summaryrefslogtreecommitdiff
path: root/libihash/ihash.c
blob: 8fa9d51411dce6e08a813c39bb5ae0b2b42fa102 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/* ihash.c - Integer-keyed hash table functions.
   Copyright (C) 1993-1997, 2001, 2003, 2004 Free Software Foundation, Inc.
   Written by Michael I. Bushnell.
   Revised by Miles Bader <miles@gnu.org>.
   Revised by Marcus Brinkmann <marcus@gnu.org>.
   
   This file is part of the GNU Hurd.

   The GNU Hurd is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   The GNU Hurd is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with the GNU Hurd; see the file COPYING.  If not, write to
   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

#if HAVE_CONFIG_H
#include <config.h>
#endif

#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <stdint.h>
#include <assert.h>

#include <hurd/ihash.h>


/* The prime numbers of the form 4 * i + 3 for some i, all greater
   than twice the previous one and smaller than 2^40 (for now).  */
static const uint64_t ihash_sizes[] =
{
  3,
  7,
  19,
  43,
  103,
  211,
  431,
  863,
  1747,
  3499,
  7019,
  14051,
  28111,
  56239,
  112507,
  225023,
  450067,
  900139,
  1800311,
  3600659,
  7201351,
  14402743,
  28805519,
  57611039,
  115222091,
  230444239,
  460888499,
  921777067,
  1843554151,
  UINT64_C (3687108307),
  UINT64_C (7374216631),
  UINT64_C (14748433279),
  UINT64_C (29496866579),
  UINT64_C (58993733159),
  UINT64_C (117987466379),
  UINT64_C (235974932759),
  UINT64_C (471949865531),
  UINT64_C (943899731087)
};

static const unsigned int ihash_nsizes = (sizeof ihash_sizes
					  / sizeof ihash_sizes[0]);


/* Return 1 if the slot with the index IDX in the hash table HT is
   empty, and 0 otherwise.  */
static inline int
index_empty (hurd_ihash_t ht, unsigned int idx)
{
  return ht->items[idx].value == _HURD_IHASH_EMPTY
    || ht->items[idx].value == _HURD_IHASH_DELETED;
}


/* Return 1 if the index IDX in the hash table HT is occupied by the
   element with the key KEY.  */
static inline int
index_valid (hurd_ihash_t ht, unsigned int idx, hurd_ihash_key_t key)
{
  return !index_empty (ht, idx) && ht->items[idx].key == key;
}


/* Given a hash table HT, and a key KEY, find the index in the table
   of that key.  You must subsequently check with index_valid() if the
   returned index is valid.  */
static inline int
find_index (hurd_ihash_t ht, hurd_ihash_key_t key)
{
  unsigned int idx;
  unsigned int i;
  unsigned int up_idx;
  unsigned int down_idx;

  idx = key % ht->size;

  if (ht->items[idx].value == _HURD_IHASH_EMPTY || ht->items[idx].key == key)
    return idx;

  /* Instead of calculating idx + 1, idx + 4, idx + 9, ..., idx + i^2,
     we add 1, 3, 5, 7, etc to the previous index.  We do this in both
     directions separately.  */
  i = 1;
  up_idx = idx;
  down_idx = idx;

  do
    {
      up_idx = (up_idx + i) % ht->size;
      if (ht->items[up_idx].value == _HURD_IHASH_EMPTY
	  || ht->items[up_idx].key == key)
	return up_idx;

      if (down_idx < i)
	down_idx += ht->size;
      down_idx = (down_idx - i) % ht->size;
      if (ht->items[down_idx].value == _HURD_IHASH_EMPTY
	  || ht->items[down_idx].key == key)
	return down_idx;

      /* After (ht->size - 1) / 2 iterations, this will be 0.  */
      i = (i + 2) % ht->size;
    }
  while (i);

  /* If we end up here, the item could not be found.  Return any
     invalid index.  */
  return idx;
}


/* Remove the entry pointed to by the location pointer LOCP from the
   hashtable HT.  LOCP is the location pointer of which the address
   was provided to hurd_ihash_add().  */
static inline void
locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp)
{
  if (ht->cleanup)
    (*ht->cleanup) (*locp, ht->cleanup_data);
  *locp = _HURD_IHASH_DELETED;
  ht->nr_items--;
}


/* Construction and destruction of hash tables.  */

/* Initialize the hash table at address HT.  */
void
hurd_ihash_init (hurd_ihash_t ht, intptr_t locp_offs)
{
  ht->nr_items = 0;
  ht->size = 0;
  ht->locp_offset = locp_offs;
  ht->max_load = HURD_IHASH_MAX_LOAD_DEFAULT;
  ht->cleanup = 0;
}


/* Destroy the hash table at address HT.  This first removes all
   elements which are still in the hash table, and calling the cleanup
   function for them (if any).  */
void
hurd_ihash_destroy (hurd_ihash_t ht)
{
  if (ht->cleanup)
    {
      hurd_ihash_cleanup_t cleanup = ht->cleanup;
      void *cleanup_data = ht->cleanup_data;

      HURD_IHASH_ITERATE (ht, value)
	(*cleanup) (value, cleanup_data);
    }

  if (ht->size > 0)
    free (ht->items);
}


/* Create a hash table, initialize it and return it in HT.  If a
   memory allocation error occurs, ENOMEM is returned, otherwise 0.  */
error_t
hurd_ihash_create (hurd_ihash_t *ht, intptr_t locp_offs)
{
  *ht = malloc (sizeof (struct hurd_ihash));
  if (*ht == NULL)
    return ENOMEM;

  hurd_ihash_init (*ht, locp_offs);

  return 0;
}


/* Destroy the hash table HT and release the memory allocated for it
   by hurd_ihash_create().  */
void
hurd_ihash_free (hurd_ihash_t ht)
{
  hurd_ihash_destroy (ht);
  free (ht);
}


/* Set the cleanup function for the hash table HT to CLEANUP.  The
   second argument to CLEANUP will be CLEANUP_DATA on every
   invocation.  */
void
hurd_ihash_set_cleanup (hurd_ihash_t ht, hurd_ihash_cleanup_t cleanup,
			void *cleanup_data)
{
  ht->cleanup = cleanup;
  ht->cleanup_data = cleanup_data;
}


/* Set the maximum load factor in percent to MAX_LOAD, which should be
   between 1 and 100.  The default is HURD_IHASH_MAX_LOAD_DEFAULT.
   New elements are only added to the hash table while the number of
   hashed elements is that much percent of the total size of the hash
   table.  If more elements are added, the hash table is first
   expanded and reorganized.  A MAX_LOAD of 100 will always fill the
   whole table before enlarging it, but note that this will increase
   the cost of operations significantly when the table is almost full.

   If the value is set to a smaller value than the current load
   factor, the next reorganization will happen when a new item is
   added to the hash table.  */
void
hurd_ihash_set_max_load (hurd_ihash_t ht, unsigned int max_load)
{
  ht->max_load = max_load;
}


/* Helper function for hurd_ihash_add.  Return 1 if the item was
   added, and 0 if it could not be added because no empty slot was
   found.  The arguments are identical to hurd_ihash_add.

   We are using open address hashing.  As the hash function we use the
   division method with quadratic probe.  This is guaranteed to try
   all slots in the hash table if the prime number is 3 mod 4.  */
static inline int
add_one (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t value)
{
  unsigned int idx;
  unsigned int first_free;

  idx = key % ht->size;
  first_free = idx;

  if (ht->items[idx].value != _HURD_IHASH_EMPTY && ht->items[idx].key != key)
    {
      /* Instead of calculating idx + 1, idx + 4, idx + 9, ..., idx +
         i^2, we add 1, 3, 5, 7, ... 2 * i - 1 to the previous index.
         We do this in both directions separately.  */
      unsigned int i = 1;
      unsigned int up_idx = idx;
      unsigned int down_idx = idx;
 
      do
	{
	  up_idx = (up_idx + i) % ht->size;
	  if (ht->items[up_idx].value == _HURD_IHASH_EMPTY
	      || ht->items[up_idx].key == key)
	    {
	      idx = up_idx;
	      break;
	    }
	  if (first_free == idx
	      && ht->items[up_idx].value == _HURD_IHASH_DELETED)
	    first_free = up_idx;

	  if (down_idx < i)
	    down_idx += ht->size;
	  down_idx = (down_idx - i) % ht->size;
	  if (down_idx < 0)
	    down_idx += ht->size;
	  else
	    down_idx %= ht->size;
	  if (ht->items[down_idx].value == _HURD_IHASH_EMPTY
	      || ht->items[down_idx].key == key)
	    {
	      idx = down_idx;
	      break;
	    }
	  if (first_free == idx
	      && ht->items[down_idx].value == _HURD_IHASH_DELETED)
	    first_free = down_idx;

	  /* After (ht->size - 1) / 2 iterations, this will be 0.  */
	  i = (i + 2) % ht->size;
	}
      while (i);
    }

  /* Remove the old entry for this key if necessary.  */
  if (index_valid (ht, idx, key))
    locp_remove (ht, &ht->items[idx].value);

  /* If we have not found an empty slot, maybe the last one we
     looked at was empty (or just got deleted).  */
  if (!index_empty (ht, first_free))
    first_free = idx;
 
  if (index_empty (ht, first_free))
    {
      ht->nr_items++;
      ht->items[first_free].value = value;
      ht->items[first_free].key = key;

      if (ht->locp_offset != HURD_IHASH_NO_LOCP)
	*((hurd_ihash_locp_t) (((char *) value) + ht->locp_offset))
	  = &ht->items[first_free].value;

      return 1;
    }

  return 0;
}

  
/* Add ITEM to the hash table HT under the key KEY.  If there already
   is an item under this key, call the cleanup function (if any) for
   it before overriding the value.  If a memory allocation error
   occurs, ENOMEM is returned, otherwise 0.  */
error_t
hurd_ihash_add (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t item)
{
  struct hurd_ihash old_ht = *ht;
  int was_added;
  int i;

  if (ht->size)
    {
      /* Only fill the hash table up to its maximum load factor.  */
      if (ht->nr_items * 100 / ht->size <= ht->max_load)
	if (add_one (ht, key, item))
	  return 0;
    }

  /* The hash table is too small, and we have to increase it.  */
  for (i = 0; i < ihash_nsizes; i++)
    if (ihash_sizes[i] > old_ht.size)
      break;
  if (i == ihash_nsizes
      || ihash_sizes[i] > SIZE_MAX / sizeof (struct _hurd_ihash_item))
    return ENOMEM;		/* Surely will be true momentarily.  */

  ht->nr_items = 0;
  ht->size = ihash_sizes[i];
  /* calloc() will initialize all values to _HURD_IHASH_EMPTY implicitely.  */
  ht->items = calloc (ht->size, sizeof (struct _hurd_ihash_item));

  if (ht->items == NULL)
    {
      if (ht->items)
	free(ht->items);

      *ht = old_ht;
      return ENOMEM;
    }

  /* We have to rehash the old entries.  */
  for (i = 0; i < old_ht.size; i++)
    if (!index_empty (&old_ht, i))
      {
	was_added = add_one (ht, old_ht.items[i].key, old_ht.items[i].value);
	assert (was_added);
      }

  /* Finally add the new element!  */
  was_added = add_one (ht, key, item);
  assert (was_added);

  if (old_ht.size > 0)
    free (old_ht.items);

  return 0;
}


/* Find and return the item in the hash table HT with key KEY, or NULL
   if it doesn't exist.  */
hurd_ihash_value_t
hurd_ihash_find (hurd_ihash_t ht, hurd_ihash_key_t key)
{
  if (ht->size == 0)
    return NULL;
  else
    {
      int idx = find_index (ht, key);
      return index_valid (ht, idx, key) ? ht->items[idx].value : NULL;
    }
}


/* Remove the entry with the key KEY from the hash table HT.  If such
   an entry was found and removed, 1 is returned, otherwise 0.  */
int
hurd_ihash_remove (hurd_ihash_t ht, hurd_ihash_key_t key)
{
  if (ht->size != 0)
    {
      int idx = find_index (ht, key);
      
      if (index_valid (ht, idx, key))
	{
	  locp_remove (ht, &ht->items[idx].value);
	  return 1;
	}
    }

  return 0;
}


/* Remove the entry pointed to by the location pointer LOCP from the
   hashtable HT.  LOCP is the location pointer of which the address
   was provided to hurd_ihash_add().  This call is faster than
   hurd_ihash_remove().  */
void
hurd_ihash_locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp)
{
  locp_remove (ht, locp);
}