Age | Commit message (Collapse) | Author |
|
Extract KVM's open-coded calls to do writeback caches on multiple CPUs to
common library helpers for both WBINVD and WBNOINVD (KVM will use both).
Put the onus on the caller to check for a non-empty mask to simplify the
SMP=n implementation, e.g. so that it doesn't need to check that the one
and only CPU in the system is present in the mask.
[sean: move to lib, add SMP=n helpers, clarify usage]
Signed-off-by: Zheyun Shen <szy0127@sjtu.edu.cn>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250128015345.7929-2-szy0127@sjtu.edu.cn
Link: https://lore.kernel.org/20250522233733.3176144-5-seanjc@google.com
|
|
In line with WBINVD usage, add WBNOINVD helper functions. Explicitly fall
back to WBINVD (via alternative()) if WBNOINVD isn't supported even though
the instruction itself is backwards compatible (WBNOINVD is WBINVD with an
ignored REP prefix), so that disabling X86_FEATURE_WBNOINVD behaves as one
would expect, e.g. in case there's a hardware issue that affects WBNOINVD.
Opportunistically, add comments explaining the architectural behavior of
WBINVD and WBNOINVD, and provide hints and pointers to uarch-specific
behavior.
Note, alternative() ensures compatibility with early boot code as needed.
[ bp: Massage, fix typos, make export _GPL. ]
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/20250522233733.3176144-4-seanjc@google.com
|
|
Drop wbinvd_on_all_cpus()'s return value; both the "real" version and the
stub always return '0', and none of the callers check the return.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20250522233733.3176144-3-seanjc@google.com
|
|
While the GCC and Clang compilers already define __ASSEMBLER__
automatically when compiling assembly code, __ASSEMBLY__ is a
macro that only gets defined by the Makefiles in the kernel.
This can be very confusing when switching between userspace
and kernelspace coding, or when dealing with UAPI headers that
rather should use __ASSEMBLER__ instead. So let's standardize on
the __ASSEMBLER__ macro that is provided by the compilers now.
This is mostly a mechanical patch (done with a simple "sed -i"
statement), with some manual tweaks in <asm/frame.h>, <asm/hw_irq.h>
and <asm/setup.h> that mentioned this macro in comments with some
missing underscores.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250314071013.1575167-38-thuth@redhat.com
|
|
No functional change.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250303165246.2175811-5-brgerst@gmail.com
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
smp_store_cpu_info() is just a wrapper around identify_secondary_cpu()
without further value.
Move the extra bits from smp_store_cpu_info() into identify_secondary_cpu()
and remove the wrapper.
[ darwi: Make it compile and fix up the xen/smp_pv.c instance ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250304085152.51092-9-darwi@linutronix.de
|
|
behavior
Fix some related issues (done in a single patch to avoid introducing
intermediate bisect warnings):
1) The SMP version of mwait_play_dead() doesn't return, but its
!SMP counterpart does. Make its calling behavior consistent by
resolving the !SMP version to a BUG(). It should never be called
anyway, this just enforces that at runtime and enables its callers
to be marked as __noreturn.
2) While the SMP definition of mwait_play_dead() is annotated as
__noreturn, the declaration isn't. Nor is it listed in
tools/objtool/noreturns.h. Fix that.
3) Similar to #1, the SMP version of acpi_processor_ffh_play_dead()
doesn't return but its !SMP counterpart does. Make the !SMP
version a BUG(). It should never be called.
4) acpi_processor_ffh_play_dead() doesn't return, but is lacking any
__noreturn annotations. Fix that.
This fixes the following objtool warnings:
vmlinux.o: warning: objtool: acpi_processor_ffh_play_dead+0x67: mwait_play_dead() is missing a __noreturn annotation
vmlinux.o: warning: objtool: acpi_idle_play_dead+0x3c: acpi_processor_ffh_play_dead() is missing a __noreturn annotation
Fixes: a7dd183f0b38 ("x86/smp: Allow calling mwait_play_dead with an arbitrary hint")
Fixes: 541ddf31e300 ("ACPI/processor_idle: Add FFH state handling")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/e885c6fa9e96a61471b33e48c2162d28b15b14c5.1740962711.git.jpoimboe@kernel.org
|
|
The safe_smp_processor_id() function was originally implemented in:
dc2bc768a009 ("stack overflow safe kdump: safe_smp_processor_id()")
to mitigate the CPU number corruption on a stack overflow. At the time,
x86-32 stored the CPU number in thread_struct, which was located at the
bottom of the task stack and thus vulnerable to an overflow.
The CPU number is now located in percpu memory, so this workaround
is no longer needed.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20250303170115.2176553-1-brgerst@gmail.com
|
|
Commit:
03b122da74b2 ("x86/sgx: Hook arch_memory_failure() into mainline code")
... added <linux/mm.h> to <asm/set_memory.h> to provide some helpers.
However the following commit:
b3fdf9398a16 ("x86/mce: relocate set{clear}_mce_nospec() functions")
... moved the inline definitions someplace else, and now <asm/set_memory.h>
just declares a bunch of mostly self-contained functions.
No need for the whole <linux/mm.h> inclusion to declare functions; just
remove that include. This helps avoid circular dependency headaches
(e.g. if <linux/mm.h> ends up including <linux/set_memory.h>).
This change requires a couple of include fixups not to break the
build:
* <asm/smp.h>: including <asm/thread_info.h> directly relies on
<linux/thread_info.h> having already been included, because the
former needs the BAD_STACK/NOT_STACK constants defined in the
latter. This is no longer the case when <asm/smp.h> is included from
some driver file - just include <linux/thread_info.h> to stay out
of trouble.
* sev-guest.c relies on <asm/set_memory.h> including <linux/mm.h>,
so we just need to make that include explicit.
[ mingo: Cleaned up the changelog ]
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20241212080904.2089632-3-kevin.brodsky@arm.com
|
|
Introduce a helper function to allow offlined CPUs to enter idle states
with a specific MWAIT hint. The new helper will be used in subsequent
patches by the acpi_idle and intel_idle drivers.
No functional change intended.
Signed-off-by: Patryk Wlazlyn <patryk.wlazlyn@linux.intel.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/all/20250205155211.329780-2-artem.bityutskiy%40linux.intel.com
|
|
If the helper is defined, it is called instead of halt() to stop the CPU at the
end of stop_this_cpu() and on crash CPU shutdown.
ACPI MADT will use it to hand over the CPU to BIOS in order to be able to wake
it up again after kexec.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Tao Liu <ltao@redhat.com>
Link: https://lore.kernel.org/r/20240614095904.1345461-17-kirill.shutemov@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups, including a large series from Thomas Gleixner to cure
sparse warnings"
* tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Drop unused declaration of proc_nmi_enabled()
x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables
x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation
x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current
x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address()
x86/percpu: Cure per CPU madness on UP
smp: Consolidate smp_prepare_boot_cpu()
x86/msr: Add missing __percpu annotations
x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h>
perf/x86/amd/uncore: Fix __percpu annotation
x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP)
x86/apm_32: Remove dead function apm_get_battery_status()
x86/insn-eval: Fix function param name in get_eff_addr_sib()
|
|
There is no point in having seven architectures implementing the same empty
stub.
Provide a weak function in the init code and remove the stubs.
This also allows to utilize the function on UP which is required to
sanitize the per CPU handling on X86 UP.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.567671691@linutronix.de
|
|
It's really a non-intuitive name. Rename it to __max_threads_per_core which
is obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
|
|
Now that all possible APIC IDs are tracked in the topology bitmaps, its
trivial to retrieve the real information from there.
This gets rid of the guesstimates for the maximal packages and dies per
package as the actual numbers can be determined before a single AP has been
brought up.
The number of SMT threads can now be determined correctly from the bitmaps
in all situations. Up to now a system which has SMT disabled in the BIOS
will still claim that it is SMT capable, because the lowest APIC ID bit is
reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain
accordingly. By calculating the bitmap weights of the SMT and the CORE
domain and setting them into relation the SMT disabled in BIOS situation
reports correctly that the system is not SMT capable.
It also handles the situation correctly when a hybrid systems boot CPU does
not have SMT as it takes the SMT capability of the APs fully into account.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
|
|
Now that all external fiddling with num_processors and disabled_cpus is
gone, move the last user prefill_possible_map() into the topology code too
and remove the global visibility of these variables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.994756960@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have
a model ID less than 4.
The newer models have the topology CPUID leaf 0xB correctly
implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By
chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
the hotplug control stay at its default value "enabled". So the mask
is never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core
to deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or
even non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned
long or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die IDs.
That's really not the right place simply because cpuinfo is subject
to be reinitialized when a CPU goes through an offline/online cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
x86/cpu: Provide debug interface
x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
x86/apic: Use u32 for [gs]et_apic_id()
x86/apic: Use u32 for phys_pkg_id()
x86/apic: Use u32 for cpu_present_to_apicid()
x86/apic: Use u32 for check_apicid_used()
x86/apic: Use u32 for APIC IDs in global data
x86/apic: Use BAD_APICID consistently
x86/cpu: Move cpu_l[l2]c_id into topology info
x86/cpu: Move logical package and die IDs into topology info
x86/cpu: Remove pointless evaluation of x86_coreid_bits
x86/cpu: Move cu_id into topology info
x86/cpu: Move cpu_core_id into topology info
hwmon: (fam15h_power) Use topology_core_id()
scsi: lpfc: Use topology_core_id()
x86/cpu: Move cpu_die_id into topology info
x86/cpu: Move phys_proc_id into topology info
x86/cpu: Encapsulate topology information in cpuinfo_x86
...
|
|
This reverts commit 45e34c8af58f23db4474e2bfe79183efec09a18b, and the
two subsequent fixes to it:
3f874c9b2aae ("x86/smp: Don't send INIT to non-present and non-booted CPUs")
b1472a60a584 ("x86/smp: Don't send INIT to boot CPU")
because it seems to result in hung machines at shutdown. Particularly
some Dell machines, but Thomas says
"The rest seems to be Lenovo and Sony with Alderlake/Raptorlake CPUs -
at least that's what I could figure out from the various bug reports.
I don't know which CPUs the DELL machines have, so I can't say it's a
pattern.
I agree with the revert for now"
Ashok Raj chimes in:
"There was a report (probably this same one), and it turns out it was a
bug in the BIOS SMI handler.
The client BIOS's were waiting for the lowest APICID to be the SMI
rendevous master. If this is MeteorLake, the BSP wasn't the one with
the lowest APIC and it triped here.
The BIOS change is also being pushed to others for assimilation :)
Server BIOS's had this correctly for a while now"
and it does look likely to be some bad interaction between SMI and the
non-BSP cores having put into INIT (and thus unresponsive until reset).
Link: https://bbs.archlinux.org/viewtopic.php?pid=2124429
Link: https://www.reddit.com/r/openSUSE/comments/16qq99b/tumbleweed_shutdown_did_not_finish_completely/
Link: https://forum.artixlinux.org/index.php/topic,5997.0.html
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2241279
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup the most obvious usage sites of that.
The APIC callbacks will be addressed separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de
|
|
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.
Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.
This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Dave Hansen:
"This includes a very thorough rework of the 'struct apic' handlers.
Quite a variety of them popped up over the years, especially in the
32-bit days when odd apics were much more in vogue.
The end result speaks for itself, which is a removal of a ton of code
and static calls to replace indirect calls.
If there's any breakage here, it's likely to be around the 32-bit
museum pieces that get light to no testing these days.
Summary:
- Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
- Use static_calls() instead of indirect calls for apic->foo()
- Tons of cleanups an crap removal along the way"
* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/apic: Turn on static calls
x86/apic: Provide static call infrastructure for APIC callbacks
x86/apic: Wrap IPI calls into helper functions
x86/apic: Mark all hotpath APIC callback wrappers __always_inline
x86/xen/apic: Mark apic __ro_after_init
x86/apic: Convert other overrides to apic_update_callback()
x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
x86/apic: Provide apic_update_callback()
x86/xen/apic: Use standard apic driver mechanism for Xen PV
x86/apic: Provide common init infrastructure
x86/apic: Wrap apic->native_eoi() into a helper
x86/apic: Nuke ack_APIC_irq()
x86/apic: Remove pointless arguments from [native_]eoi_write()
x86/apic/noop: Tidy up the code
x86/apic: Remove pointless NULL initializations
x86/apic: Sanitize APIC ID range validation
x86/apic: Prepare x2APIC for using apic::max_apic_id
x86/apic: Simplify X2APIC ID validation
x86/apic: Add max_apic_id member
x86/apic: Wrap APIC ID validation into an inline
...
|
|
This per CPU variable is just yet another form of voodoo programming. The
boot ordering is:
per_cpu(x86_cpu_to_logical_apicid, cpu) = 1U << cpu;
.....
setup_apic()
apic->init_apic_ldr()
default_init_apic_ldr()
apic_write(SET_APIC_LOGICAL_ID(1UL << smp_processor_id(), APIC_LDR);
id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR);
WARN_ON(id != per_cpu(x86_cpu_to_logical_apicid, cpu));
per_cpu(x86_cpu_to_logical_apicid, cpu) = id;
So first write the default into LDR and then validate it against the same default
which was set up during early boot APIC enumeration.
Brilliant, isn't it?
The comment above the per CPU variable declaration describes it well:
'Let's keep it ugly for now.'
Remove the useless gunk and use '1U << cpu' consistently all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
No point in having a wrapper around read_apic_id().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
It's a useless copy of x86_cpu_to_apicid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
|
|
The function is only used locally. Convert it to a static one.
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-4-sohil.mehta@intel.com
|
|
x86_idle_thread_init() does not exist anywhere. Remove its declaration
from the header.
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-3-sohil.mehta@intel.com
|
|
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
"A set of fixes for kexec(), reboot and shutdown issues:
- Ensure that the WBINVD in stop_this_cpu() has been completed before
the control CPU proceedes.
stop_this_cpu() is used for kexec(), reboot and shutdown to park
the APs in a HLT loop.
The control CPU sends an IPI to the APs and waits for their CPU
online bits to be cleared. Once they all are marked "offline" it
proceeds.
But stop_this_cpu() clears the CPU online bit before issuing
WBINVD, which means there is no guarantee that the AP has reached
the HLT loop.
This was reported to cause intermittent reboot/shutdown failures
due to some dubious interaction with the firmware.
This is not only a problem of WBINVD. The code to actually "stop"
the CPU which runs between clearing the online bit and reaching the
HLT loop can cause large enough delays on its own (think
virtualization). That's especially dangerous for kexec() as kexec()
expects that all APs are in a safe state and not executing code
while the boot CPU jumps to the new kernel. There are more issues
vs kexec() which are addressed separately.
Cure this by implementing an explicit synchronization point right
before the AP reaches HLT. This guarantees that the AP has
completed the full stop proceedure.
- Fix the condition for WBINVD in stop_this_cpu().
The WBINVD in stop_this_cpu() is required for ensuring that when
switching to or from memory encryption no dirty data is left in the
cache lines which might cause a write back in the wrong more later.
This checks CPUID directly because the feature bit might have been
cleared due to a command line option.
But that CPUID check accesses leaf 0x8000001f::EAX unconditionally.
Intel CPUs return the content of the highest supported leaf when a
non-existing leaf is read, while AMD CPUs return all zeros for
unsupported leafs.
So the result of the test on Intel CPUs is lottery and on AMD its
just correct by chance.
While harmless it's incorrect and causes the conditional wbinvd()
to be issued where not required, which caused the above issue to be
unearthed.
- Make kexec() robust against AP code execution
Ashok observed triple faults when doing kexec() on a system which
had been booted with "nosmt".
It turned out that the SMT siblings which had been brought up
partially are parked in mwait_play_dead() to enable power savings.
mwait_play_dead() is monitoring the thread flags of the AP's idle
task, which has been chosen as it's unlikely to be written to.
But kexec() can overwrite the previous kernel text and data
including page tables etc. When it overwrites the cache lines
monitored by an AP that AP resumes execution after the MWAIT on
eventually overwritten text, stack and page tables, which obviously
might end up in a triple fault easily.
Make this more robust in several steps:
1) Use an explicit per CPU cache line for monitoring.
2) Write a command to these cache lines to kick APs out of MWAIT
before proceeding with kexec(), shutdown or reboot.
The APs confirm the wakeup by writing status back and then
enter a HLT loop.
3) If the system uses INIT/INIT/STARTUP for AP bringup, park the
APs in INIT state.
HLT is not a guarantee that an AP won't wake up and resume
execution. HLT is woken up by NMI and SMI. SMI puts the CPU
back into HLT (+/- firmware bugs), but NMI is delivered to the
CPU which executes the NMI handler. Same issue as the MWAIT
scenario described above.
Sending an INIT/INIT sequence to the APs puts them into wait
for STARTUP state, which is safe against NMI.
There is still an issue remaining which can't be fixed: #MCE
If the AP sits in HLT and receives a broadcast #MCE it will try to
handle it with the obvious consequences.
INIT/INIT clears CR4.MCE in the AP which will cause a broadcast
#MCE to shut down the machine.
So there is a choice between fire (HLT) and frying pan (INIT).
Frying pan has been chosen as it's at least preventing the NMI
issue.
On systems which are not using INIT/INIT/STARTUP there is not much
which can be done right now, but at least the obvious and easy to
trigger MWAIT issue has been addressed"
* tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smp: Put CPUs into INIT on shutdown if possible
x86/smp: Split sending INIT IPI out into a helper function
x86/smp: Cure kexec() vs. mwait_play_dead() breakage
x86/smp: Use dedicated cache-line for mwait_play_dead()
x86/smp: Remove pointless wmb()s from native_stop_other_cpus()
x86/smp: Dont access non-existing CPUID leaf
x86/smp: Make stop_other_cpus() more robust
|
|
Parking CPUs in a HLT loop is not completely safe vs. kexec() as HLT can
resume execution due to NMI, SMI and MCE, which has the same issue as the
MWAIT loop.
Kicking the secondary CPUs into INIT makes this safe against NMI and SMI.
A broadcast MCE will take the machine down, but a broadcast MCE which makes
HLT resume and execute overwritten text, pagetables or data will end up in
a disaster too.
So chose the lesser of two evils and kick the secondary CPUs into INIT
unless the system has installed special wakeup mechanisms which are not
using INIT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230615193330.608657211@linutronix.de
|
|
TLDR: It's a mess.
When kexec() is executed on a system with offline CPUs, which are parked in
mwait_play_dead() it can end up in a triple fault during the bootup of the
kexec kernel or cause hard to diagnose data corruption.
The reason is that kexec() eventually overwrites the previous kernel's text,
page tables, data and stack. If it writes to the cache line which is
monitored by a previously offlined CPU, MWAIT resumes execution and ends
up executing the wrong text, dereferencing overwritten page tables or
corrupting the kexec kernels data.
Cure this by bringing the offlined CPUs out of MWAIT into HLT.
Write to the monitored cache line of each offline CPU, which makes MWAIT
resume execution. The written control word tells the offlined CPUs to issue
HLT, which does not have the MWAIT problem.
That does not help, if a stray NMI, MCE or SMI hits the offlined CPUs as
those make it come out of HLT.
A follow up change will put them into INIT, which protects at least against
NMI and SMI.
Fixes: ea53069231f9 ("x86, hotplug: Use mwait to offline a processor, fix the legacy case")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.492257119@linutronix.de
|
|
In parallel startup mode the APs are kicked alive by the control CPU
quickly after each other and run through the early startup code in
parallel. The real-mode startup code is already serialized with a
bit-spinlock to protect the real-mode stack.
In parallel startup mode the smpboot_control variable obviously cannot
contain the Linux CPU number so the APs have to determine their Linux CPU
number on their own. This is required to find the CPUs per CPU offset in
order to find the idle task stack and other per CPU data.
To achieve this, export the cpuid_to_apicid[] array so that each AP can
find its own CPU number by searching therein based on its APIC ID.
Introduce a flag in the top bits of smpboot_control which indicates that
the AP should find its CPU number by reading the APIC ID from the APIC.
This is required because CPUID based APIC ID retrieval can only provide the
initial APIC ID, which might have been overruled by the firmware. Some AMD
APUs come up with APIC ID = initial APIC ID + 0x10, so the APIC ID to CPU
number lookup would fail miserably if based on CPUID. Also virtualization
can make its own APIC ID assignements. The only requirement is that the
APIC IDs are consistent with the APCI/MADT table.
For the boot CPU or in case parallel bringup is disabled the control bits
are empty and the CPU number is directly available in bit 0-23 of
smpboot_control.
[ tglx: Initial proof of concept patch with bitlock and APIC ID lookup ]
[ dwmw2: Rework and testing, commit message, CPUID 0x1 and CPU0 support ]
[ seanc: Fix stray override of initial_gs in common_cpu_up() ]
[ Oleksandr Natalenko: reported suspend/resume issue fixed in
x86_acpi_suspend_lowlevel ]
[ tglx: Make it read the APIC ID from the APIC instead of using CPUID,
split the bitlock part out ]
Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.411554373@linutronix.de
|
|
For parallel CPU brinugp it's required to read the APIC ID in the low level
startup code. The virtual APIC base address is a constant because its a
fix-mapped address. Exposing that constant which is composed via macros to
assembly code is non-trivial due to header inclusion hell.
Aside of that it's constant only because of the vsyscall ABI
requirement. Once vsyscall is out of the picture the fixmap can be placed
at runtime.
Avoid header hell, stay flexible and store the address in a variable which
can be exposed to the low level startup code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.299231005@linutronix.de
|
|
The x86 CPU bringup state currently does AP wake-up, wait for AP to
respond and then release it for full bringup.
It is safe to be split into a wake-up and and a separate wait+release
state.
Provide the required functions and enable the split CPU bringup, which
prepares for parallel bringup, where the bringup of the non-boot CPUs takes
two iterations: One to prepare and wake all APs and the second to wait and
release them. Depending on timing this can eliminate the wait time
completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.133453992@linutronix.de
|
|
The new AP state tracking and synchronization mechanism in the CPU hotplug
core code allows to remove quite some x86 specific code:
1) The AP alive synchronization based on cpumasks
2) The decision whether an AP can be brought up again
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.529657366@linutronix.de
|
|
This was introduced with commit e1c467e69040 ("x86, hotplug: Wake up CPU0
via NMI instead of INIT, SIPI, SIPI") to eventually support physical
hotplug of CPU0:
"We'll change this code in the future to wake up hard offlined CPU0 if
real platform and request are available."
11 years later this has not happened and physical hotplug is not officially
supported. Remove the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.768845190@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
|
|
Fixes the following warning:
vmlinux.o: warning: objtool: resume_play_dead+0x21: unreachable instruction
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/ce1407c4bf88b1334fe40413126343792a77ca50.1681342859.git.jpoimboe@kernel.org
|
|
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.
Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:
@func_use@
@@
smp_send_reschedule(...);
@include@
@@
#include <trace/events/ipi.h>
@no_include depends on func_use && !include@
@@
#include <...>
+
+ #include <trace/events/ipi.h>
[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
|
|
In order to facilitate parallel startup, start to eliminate some of the
global variables passing information to CPUs in the startup path.
However, start by introducing one more: smpboot_control. For now this
merely holds the CPU# of the CPU which is coming up. Each CPU can then
find its own per-cpu data, and everything else it needs can be found
from there, allowing the other global variables to be removed.
First to be removed is initial_stack. Each CPU can load %rsp from its
current_task->thread.sp instead. That is already set up with the correct
idle thread for APs. Set up the .sp field in INIT_THREAD on x86 so that
the BSP also finds a suitable stack pointer in the static per-cpu data
when coming up on first boot.
On resume from S3, the CPU needs a temporary stack because its idle task
is already active. Instead of setting initial_stack, the sleep code can
simply set its own current->thread.sp to point to the temporary stack.
Nobody else cares about ->thread.sp for a thread which is currently on
a CPU, because the true value is actually in the %rsp register. Which
is restored with the rest of the CPU context in do_suspend_lowlevel().
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-7-usama.arif@bytedance.com
|
|
play_dead() doesn't return. Annotate it as such. By extension this
also makes arch_cpu_idle_dead() noreturn.
Link: https://lore.kernel.org/r/f3a069e6869c51ccfdda656b76882363bc9fcfa4.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
After commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead()
return"), play_dead() never returns. Make that more explicit with a
BUG().
BUG() is preferable to unreachable() because BUG() is a more explicit
failure mode and avoids undefined behavior like falling off the edge of
the function into whatever code happens to be next.
Link: https://lore.kernel.org/r/11e6ac1cf10f92967882926e3ac16287b50642f2.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
Also add cpu_number to the pcpu_hot structure, it is often referenced
and this cacheline is there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.387678283@infradead.org
|
|
On a CONFIG_SMP=n kernel, the LLC shared mask is 0, which prevents
__cache_amd_cpumap_setup() from doing the L3 masks setup, and more
specifically from setting up the shared_cpu_map and shared_cpu_list
files in sysfs, leading to lscpu from util-linux getting confused and
segfaulting.
Add a cpu_llc_shared_mask() UP variant which returns a mask with a
single bit set, i.e., for CPU0.
Fixes: 2b83809a5e6d ("x86/cpu/amd: Derive L3 shared_cpu_map from cpu_llc_shared_mask")
Reported-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/1660148115-302-1-git-send-email-ssengar@linux.microsoft.com
|
|
Commit 66558b730f25 ("sched: Add cluster scheduler level for x86")
introduced cpu_l2c_shared_map mask which is expected to be initialized
by smp_op.smp_prepare_cpus(). That commit only updated
native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus().
As result Xen PV guests crash in set_cpu_sibling_map().
While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can
see that both versions of smp_prepare_cpus ops share a number of common
operations that can be factored out. So do that instead.
Fixes: 66558b730f25 ("sched: Add cluster scheduler level for x86")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
|
|
There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is
shared among a cluster of cores instead of being exclusive to one
single core.
To prevent oversubscription of L2 cache, load should be balanced
between such L2 clusters, especially for tasks with no shared data.
On benchmark such as SPECrate mcf test, this change provides a boost
to performance especially on medium load system on Jacobsville. on a
Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4
cores each, the benchmark number is as follow:
Improvement over baseline kernel for mcf_r
copies run time base rate
1 -0.1% -0.2%
6 25.1% 25.1%
12 18.8% 19.0%
24 0.3% 0.3%
So this looks pretty good. In terms of the system's task distribution,
some pretty bad clumping can be seen for the vanilla kernel without
the L2 cluster domain for the 6 and 12 copies case. With the extra
domain for cluster, the load does get evened out between the clusters.
Note this patch isn't an universal win as spreading isn't necessarily
a win, particually for those workload who can benefit from packing.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
|
|
Commit 8cdddd182bd7 ("ACPI: processor: Fix CPU0 wakeup in
acpi_idle_play_dead()") tried to fix CPU0 hotplug breakage by copying
wakeup_cpu0() + start_cpu0() logic from hlt_play_dead()//mwait_play_dead()
into acpi_idle_play_dead(). The problem is that these functions are not
exported to modules so when CONFIG_ACPI_PROCESSOR=m build fails.
The issue could've been fixed by exporting both wakeup_cpu0()/start_cpu0()
(the later from assembly) but it seems putting the whole pattern into a
new function and exporting it instead is better.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 8cdddd182bd7 ("CPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()")
Cc: <stable@vger.kernel.org> # 5.10+
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit 496121c02127 ("ACPI: processor: idle: Allow probing on platforms
with one ACPI C-state") broke CPU0 hotplug on certain systems, e.g.
I'm observing the following on AWS Nitro (e.g r5b.xlarge but other
instance types are affected as well):
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu0/online
<10 seconds delay>
-bash: echo: write error: Input/output error
In fact, the above mentioned commit only revealed the problem and did
not introduce it. On x86, to wakeup CPU an NMI is being used and
hlt_play_dead()/mwait_play_dead() loops are prepared to handle it:
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
cpuidle_play_dead() -> acpi_idle_play_dead() (which is now being called on
systems where it wasn't called before the above mentioned commit) serves
the same purpose but it doesn't have a path for CPU0. What happens now on
wakeup is:
- NMI is sent to CPU0
- wakeup_cpu0_nmi() works as expected
- we get back to while (1) loop in acpi_idle_play_dead()
- safe_halt() puts CPU0 to sleep again.
The straightforward/minimal fix is add the special handling for CPU0 on x86
and that's what the patch is doing.
Fixes: 496121c02127 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: 5.10+ <stable@vger.kernel.org> # 5.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The APIC headers are relatively complex and bring in additional
header dependencies - while smp.h is a relatively simple header
included from high level headers.
Remove the dependency and add in the missing #include's in .c
files where they gained it indirectly before.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|