - Do not use sg_dma_len before mapping in sun8i-ss - Fix warm-reboot failure by making shutdown do more work in qat - Add locking in zynqmp-sha - Remove cavium/zip - Add support for PCI device 0x17D8 to ccp - Add qat_6xxx support in qat - Add support for RK3576 in rockchip-rng - Add support for i.MX8QM in caam Others: - Fix irq_fpu_usable/kernel_fpu_begin inconsistency during CPU bring-up - Add new SEV/SNP platform shutdown API in ccp" * tag 'v6.16-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (382 commits) x86/fpu: Fix irq_fpu_usable() to return false during CPU onlining crypto: qat - add missing header inclusion crypto: api - Redo lookup on EEXIST Revert "crypto: testmgr - Add hash export format testing" crypto: marvell/cesa - Do not chain submitted requests crypto: powerpc/poly1305 - add depends on BROKEN for now Revert "crypto: powerpc/poly1305 - Add SIMD fallback" crypto: ccp - Add missing tee info reg for teev2 crypto: ccp - Add missing bootloader info reg for pspv5 crypto: sun8i-ce - move fallback ahash_request to the end of the struct crypto: octeontx2 - Use dynamic allocated memory region for lmtst crypto: octeontx2 - Initialize cptlfs device info once crypto: xts - Only add ecb if it is not already there crypto: lrw - Only add ecb if it is not already there crypto: testmgr - Add hash export format testing crypto: testmgr - Use ahash for generic tfm crypto: hmac - Add ahash support crypto: testmgr - Ignore EEXIST on shash allocation crypto: algapi - Add driver template support to crypto_inst_setname crypto: shash - Set reqsize in shash_alg ...
2025-05-26Merge tag 'loongarch-kvm-6.16' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.16 1. Don't flush tlb if HW PTW supported. 2. Add LoongArch KVM selftests support.
2025-05-19KVM: SVM: Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUsManali Shukla
Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM CPUs with Bus Lock Threshold, which is close enough to VMX's Bus Lock Detection VM-Exit to allow reusing KVM_CAP_X86_BUS_LOCK_EXIT. The biggest difference between the two features is that Threshold is fault-like, whereas Detection is trap-like. To allow the guest to make forward progress, Threshold provides a per-VMCB counter which is decremented every time a bus lock occurs, and a VM-Exit is triggered if and only if the counter is '0'. To provide Detection-like semantics, initialize the counter to '0', i.e. exit on every bus lock, and when re-executing the guilty instruction, set the counter to '1' to effectively step past the instruction. Note, in the unlikely scenario that re-executing the instruction doesn't trigger a bus lock, e.g. because the guest has changed memory types or patched the guilty instruction, the bus lock counter will be left at '1', i.e. the guest will be able to do a bus lock on a different instruction. In a perfect world, KVM would ensure the counter is '0' if the guest has made forward progress, e.g. if RIP has changed. But trying to close that hole would incur non-trivial complexity, for marginal benefit; the intent of KVM_CAP_X86_BUS_LOCK_EXIT is to allow userspace rate-limit bus locks, not to allow for precise detection of problematic guest code. And, it's simply not feasible to fully close the hole, e.g. if an interrupt arrives before the original instruction can re-execute, the guest could step past a different bus lock. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Manali Shukla <manali.shukla@amd.com> Link: https://lore.kernel.org/r/20250502050346.14274-5-manali.shukla@amd.com [sean: fix typo in comment] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-16KVM: x86/mmu: Use kvm_x86_call() instead of manual static_call()Sean Christopherson
Use KVM's preferred kvm_x86_call() wrapper to invoke static calls related to mirror page tables. No functional change intended. Fixes: 77ac7079e66d ("KVM: x86/tdp_mmu: Propagate building mirror page tables") Fixes: 94faba8999b9 ("KVM: x86/tdp_mmu: Propagate tearing down mirror page tables") Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20250331182703.725214-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-16KVM: x86: Make kvm_pio_request.linear_rip a common field for user exitsManali Shukla
Move and rename kvm_pio_request.linear_rip to kvm_vcpu_arch.cui_linear_rip so that the field can be used by other userspace exit completion flows that need to take action if and only if userspace has not modified RIP. No functional changes intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Manali Shukla <manali.shukla@amd.com> Link: https://lore.kernel.org/r/20250502050346.14274-2-manali.shukla@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-16x86/cpuid: Rename ↵Ahmed S. Darwish
hypervisor_cpuid_base()/for_each_possible_hypervisor_cpuid_base() to cpuid_base_hypervisor()/for_each_possible_cpuid_base_hypervisor() In order to let all the APIs under <cpuid/api.h> have a shared "cpuid_" namespace, rename hypervisor_cpuid_base() to cpuid_base_hypervisor(). To align with the new style, also rename: for_each_possible_hypervisor_cpuid_base(function) to: for_each_possible_cpuid_base_hypervisor(function) Adjust call-sites accordingly. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/aCZOi0Oohc7DpgTo@lx-t490
2025-05-15x86/cpuid: Set <asm/cpuid/api.h> as the main CPUID headerAhmed S. Darwish
The main CPUID header <asm/cpuid.h> was originally a storefront for the headers: <asm/cpuid/api.h> <asm/cpuid/leaf_0x2_api.h> Now that the latter CPUID(0x2) header has been merged into the former, there is no practical difference between <asm/cpuid.h> and <asm/cpuid/api.h>. Migrate all users to the <asm/cpuid/api.h> header, in preparation of the removal of <asm/cpuid.h>. Don't remove <asm/cpuid.h> just yet, in case some new code in -next started using it. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250508150240.172915-3-darwi@linutronix.de
2025-05-13Merge commit 'its-for-linus-20250509-merge' into x86/core, to resolve conflictsIngo Molnar
Conflicts: Documentation/admin-guide/hw-vuln/index.rst arch/x86/include/asm/cpufeatures.h arch/x86/kernel/alternative.c arch/x86/kernel/cpu/bugs.c arch/x86/kernel/cpu/common.c drivers/base/cpu.c include/linux/cpu.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/msr' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/boot/startup/sme.c arch/x86/coco/sev/core.c arch/x86/kernel/fpu/core.c arch/x86/kernel/fpu/xstate.c Semantic conflict: arch/x86/include/asm/sev-internal.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/bugs' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-11Merge tag 'its-for-linus-20250509' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 ITS mitigation from Dave Hansen: "Mitigate Indirect Target Selection (ITS) issue. I'd describe this one as a good old CPU bug where the behavior is _obviously_ wrong, but since it just results in bad predictions it wasn't wrong enough to notice. Well, the researchers noticed and also realized that thus bug undermined a bunch of existing indirect branch mitigations. Thus the unusually wide impact on this one. Details: ITS is a bug in some Intel CPUs that affects indirect branches including RETs in the first half of a cacheline. Due to ITS such branches may get wrongly predicted to a target of (direct or indirect) branch that is located in the second half of a cacheline. Researchers at VUSec found this behavior and reported to Intel. Affected processors: - Cascade Lake, Cooper Lake, Whiskey Lake V, Coffee Lake R, Comet Lake, Ice Lake, Tiger Lake and Rocket Lake. Scope of impact: - Guest/host isolation: When eIBRS is used for guest/host isolation, the indirect branches in the VMM may still be predicted with targets corresponding to direct branches in the guest. - Intra-mode using cBPF: cBPF can be used to poison the branch history to exploit ITS. Realigning the indirect branches and RETs mitigates this attack vector. - User/kernel: With eIBRS enabled user/kernel isolation is *not* impacted by ITS. - Indirect Branch Prediction Barrier (IBPB): Due to this bug indirect branches may be predicted with targets corresponding to direct branches which were executed prior to IBPB. This will be fixed in the microcode. Mitigation: As indirect branches in the first half of cacheline are affected, the mitigation is to replace those indirect branches with a call to thunk that is aligned to the second half of the cacheline. RETs that take prediction from RSB are not affected, but they may be affected by RSB-underflow condition. So, RETs in the first half of cacheline are also patched to a return thunk that executes the RET aligned to second half of cacheline" * tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: selftest/x86/bugs: Add selftests for ITS x86/its: FineIBT-paranoid vs ITS x86/its: Use dynamic thunks for indirect branches x86/ibt: Keep IBT disabled during alternative patching mm/execmem: Unify early execmem_cache behaviour x86/its: Align RETs in BHB clear sequence to avoid thunking x86/its: Add support for RSB stuffing mitigation x86/its: Add "vmexit" option to skip mitigation on some CPUs x86/its: Enable Indirect Target Selection mitigation x86/its: Add support for ITS-safe return thunk x86/its: Add support for ITS-safe indirect thunk x86/its: Enumerate Indirect Target Selection (ITS) bug Documentation: x86/bugs/its: Add ITS documentation
2025-05-09x86/its: Enumerate Indirect Target Selection (ITS) bugPawan Gupta
ITS bug in some pre-Alderlake Intel CPUs may allow indirect branches in the first half of a cache line get predicted to a target of a branch located in the second half of the cache line. Set X86_BUG_ITS on affected CPUs. Mitigation to follow in later commits. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
2025-05-08KVM: SVM: Set/clear SRSO's BP_SPEC_REDUCE on 0 <=> 1 VM count transitionsSean Christopherson
Set the magic BP_SPEC_REDUCE bit to mitigate SRSO when running VMs if and only if KVM has at least one active VM. Leaving the bit set at all times unfortunately degrades performance by a wee bit more than expected. Use a dedicated spinlock and counter instead of hooking virtualization enablement, as changing the behavior of kvm.enable_virt_at_load based on SRSO_BP_SPEC_REDUCE is painful, and has its own drawbacks, e.g. could result in performance issues for flows that are sensitive to VM creation latency. Defer setting BP_SPEC_REDUCE until VMRUN is imminent to avoid impacting performance on CPUs that aren't running VMs, e.g. if a setup is using housekeeping CPUs. Setting BP_SPEC_REDUCE in task context, i.e. without blasting IPIs to all CPUs, also helps avoid serializing 1<=>N transitions without incurring a gross amount of complexity (see the Link for details on how ugly coordinating via IPIs gets). Link: https://lore.kernel.org/all/aBOnzNCngyS_pQIW@google.com Fixes: 8442df2b49ed ("x86/bugs: KVM: Add support for SRSO_MSR_FIX") Reported-by: Michael Larabel <Michael@michaellarabel.com> Closes: https://www.phoronix.com/review/linux-615-amd-regression Cc: Borislav Petkov <bp@alien8.de> Tested-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20250505180300.973137-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-05Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux v6.15-rc5Herbert Xu
Merge mainline to pick up bcachefs poly1305 patch 4bf4b5046de0 ("bcachefs: use library APIs for ChaCha20 and Poly1305"). This is a prerequisite for removing the poly1305 shash algorithm.
2025-05-02KVM: x86/mmu: Prevent installing hugepages when mem attributes are changingSean Christopherson
When changing memory attributes on a subset of a potential hugepage, add the hugepage to the invalidation range tracking to prevent installing a hugepage until the attributes are fully updated. Like the actual hugepage tracking updates in kvm_arch_post_set_memory_attributes(), process only the head and tail pages, as any potential hugepages that are entirely covered by the range will already be tracked. Note, only hugepage chunks whose current attributes are NOT mixed need to be added to the invalidation set, as mixed attributes already prevent installing a hugepage, and it's perfectly safe to install a smaller mapping for a gfn whose attributes aren't changing. Fixes: 8dd2eee9d526 ("KVM: x86/mmu: Handle page fault for private memory") Cc: stable@vger.kernel.org Reported-by: Michael Roth <michael.roth@amd.com> Tested-by: Michael Roth <michael.roth@amd.com> Link: https://lore.kernel.org/r/20250430220954.522672-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02KVM: SVM: Update dump_ghcb() to use the GHCB snapshot fieldsTom Lendacky
Commit 4e15a0ddc3ff ("KVM: SEV: snapshot the GHCB before accessing it") updated the SEV code to take a snapshot of the GHCB before using it. But the dump_ghcb() function wasn't updated to use the snapshot locations. This results in incorrect output from dump_ghcb() for the "is_valid" and "valid_bitmap" fields. Update dump_ghcb() to use the proper locations. Fixes: 4e15a0ddc3ff ("KVM: SEV: snapshot the GHCB before accessing it") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Link: https://lore.kernel.org/r/8f03878443681496008b1b37b7c4bf77a342b459.1745866531.git.thomas.lendacky@amd.com [sean: add comment and snapshot qualifier] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02KVM: VMX: Clean up and macrofy x86_opsVishal Verma
Eliminate a lot of stub definitions by using macros to define the TDX vs non-TDX versions of various x86_ops. Moving the x86_ops wrappers under CONFIG_KVM_INTEL_TDX also allows nearly all of vmx/main.c to go under a single #ifdef, eliminating trampolines in the generated code, and almost all of the stubs. For example, with CONFIG_KVM_INTEL_TDX=n, before this cleanup, vt_refresh_apicv_exec_ctrl() would produce: 0000000000036490 <vt_refresh_apicv_exec_ctrl>: 36490: f3 0f 1e fa endbr64 36494: e8 00 00 00 00 call 36499 <vt_refresh_apicv_exec_ctrl+0x9> 36495: R_X86_64_PLT32 __fentry__-0x4 36499: e9 00 00 00 00 jmp 3649e <vt_refresh_apicv_exec_ctrl+0xe> 3649a: R_X86_64_PLT32 vmx_refresh_apicv_exec_ctrl-0x4 3649e: 66 90 xchg %ax,%ax After this patch, this is completely eliminated. Based on a patch by Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/kvm/Z6v9yjWLNTU6X90d@google.com/ Cc: Sean Christopherson <seanjc@google.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20250318-vverma7-cleanup_x86_ops-v2-4-701e82d6b779@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02KVM: VMX: Define a VMX glue macro for kvm_complete_insn_gp()Vishal Verma
Define kvm_complete_insn_gp() as vmx_complete_emulated_msr() and use the glue wrapper in vt_complete_emulated_msr() so that VT's .complete_emulated_msr() implementation follows the soon-to-be-standard pattern of: vt_abc: if (is_td()) return tdx_abc(); return vmx_abc(); This will allow generating such wrappers via a macro, which in turn will make it trivially easy to skip the wrappers entirely when KVM_INTEL_TDX=n. Suggested-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/kvm/Z6v9yjWLNTU6X90d@google.com/ Cc: Sean Christopherson <seanjc@google.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20250318-vverma7-cleanup_x86_ops-v2-3-701e82d6b779@intel.com [sean: massage shortlog+changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02KVM: VMX: Move vt_apicv_pre_state_restore() to posted_intr.c and tweak nameVishal Verma
In preparation for a cleanup of the kvm_x86_ops struct for TDX, all vt_* functions are expected to act as glue functions that route to either tdx_* or vmx_* based on the VM type. Specifically, the pattern is: vt_abc: if (is_td()) return tdx_abc(); return vmx_abc(); But vt_apicv_pre_state_restore() does not follow this pattern. To facilitate that cleanup, rename and move vt_apicv_pre_state_restore() into posted_intr.c. Opportunistically turn vcpu_to_pi_desc() back into a static function, as the only reason it was exposed outside of posted_intr.c was for vt_apicv_pre_state_restore(). No functional change intended. Suggested-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/kvm/Z6v9yjWLNTU6X90d@google.com/ Cc: Sean Christopherson <seanjc@google.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linxu.intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/20250318-vverma7-cleanup_x86_ops-v2-2-701e82d6b779@intel.com [sean: apply Chao's suggestions, massage shortlog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02KVM: x86: Revert kvm_x86_ops.mem_enc_ioctl() back to an OPTIONAL hookSean Christopherson
Restore KVM's handling of a NULL kvm_x86_ops.mem_enc_ioctl, as the hook is NULL on SVM when CONFIG_KVM_AMD_SEV=n, and TDX will soon follow suit. ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at arch/x86/include/asm/kvm-x86-ops.h:130 kvm_x86_vendor_init+0x178b/0x18e0 Modules linked in: CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.15.0-rc2-dc1aead1a985-sink-vm #2 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_x86_vendor_init+0x178b/0x18e0 Call Trace: <TASK> svm_init+0x2e/0x60 do_one_initcall+0x56/0x290 kernel_init_freeable+0x192/0x1e0 kernel_init+0x16/0x130 ret_from_fork+0x30/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> ---[ end trace 0000000000000000 ]--- Opportunistically drop the superfluous curly braces. Link: https://lore.kernel.org/all/20250318-vverma7-cleanup_x86_ops-v2-4-701e82d6b779@intel.com Fixes: b2aaf38ced69 ("KVM: TDX: Add place holder for TDX VM specific mem_enc_op ioctl") Link: https://lore.kernel.org/r/20250502203421.865686-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02x86/msr: Change the function type of native_read_msr_safe()Xin Li (Intel)
Modify the function type of native_read_msr_safe() to: int native_read_msr_safe(u32 msr, u64 *val) This change makes the function return an error code instead of the MSR value, aligning it with the type of native_write_msr_safe(). Consequently, their callers can check the results in the same way. While at it, convert leftover MSR data type "unsigned int" to u32. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20250427092027.1598740-16-xin@zytor.com
2025-05-02x86/pvops/msr: Refactor pv_cpu_ops.write_msr{,_safe}()Xin Li (Intel)
An MSR value is represented as a 64-bit unsigned integer, with existing MSR instructions storing it in EDX:EAX as two 32-bit segments. The new immediate form MSR instructions, however, utilize a 64-bit general-purpose register to store the MSR value. To unify the usage of all MSR instructions, let the default MSR access APIs accept an MSR value as a single 64-bit argument instead of two 32-bit segments. The dual 32-bit APIs are still available as convenient wrappers over the APIs that handle an MSR value as a single 64-bit argument. The following illustrates the updated derivation of the MSR write APIs: __wrmsrq(u32 msr, u64 val) / \ / \ native_wrmsrq(msr, val) native_wrmsr(msr, low, high) | | native_write_msr(msr, val) / \ / \ wrmsrq(msr, val) wrmsr(msr, low, high) When CONFIG_PARAVIRT is enabled, wrmsrq() and wrmsr() are defined on top of paravirt_write_msr(): paravirt_write_msr(u32 msr, u64 val) / \ / \ wrmsrq(msr, val) wrmsr(msr, low, high) paravirt_write_msr() invokes cpu.write_msr(msr, val), an indirect layer of pv_ops MSR write call: If on native: cpu.write_msr = native_write_msr If on Xen: cpu.write_msr = xen_write_msr Therefore, refactor pv_cpu_ops.write_msr{_safe}() to accept an MSR value in a single u64 argument, replacing the current dual u32 arguments. No functional change intended. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Juergen Gross <jgross@suse.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20250427092027.1598740-14-xin@zytor.com
2025-05-02x86/msr: Convert __rdmsr() uses to native_rdmsrq() usesXin Li (Intel)
__rdmsr() is the lowest level MSR write API, with native_rdmsr() and native_rdmsrq() serving as higher-level wrappers around it. #define native_rdmsr(msr, val1, val2) \ do { \ u64 __val = __rdmsr((msr)); \ (void)((val1) = (u32)__val); \ (void)((val2) = (u32)(__val >> 32)); \ } while (0) static __always_inline u64 native_rdmsrq(u32 msr) { return __rdmsr(msr); } However, __rdmsr() continues to be utilized in various locations. MSR APIs are designed for different scenarios, such as native or pvops, with or without trace, and safe or non-safe. Unfortunately, the current MSR API names do not adequately reflect these factors, making it challenging to select the most appropriate API for various situations. To pave the way for improving MSR API names, convert __rdmsr() uses to native_rdmsrq() to ensure consistent usage. Later, these APIs can be renamed to better reflect their implications, such as native or pvops, with or without trace, and safe or non-safe. No functional change intended. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20250427092027.1598740-10-xin@zytor.com
2025-05-02x86/msr: Add explicit includes of <asm/msr.h>Xin Li (Intel)
For historic reasons there are some TSC-related functions in the <asm/msr.h> header, even though there's an <asm/tsc.h> header. To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h> to <asm/tsc.h> and to eventually eliminate the inclusion of <asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency to the source files that reference definitions from <asm/msr.h>. [ mingo: Clarified the changelog. ] Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
2025-05-02Merge tag 'v6.15-rc4' into x86/msr, to pick up fixes and resolve conflictsIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-04-29x86/bugs: Restructure L1TF mitigationDavid Kaplan
Restructure L1TF to use select/apply functions to create consistent vulnerability handling. Define new AUTO mitigation for L1TF. Signed-off-by: David Kaplan <david.kaplan@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/20250418161721.1855190-16-david.kaplan@amd.com
2025-04-29KVM: x86: Unify cross-vCPU IBPBSean Christopherson
Both SVM and VMX have similar implementation for executing an IBPB between running different vCPUs on the same CPU to create separate prediction domains for different vCPUs. For VMX, when the currently loaded VMCS is changed in vmx_vcpu_load_vmcs(), an IBPB is executed if there is no 'buddy', which is the case on vCPU load. The intention is to execute an IBPB when switching vCPUs, but not when switching the VMCS within the same vCPU. Executing an IBPB on nested transitions within the same vCPU is handled separately and conditionally in nested_vmx_vmexit(). For SVM, the current VMCB is tracked on vCPU load and an IBPB is executed when it is changed. The intention is also to execute an IBPB when switching vCPUs, although it is possible that in some cases an IBBP is executed when switching VMCBs for the same vCPU. Executing an IBPB on nested transitions should be handled separately, and is proposed at [1]. Unify the logic by tracking the last loaded vCPU and execuintg the IBPB on vCPU change in kvm_arch_vcpu_load() instead. When a vCPU is destroyed, make sure all references to it are removed from any CPU. This is similar to how SVM clears the current_vmcb tracking on vCPU destruction. Remove the current VMCB tracking in SVM as it is no longer required, as well as the 'buddy' parameter to vmx_vcpu_load_vmcs(). [1] https://lore.kernel.org/lkml/20250221163352.3818347-4-yosry.ahmed@linux.dev Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> [sean: tweak comment to stay at/under 80 columns] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-29KVM: SVM: Clear current_vmcb during vCPU free for all *possible* CPUsYosry Ahmed
When freeing a vCPU and thus its VMCB, clear current_vmcb for all possible CPUs, not just online CPUs, as it's theoretically possible a CPU could go offline and come back online in conjunction with KVM reusing the page for a new VMCB. Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev Fixes: fd65d3142f73 ("kvm: svm: Ensure an IBPB on all affected CPUs when freeing a vmcb") Cc: stable@vger.kernel.org Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> [sean: split to separate patch, write changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28x86/sev: Remove unnecessary GFP_KERNEL_ACCOUNT for temporary variablesPeng Hao
Some variables allocated in sev_send_update_data are released when the function exits, so there is no need to set GFP_KERNEL_ACCOUNT. Signed-off-by: Peng Hao <flyingpeng@tencent.com> Link: https://lore.kernel.org/r/20250428063013.62311-1-flyingpeng@tencent.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: x86/mmu: Check and free obsolete roots in kvm_mmu_reload()Yan Zhao
Check request KVM_REQ_MMU_FREE_OBSOLETE_ROOTS to free obsolete roots in kvm_mmu_reload() to prevent kvm_mmu_reload() from seeing a stale obsolete root. Since kvm_mmu_reload() can be called outside the vcpu_enter_guest() path (e.g., kvm_arch_vcpu_pre_fault_memory()), it may be invoked after a root has been marked obsolete and before vcpu_enter_guest() is invoked to process KVM_REQ_MMU_FREE_OBSOLETE_ROOTS and set root.hpa to invalid. This causes kvm_mmu_reload() to fail to load a new root, which can lead to kvm_arch_vcpu_pre_fault_memory() being stuck in the while loop in kvm_tdp_map_page() since RET_PF_RETRY is always returned due to is_page_fault_stale(). Keep the existing check of KVM_REQ_MMU_FREE_OBSOLETE_ROOTS in vcpu_enter_guest() since the cost of kvm_check_request() is negligible, especially a check that's guarded by kvm_request_pending(). Export symbol of kvm_mmu_free_obsolete_roots() as kvm_mmu_reload() is inline and may be called outside of kvm.ko. Fixes: 6e01b7601dfe ("KVM: x86: Implement kvm_arch_vcpu_pre_fault_memory()") Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20250318013333.5817-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: x86/mmu: Warn if PFN changes on shadow-present SPTE in shadow MMUYan Zhao
Warn if PFN changes on shadow-present SPTE in mmu_set_spte(). KVM should _never_ change the PFN of a shadow-present SPTE. In mmu_set_spte(), there is a WARN_ON_ONCE() on pfn changes on shadow-present SPTE in mmu_spte_update() to detect this condition. However, that WARN_ON_ONCE() is not hittable since mmu_set_spte() invokes drop_spte() earlier before mmu_spte_update(), which clears SPTE to a !shadow-present state. So, before invoking drop_spte(), add a WARN_ON_ONCE() in mmu_set_spte() to warn PFN change of a shadow-present SPTE. For the spurious prefetch fault, only return RET_PF_SPURIOUS directly when PFN is not changed. When PFN changes, fall through to follow the sequence of drop_spte(), warn of PFN change, make_spte(), flush tlb, rmap_add(). Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20250318013310.5781-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: x86/tdp_mmu: WARN if PFN changes for spurious faultsYan Zhao
Add a WARN() to assert that KVM does _not_ change the PFN of a shadow-present SPTE during spurious fault handling. KVM should _never_ change the PFN of a shadow-present SPTE and TDP MMU already BUG()s on this. However, spurious faults just return early before the existing BUG() could be hit. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20250318013238.5732-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: x86/tdp_mmu: Merge prefetch and access checks for spurious faultsYan Zhao
Combine prefetch and is_access_allowed() checks into a unified path to detect spurious faults, since both cases now share identical logic. No functional changes. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20250318013210.5701-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: x86/mmu: Further check old SPTE is leaf for spurious prefetch faultYan Zhao
Instead of simply treating a prefetch fault as spurious when there's a shadow-present old SPTE, further check if the old SPTE is leaf to determine if a prefetch fault is spurious. It's not reasonable to treat a prefetch fault as spurious when there's a shadow-present non-leaf SPTE without a corresponding shadow-present leaf SPTE. e.g., in the following sequence, a prefetch fault should not be considered spurious: 1. add a memslot with size 4K 2. prefault GPA A in the memslot 3. delete the memslot (zap all disabled) 4. re-add the memslot with size 2M 5. prefault GPA A again. In step 5, the prefetch fault attempts to install a 2M huge entry. Since step 3 zaps the leaf SPTE for GPA A while keeping the non-leaf SPTE, the leaf entry will remain empty after step 5 if the fetch fault is regarded as spurious due to a shadow-present non-leaf SPTE. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20250318013111.5648-1-yan.y.zhao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-04-28KVM: VMX: Flush shadow VMCS on emergency rebootChao Gao
Ensure the shadow VMCS cache is evicted during an emergency reboot to prevent potential memory corruption if the cache is evicted after reboot. This issue was identified through code inspection, as __loaded_vmcs_clear() flushes both the normal VMCS and the shadow VMCS. Avoid checking the "launched" state during an emergency reboot, unlike the behavior in __loaded_vmcs_clear(). This is important because reboot NMIs can interfere with operations like copy_shadow_to_vmcs12(), where shadow VMCSes are loaded directly using VMPTRLD. In such cases, if NMIs occur right after the VMCS load, the shadow VMCSes will be active but the "launched" state may not be set. Fixes: 16f5b9034b69 ("KVM: nVMX: Copy processor-specific shadow-vmcs to VMCS12") Cc: stable@vger.kernel.org Signed-off-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20250324140849.2099723-1-chao.gao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>