summaryrefslogtreecommitdiff
path: root/mem.c
diff options
context:
space:
mode:
Diffstat (limited to 'mem.c')
-rw-r--r--mem.c1785
1 files changed, 1785 insertions, 0 deletions
diff --git a/mem.c b/mem.c
new file mode 100644
index 0000000..fa255e6
--- /dev/null
+++ b/mem.c
@@ -0,0 +1,1785 @@
+/*
+ * Copyright (c) 2010, 2011 Richard Braun.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Object caching and general purpose memory allocator.
+ *
+ * This allocator is based on the following works :
+ * - "The Slab Allocator: An Object-Caching Kernel Memory Allocator",
+ * by Jeff Bonwick.
+ *
+ * It allows the allocation of objects (i.e. fixed-size typed buffers) from
+ * caches and is efficient in both space and time. This implementation follows
+ * many of the indications from the paper mentioned. The most notable
+ * differences are outlined below.
+ *
+ * The per-cache self-scaling hash table for buffer-to-bufctl conversion,
+ * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by
+ * an AVL tree storing slabs, sorted by address. The use of a self-balancing
+ * tree for buffer-to-slab conversions provides a few advantages over a hash
+ * table. Unlike a hash table, a BST provides a "lookup nearest" operation,
+ * so obtaining the slab data (whether it is embedded in the slab or off
+ * slab) from a buffer address simply consists of a "lookup nearest towards
+ * 0" tree search. Storing slabs instead of buffers also considerably reduces
+ * the number of elements to retain. Finally, a self-balancing tree is a true
+ * self-scaling data structure, whereas a hash table requires periodic
+ * maintenance and complete resizing, which is expensive. The only drawback is
+ * that releasing a buffer to the slab layer takes logarithmic time instead of
+ * constant time. But as the data set size is kept reasonable (because slabs
+ * are stored instead of buffers) and because the CPU pool layer services most
+ * requests, avoiding many accesses to the slab layer, it is considered an
+ * acceptable tradeoff.
+ *
+ * This implementation uses per-cpu pools of objects, which service most
+ * allocation requests. These pools act as caches (but are named differently
+ * to avoid confusion with CPU caches) that reduce contention on multiprocessor
+ * systems. When a pool is empty and cannot provide an object, it is filled by
+ * transferring multiple objects from the slab layer. The symmetric case is
+ * handled likewise.
+ */
+
+#include <time.h>
+#include <errno.h>
+#include <sched.h>
+#include <stdio.h>
+#include <assert.h>
+#include <limits.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <pthread.h>
+#include <sys/mman.h>
+
+#include "cpu.h"
+#include "mem.h"
+#include "list.h"
+#include "error.h"
+#include "macros.h"
+#include "avltree.h"
+
+/*
+ * The system page size.
+ *
+ * This macro actually expands to a global variable that is set on
+ * initialization.
+ */
+#define PAGE_SIZE ((unsigned long)_pagesize)
+
+/*
+ * Minimum required alignment.
+ */
+#define MEM_ALIGN_MIN 8
+
+/*
+ * Minimum number of buffers per slab.
+ *
+ * This value is ignored when the slab size exceeds a threshold.
+ */
+#define MEM_MIN_BUFS_PER_SLAB 8
+
+/*
+ * Special slab size beyond which the minimum number of buffers per slab is
+ * ignored when computing the slab size of a cache.
+ */
+#define MEM_SLAB_SIZE_THRESHOLD (8 * PAGE_SIZE)
+
+/*
+ * Special buffer size under which slab data is unconditionnally allocated
+ * from its associated slab.
+ */
+#define MEM_BUF_SIZE_THRESHOLD (PAGE_SIZE / 8)
+
+/*
+ * Time (in seconds) between two garbage collection operations.
+ */
+#define MEM_GC_INTERVAL 15
+
+/*
+ * The transfer size of a CPU pool is computed by dividing the pool size by
+ * this value.
+ */
+#define MEM_CPU_POOL_TRANSFER_RATIO 2
+
+/*
+ * Shift for the first general cache size.
+ */
+#define MEM_CACHES_FIRST_SHIFT 5
+
+/*
+ * Number of caches backing general purpose allocations.
+ */
+#define MEM_NR_MEM_CACHES 13
+
+/*
+ * Per-processor cache of pre-constructed objects.
+ *
+ * The flags member is a read-only CPU-local copy of the parent cache flags.
+ */
+struct mem_cpu_pool {
+ pthread_mutex_t lock;
+ int flags;
+ int size;
+ int transfer_size;
+ int nr_objs;
+ void **array;
+} __aligned(CPU_L1_SIZE);
+
+/*
+ * When a cache is created, its CPU pool type is determined from the buffer
+ * size. For small buffer sizes, many objects can be cached in a CPU pool.
+ * Conversely, for large buffer sizes, this would incur much overhead, so only
+ * a few objects are stored in a CPU pool.
+ */
+struct mem_cpu_pool_type {
+ size_t buf_size;
+ int array_size;
+ size_t array_align;
+ struct mem_cache *array_cache;
+};
+
+/*
+ * Buffer descriptor.
+ *
+ * For normal caches (i.e. without MEM_CF_VERIFY), bufctls are located at the
+ * end of (but inside) each buffer. If MEM_CF_VERIFY is set, bufctls are located
+ * after each buffer.
+ *
+ * When an object is allocated to a client, its bufctl isn't used. This memory
+ * is instead used for redzoning if cache debugging is in effect.
+ */
+union mem_bufctl {
+ union mem_bufctl *next;
+ unsigned long redzone;
+};
+
+/*
+ * Redzone guard word.
+ */
+#ifdef __LP64__
+#if _HOST_BIG_ENDIAN
+#define MEM_REDZONE_WORD 0xfeedfacefeedfaceUL
+#else /* _HOST_BIG_ENDIAN */
+#define MEM_REDZONE_WORD 0xcefaedfecefaedfeUL
+#endif /* _HOST_BIG_ENDIAN */
+#else /* __LP64__ */
+#if _HOST_BIG_ENDIAN
+#define MEM_REDZONE_WORD 0xfeedfaceUL
+#else /* _HOST_BIG_ENDIAN */
+#define MEM_REDZONE_WORD 0xcefaedfeUL
+#endif /* _HOST_BIG_ENDIAN */
+#endif /* __LP64__ */
+
+/*
+ * Redzone byte for padding.
+ */
+#define MEM_REDZONE_BYTE 0xbb
+
+/*
+ * Buffer tag.
+ *
+ * This structure is only used for MEM_CF_VERIFY caches. It is located after
+ * the bufctl and includes information about the state of the buffer it
+ * describes (allocated or not). It should be thought of as a debugging
+ * extension of the bufctl.
+ */
+struct mem_buftag {
+ unsigned long state;
+};
+
+/*
+ * Values the buftag state member can take.
+ */
+#ifdef __LP64__
+#if _HOST_BIG_ENDIAN
+#define MEM_BUFTAG_ALLOC 0xa110c8eda110c8edUL
+#define MEM_BUFTAG_FREE 0xf4eeb10cf4eeb10cUL
+#else /* _HOST_BIG_ENDIAN */
+#define MEM_BUFTAG_ALLOC 0xedc810a1edc810a1UL
+#define MEM_BUFTAG_FREE 0x0cb1eef40cb1eef4UL
+#endif /* _HOST_BIG_ENDIAN */
+#else /* __LP64__ */
+#if _HOST_BIG_ENDIAN
+#define MEM_BUFTAG_ALLOC 0xa110c8edUL
+#define MEM_BUFTAG_FREE 0xf4eeb10cUL
+#else /* _HOST_BIG_ENDIAN */
+#define MEM_BUFTAG_ALLOC 0xedc810a1UL
+#define MEM_BUFTAG_FREE 0x0cb1eef4UL
+#endif /* _HOST_BIG_ENDIAN */
+#endif /* __LP64__ */
+
+/*
+ * Free and uninitialized patterns.
+ *
+ * These values are unconditionnally 64-bit wide since buffers are at least
+ * 8-byte aligned.
+ */
+#if _HOST_BIG_ENDIAN
+#define MEM_FREE_PATTERN 0xdeadbeefdeadbeefULL
+#define MEM_UNINIT_PATTERN 0xbaddcafebaddcafeULL
+#else /* _HOST_BIG_ENDIAN */
+#define MEM_FREE_PATTERN 0xefbeaddeefbeaddeULL
+#define MEM_UNINIT_PATTERN 0xfecaddbafecaddbaULL
+#endif /* _HOST_BIG_ENDIAN */
+
+/*
+ * Page-aligned collection of unconstructed buffers.
+ */
+struct mem_slab {
+ struct list list_node;
+ struct avltree_node tree_node;
+ unsigned long nr_refs;
+ union mem_bufctl *first_free;
+ void *addr;
+};
+
+/*
+ * Private cache creation flags.
+ */
+#define MEM_CREATE_INTERNAL 0x0100 /* Prevent off slab data */
+
+/*
+ * Cache name buffer size.
+ */
+#define MEM_NAME_SIZE 32
+
+/*
+ * Cache flags.
+ *
+ * The flags don't change once set and can be tested without locking.
+ */
+#define MEM_CF_DIRECT 0x0001 /* No buf-to-slab tree lookup */
+#define MEM_CF_SLAB_EXTERNAL 0x0002 /* Slab data is off slab */
+
+/*
+ * Debugging flags
+ */
+#define MEM_CF_VERIFY 0x0100 /* Use debugging facilities */
+
+/*
+ * Cache of objects.
+ *
+ * Locking order : cpu_pool -> cache. CPU pools locking is ordered by CPU ID.
+ *
+ * The partial slabs list is sorted by slab references. Slabs with a high
+ * number of references are placed first on the list to reduce fragmentation.
+ * Sorting occurs at insertion/removal of buffers in a slab. As the list
+ * is maintained sorted, and the number of references only changes by one,
+ * this is a very cheap operation in the average case and the worst (linear)
+ * case is very unlikely.
+ */
+struct mem_cache {
+ /* CPU pool layer */
+ struct mem_cpu_pool cpu_pools[NR_CPUS];
+ struct mem_cpu_pool_type *cpu_pool_type;
+
+ /* Slab layer */
+ pthread_mutex_t lock;
+ struct list node; /* Cache list linkage */
+ struct list partial_slabs;
+ struct list free_slabs;
+ struct avltree active_slabs;
+ int flags;
+ size_t obj_size; /* User-provided size */
+ size_t align;
+ size_t buf_size; /* Aligned object size */
+ size_t bufctl_dist; /* Distance from buffer to bufctl */
+ size_t slab_size;
+ size_t color;
+ size_t color_max;
+ unsigned long bufs_per_slab;
+ unsigned long nr_objs; /* Number of allocated objects */
+ unsigned long nr_bufs; /* Total number of buffers */
+ unsigned long nr_slabs;
+ unsigned long nr_free_slabs;
+ mem_cache_ctor_t ctor;
+ struct mem_source source;
+ char name[MEM_NAME_SIZE];
+ size_t buftag_dist; /* Distance from buffer to buftag */
+ size_t redzone_pad; /* Bytes from end of object to redzone word */
+};
+
+/*
+ * Options for mem_cache_alloc_verify().
+ */
+#define MEM_AV_NOCONSTRUCT 0
+#define MEM_AV_CONSTRUCT 1
+
+/*
+ * Error codes for mem_cache_error().
+ */
+#define MEM_ERR_INVALID 0 /* Invalid address being freed */
+#define MEM_ERR_DOUBLEFREE 1 /* Freeing already free address */
+#define MEM_ERR_BUFTAG 2 /* Invalid buftag content */
+#define MEM_ERR_MODIFIED 3 /* Buffer modified while free */
+#define MEM_ERR_REDZONE 4 /* Redzone violation */
+
+/*
+ * See PAGE_SIZE.
+ */
+static long _pagesize;
+
+/*
+ * Available CPU pool types.
+ *
+ * For each entry, the CPU pool size applies from the entry buf_size
+ * (excluded) up to (and including) the buf_size of the preceding entry.
+ *
+ * See struct cpu_pool_type for a description of the values.
+ */
+static struct mem_cpu_pool_type mem_cpu_pool_types[] = {
+ { 32768, 1, 0, NULL },
+ { 4096, 8, CPU_L1_SIZE, NULL },
+ { 256, 64, CPU_L1_SIZE, NULL },
+ { 0, 128, CPU_L1_SIZE, NULL }
+};
+
+/*
+ * Caches where CPU pool arrays are allocated from.
+ */
+static struct mem_cache mem_cpu_array_caches[ARRAY_SIZE(mem_cpu_pool_types)];
+
+/*
+ * Cache for off slab data.
+ */
+static struct mem_cache mem_slab_cache;
+
+/*
+ * Cache for dynamically created caches.
+ */
+static struct mem_cache mem_cache_cache;
+
+/*
+ * General caches array.
+ */
+static struct mem_cache mem_caches[MEM_NR_MEM_CACHES];
+
+/*
+ * List of all caches managed by the allocator.
+ */
+static struct list mem_cache_list;
+static pthread_mutex_t mem_cache_list_lock;
+
+/*
+ * Default backend functions.
+ */
+static void * mem_default_alloc(size_t size);
+static void mem_default_free(void *ptr, size_t size);
+
+/*
+ * Default source of memory.
+ */
+static struct mem_source mem_default_source = {
+ mem_default_alloc,
+ mem_default_free
+};
+
+#define mem_error(format, ...) \
+ fprintf(stderr, "mem: error: %s(): " format "\n", __func__, \
+ ## __VA_ARGS__)
+
+#define mem_warn(format, ...) \
+ fprintf(stderr, "mem: warning: %s(): " format "\n", __func__, \
+ ## __VA_ARGS__)
+
+#define mem_print(format, ...) \
+ fprintf(stderr, format "\n", ## __VA_ARGS__)
+
+static void mem_cache_error(struct mem_cache *cache, void *buf, int error,
+ void *arg);
+static void * mem_cache_alloc_from_slab(struct mem_cache *cache);
+static void mem_cache_free_to_slab(struct mem_cache *cache, void *buf);
+
+#ifdef CONFIG_MEM_USE_PHYS
+#include "phys.h"
+
+static void * mem_default_alloc(size_t size)
+{
+ phys_pfn_t pfn;
+
+ pfn = phys_alloc(P2ROUND(size, PAGE_SIZE) / PAGE_SIZE);
+ return (void *)(pfn * PAGE_SIZE);
+}
+
+static void mem_default_free(void *ptr, size_t size)
+{
+ phys_pfn_t pfn;
+
+ pfn = (phys_pfn_t)ptr / PAGE_SIZE;
+ size = P2ROUND(size, PAGE_SIZE) / PAGE_SIZE;
+
+ phys_free(pfn, size);
+}
+#else /* CONFIG_MEM_USE_PHYS */
+static void * mem_default_alloc(size_t size)
+{
+ void *addr;
+
+ addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+
+ if (addr == MAP_FAILED)
+ return NULL;
+
+ return addr;
+}
+
+static void mem_default_free(void *ptr, size_t size)
+{
+ munmap(ptr, size);
+}
+#endif /* CONFIG_MEM_USE_PHYS */
+
+static void * mem_buf_verify_bytes(void *buf, void *pattern, size_t size)
+{
+ char *ptr, *pattern_ptr, *end;
+
+ end = buf + size;
+
+ for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++)
+ if (*ptr != *pattern_ptr)
+ return ptr;
+
+ return NULL;
+}
+
+static void * mem_buf_verify(void *buf, uint64_t pattern, size_t size)
+{
+ uint64_t *ptr, *end;
+
+ assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)));
+ assert(P2ALIGNED(size, sizeof(uint64_t)));
+
+ end = buf + size;
+
+ for (ptr = buf; ptr < end; ptr++)
+ if (*ptr != pattern)
+ return mem_buf_verify_bytes(ptr, &pattern, sizeof(pattern));
+
+ return NULL;
+}
+
+static void mem_buf_fill(void *buf, uint64_t pattern, size_t size)
+{
+ uint64_t *ptr, *end;
+
+ assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)));
+ assert(P2ALIGNED(size, sizeof(uint64_t)));
+
+ end = buf + size;
+
+ for (ptr = buf; ptr < end; ptr++)
+ *ptr = pattern;
+}
+
+static void * mem_buf_verify_fill(void *buf, uint64_t old, uint64_t new,
+ size_t size)
+{
+ uint64_t *ptr, *end;
+
+ assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)));
+ assert(P2ALIGNED(size, sizeof(uint64_t)));
+
+ end = buf + size;
+
+ for (ptr = buf; ptr < end; ptr++) {
+ if (*ptr != old)
+ return mem_buf_verify_bytes(ptr, &old, sizeof(old));
+
+ *ptr = new;
+ }
+
+ return NULL;
+}
+
+static inline union mem_bufctl * mem_buf_to_bufctl(void *buf,
+ struct mem_cache *cache)
+{
+ return (union mem_bufctl *)(buf + cache->bufctl_dist);
+}
+
+static inline struct mem_buftag * mem_buf_to_buftag(void *buf,
+ struct mem_cache *cache)
+{
+ return (struct mem_buftag *)(buf + cache->buftag_dist);
+}
+
+static inline void * mem_bufctl_to_buf(union mem_bufctl *bufctl,
+ struct mem_cache *cache)
+{
+ return (void *)bufctl - cache->bufctl_dist;
+}
+
+static void mem_slab_create_verify(struct mem_slab *slab,
+ struct mem_cache *cache)
+{
+ struct mem_buftag *buftag;
+ size_t buf_size;
+ unsigned long buffers;
+ void *buf;
+
+ buf_size = cache->buf_size;
+ buf = slab->addr;
+ buftag = mem_buf_to_buftag(buf, cache);
+
+ for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) {
+ mem_buf_fill(buf, MEM_FREE_PATTERN, cache->bufctl_dist);
+ buftag->state = MEM_BUFTAG_FREE;
+ buf += buf_size;
+ buftag = mem_buf_to_buftag(buf, cache);
+ }
+}
+
+/*
+ * Create an empty slab for a cache.
+ *
+ * The caller must drop all locks before calling this function.
+ */
+static struct mem_slab * mem_slab_create(struct mem_cache *cache, size_t color)
+{
+ struct mem_slab *slab;
+ union mem_bufctl *bufctl;
+ size_t buf_size;
+ unsigned long buffers;
+ void *slab_buf;
+
+ slab_buf = cache->source.alloc_fn(cache->slab_size);
+
+ if (slab_buf == NULL)
+ return NULL;
+
+ if (cache->flags & MEM_CF_SLAB_EXTERNAL) {
+ slab = mem_cache_alloc(&mem_slab_cache);
+
+ if (slab == NULL) {
+ cache->source.free_fn(slab_buf, cache->slab_size);
+ return NULL;
+ }
+ } else {
+ slab = (struct mem_slab *)(slab_buf + cache->slab_size) - 1;
+ }
+
+ list_node_init(&slab->list_node);
+ avltree_node_init(&slab->tree_node);
+ slab->nr_refs = 0;
+ slab->first_free = NULL;
+ slab->addr = slab_buf + color;
+
+ buf_size = cache->buf_size;
+ bufctl = mem_buf_to_bufctl(slab->addr, cache);
+
+ for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) {
+ bufctl->next = slab->first_free;
+ slab->first_free = bufctl;
+ bufctl = (union mem_bufctl *)((void *)bufctl + buf_size);
+ }
+
+ if (cache->flags & MEM_CF_VERIFY)
+ mem_slab_create_verify(slab, cache);
+
+ return slab;
+}
+
+static void mem_slab_destroy_verify(struct mem_slab *slab,
+ struct mem_cache *cache)
+{
+ struct mem_buftag *buftag;
+ size_t buf_size;
+ unsigned long buffers;
+ void *buf, *addr;
+
+ buf_size = cache->buf_size;
+ buf = slab->addr;
+ buftag = mem_buf_to_buftag(buf, cache);
+
+ for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) {
+ if (buftag->state != MEM_BUFTAG_FREE)
+ mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag);
+
+ addr = mem_buf_verify(buf, MEM_FREE_PATTERN, cache->bufctl_dist);
+
+ if (addr != NULL)
+ mem_cache_error(cache, buf, MEM_ERR_MODIFIED, addr);
+
+ buf += buf_size;
+ buftag = mem_buf_to_buftag(buf, cache);
+ }
+}
+
+/*
+ * Destroy a slab.
+ *
+ * The caller must drop all locks before calling this function.
+ */
+static void mem_slab_destroy(struct mem_slab *slab, struct mem_cache *cache)
+{
+ void *slab_buf;
+
+ assert(slab->nr_refs == 0);
+ assert(slab->first_free != NULL);
+
+ if (cache->flags & MEM_CF_VERIFY)
+ mem_slab_destroy_verify(slab, cache);
+
+ slab_buf = (void *)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE);
+ cache->source.free_fn(slab_buf, cache->slab_size);
+
+ if (cache->flags & MEM_CF_SLAB_EXTERNAL)
+ mem_cache_free(&mem_slab_cache, slab);
+}
+
+static inline int mem_slab_use_tree(int flags)
+{
+ return !(flags & MEM_CF_DIRECT) || (flags & MEM_CF_VERIFY);
+}
+
+static inline int mem_slab_cmp_lookup(const void *addr,
+ const struct avltree_node *node)
+{
+ struct mem_slab *slab;
+
+ slab = avltree_entry(node, struct mem_slab, tree_node);
+
+ if (addr == slab->addr)
+ return 0;
+ else if (addr < slab->addr)
+ return -1;
+ else
+ return 1;
+}
+
+static inline int mem_slab_cmp_insert(const struct avltree_node *a,
+ const struct avltree_node *b)
+{
+ struct mem_slab *slab;
+
+ slab = avltree_entry(a, struct mem_slab, tree_node);
+ return mem_slab_cmp_lookup(slab->addr, b);
+}
+
+static void mem_cpu_pool_init(struct mem_cpu_pool *cpu_pool,
+ struct mem_cache *cache)
+{
+ pthread_mutex_init(&cpu_pool->lock, NULL);
+ cpu_pool->flags = cache->flags;
+ cpu_pool->size = 0;
+ cpu_pool->transfer_size = 0;
+ cpu_pool->nr_objs = 0;
+ cpu_pool->array = NULL;
+}
+
+/*
+ * Return a CPU pool.
+ *
+ * This function will generally return the pool matching the CPU running the
+ * calling thread. Because of context switches and thread migration, the
+ * caller might be running on another processor after this function returns.
+ * Although not optimal, this should rarely happen, and it doesn't affect the
+ * allocator operations in any other way, as CPU pools are always valid, and
+ * their access is serialized by a lock.
+ */
+static inline struct mem_cpu_pool * mem_cpu_pool_get(struct mem_cache *cache)
+{
+ return &cache->cpu_pools[cpu_id()];
+}
+
+static inline void mem_cpu_pool_build(struct mem_cpu_pool *cpu_pool,
+ struct mem_cache *cache, void **array)
+{
+ cpu_pool->size = cache->cpu_pool_type->array_size;
+ cpu_pool->transfer_size = (cpu_pool->size + MEM_CPU_POOL_TRANSFER_RATIO - 1)
+ / MEM_CPU_POOL_TRANSFER_RATIO;
+ cpu_pool->array = array;
+}
+
+static inline void * mem_cpu_pool_pop(struct mem_cpu_pool *cpu_pool)
+{
+ cpu_pool->nr_objs--;
+ return cpu_pool->array[cpu_pool->nr_objs];
+}
+
+static inline void mem_cpu_pool_push(struct mem_cpu_pool *cpu_pool, void *obj)
+{
+ cpu_pool->array[cpu_pool->nr_objs] = obj;
+ cpu_pool->nr_objs++;
+}
+
+static int mem_cpu_pool_fill(struct mem_cpu_pool *cpu_pool,
+ struct mem_cache *cache)
+{
+ void *obj;
+ int i;
+
+ pthread_mutex_lock(&cache->lock);
+
+ for (i = 0; i < cpu_pool->transfer_size; i++) {
+ obj = mem_cache_alloc_from_slab(cache);
+
+ if (obj == NULL)
+ break;
+
+ mem_cpu_pool_push(cpu_pool, obj);
+ }
+
+ pthread_mutex_unlock(&cache->lock);
+
+ return i;
+}
+
+static void mem_cpu_pool_drain(struct mem_cpu_pool *cpu_pool,
+ struct mem_cache *cache)
+{
+ void *obj;
+ int i;
+
+ pthread_mutex_lock(&cache->lock);
+
+ for (i = cpu_pool->transfer_size; i > 0; i--) {
+ obj = mem_cpu_pool_pop(cpu_pool);
+ mem_cache_free_to_slab(cache, obj);
+ }
+
+ pthread_mutex_unlock(&cache->lock);
+}
+
+static void mem_cache_error(struct mem_cache *cache, void *buf, int error,
+ void *arg)
+{
+ struct mem_buftag *buftag;
+
+ mem_error("cache: %s, buffer: %p", cache->name, buf);
+
+ switch(error) {
+ case MEM_ERR_INVALID:
+ mem_error("freeing invalid address");
+ break;
+ case MEM_ERR_DOUBLEFREE:
+ mem_error("attempting to free the same address twice");
+ break;
+ case MEM_ERR_BUFTAG:
+ mem_error("invalid buftag content");
+ buftag = arg;
+ mem_error("buftag state: %p", (void *)buftag->state);
+ break;
+ case MEM_ERR_MODIFIED:
+ mem_error("free buffer modified");
+ mem_error("fault address: %p, offset in buffer: %td", arg, arg - buf);
+ break;
+ case MEM_ERR_REDZONE:
+ mem_error("write beyond end of buffer");
+ mem_error("fault address: %p, offset in buffer: %td", arg, arg - buf);
+ break;
+ default:
+ mem_error("unknown error");
+ }
+
+ error_die(ERR_MEM_CACHE);
+
+ /*
+ * Never reached.
+ */
+}
+
+/*
+ * Compute an appropriate slab size for the given cache.
+ *
+ * Once the slab size is known, this function sets the related properties
+ * (buffers per slab and maximum color). It can also set the MEM_CF_DIRECT
+ * and/or MEM_CF_SLAB_EXTERNAL flags depending on the resulting layout.
+ */
+static void mem_cache_compute_sizes(struct mem_cache *cache, int flags)
+{
+ size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size;
+ size_t waste, waste_min;
+ int embed, optimal_embed;
+
+ buf_size = cache->buf_size;
+
+ if (buf_size < MEM_BUF_SIZE_THRESHOLD)
+ flags |= MEM_CREATE_INTERNAL;
+
+ i = 0;
+ waste_min = (size_t)-1;
+
+ do {
+ i++;
+ slab_size = P2ROUND(i * buf_size, PAGE_SIZE);
+ free_slab_size = slab_size;
+
+ if (flags & MEM_CREATE_INTERNAL)
+ free_slab_size -= sizeof(struct mem_slab);
+
+ buffers = free_slab_size / buf_size;
+ waste = free_slab_size % buf_size;
+
+ if (buffers > i)
+ i = buffers;
+
+ if (flags & MEM_CREATE_INTERNAL)
+ embed = 1;
+ else if (sizeof(struct mem_slab) <= waste) {
+ embed = 1;
+ waste -= sizeof(struct mem_slab);
+ } else {
+ embed = 0;
+ }
+
+ if (waste <= waste_min) {
+ waste_min = waste;
+ optimal_size = slab_size;
+ optimal_embed = embed;
+ }
+ } while ((buffers < MEM_MIN_BUFS_PER_SLAB)
+ && (slab_size < MEM_SLAB_SIZE_THRESHOLD));
+
+ assert(!(flags & MEM_CREATE_INTERNAL) || optimal_embed);
+
+ cache->slab_size = optimal_size;
+ slab_size = cache->slab_size - (optimal_embed
+ ? sizeof(struct mem_slab)
+ : 0);
+ cache->bufs_per_slab = slab_size / buf_size;
+ cache->color_max = slab_size % buf_size;
+
+ if (cache->color_max >= PAGE_SIZE)
+ cache->color_max = PAGE_SIZE - 1;
+
+ if (optimal_embed) {
+ if (cache->slab_size == PAGE_SIZE)
+ cache->flags |= MEM_CF_DIRECT;
+ } else {
+ cache->flags |= MEM_CF_SLAB_EXTERNAL;
+ }
+}
+
+static void mem_cache_init(struct mem_cache *cache, const char *name,
+ size_t obj_size, size_t align, mem_cache_ctor_t ctor,
+ struct mem_source *source, int flags)
+{
+ struct mem_cpu_pool_type *cpu_pool_type;
+ size_t i, buf_size;
+
+#ifdef CONFIG_MEM_VERIFY
+ cache->flags = MEM_CF_VERIFY;
+#else
+ cache->flags = 0;
+#endif
+
+ if (flags & MEM_CACHE_VERIFY)
+ cache->flags |= MEM_CF_VERIFY;
+
+ if (align < MEM_ALIGN_MIN)
+ align = MEM_ALIGN_MIN;
+
+ assert(obj_size > 0);
+ assert(ISP2(align));
+ assert(align < PAGE_SIZE);
+
+ buf_size = P2ROUND(obj_size, align);
+
+ if (source == NULL)
+ source = &mem_default_source;
+
+ pthread_mutex_init(&cache->lock, NULL);
+ list_node_init(&cache->node);
+ list_init(&cache->partial_slabs);
+ list_init(&cache->free_slabs);
+ avltree_init(&cache->active_slabs);
+ cache->obj_size = obj_size;
+ cache->align = align;
+ cache->buf_size = buf_size;
+ cache->bufctl_dist = buf_size - sizeof(union mem_bufctl);
+ cache->color = 0;
+ cache->nr_objs = 0;
+ cache->nr_bufs = 0;
+ cache->nr_slabs = 0;
+ cache->nr_free_slabs = 0;
+ cache->ctor = ctor;
+ cache->source = *source;
+ strncpy(cache->name, name, MEM_NAME_SIZE);
+ cache->name[MEM_NAME_SIZE - 1] = '\0';
+ cache->buftag_dist = 0;
+ cache->redzone_pad = 0;
+
+ if (cache->flags & MEM_CF_VERIFY) {
+ cache->bufctl_dist = buf_size;
+ cache->buftag_dist = cache->bufctl_dist + sizeof(union mem_bufctl);
+ cache->redzone_pad = cache->bufctl_dist - cache->obj_size;
+ buf_size += sizeof(union mem_bufctl) + sizeof(struct mem_buftag);
+ buf_size = P2ROUND(buf_size, align);
+ cache->buf_size = buf_size;
+ }
+
+ mem_cache_compute_sizes(cache, flags);
+
+ for (cpu_pool_type = mem_cpu_pool_types;
+ buf_size <= cpu_pool_type->buf_size;
+ cpu_pool_type++);
+
+ cache->cpu_pool_type = cpu_pool_type;
+
+ for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++)
+ mem_cpu_pool_init(&cache->cpu_pools[i], cache);
+
+ pthread_mutex_lock(&mem_cache_list_lock);
+ list_insert_tail(&mem_cache_list, &cache->node);
+ pthread_mutex_unlock(&mem_cache_list_lock);
+}
+
+struct mem_cache * mem_cache_create(const char *name, size_t obj_size,
+ size_t align, mem_cache_ctor_t ctor,
+ struct mem_source *source, int flags)
+{
+ struct mem_cache *cache;
+
+ cache = mem_cache_alloc(&mem_cache_cache);
+
+ if (cache == NULL)
+ return NULL;
+
+ mem_cache_init(cache, name, obj_size, align, ctor, source, flags);
+
+ return cache;
+}
+
+static inline int mem_cache_empty(struct mem_cache *cache)
+{
+ return cache->nr_objs == cache->nr_bufs;
+}
+
+static int mem_cache_grow(struct mem_cache *cache)
+{
+ struct mem_slab *slab;
+ size_t color;
+ int empty;
+
+ pthread_mutex_lock(&cache->lock);
+
+ if (!mem_cache_empty(cache)) {
+ pthread_mutex_unlock(&cache->lock);
+ return 1;
+ }
+
+ color = cache->color;
+ cache->color += cache->align;
+
+ if (cache->color > cache->color_max)
+ cache->color = 0;
+
+ pthread_mutex_unlock(&cache->lock);
+
+ slab = mem_slab_create(cache, color);
+
+ pthread_mutex_lock(&cache->lock);
+
+ if (slab != NULL) {
+ list_insert_tail(&cache->free_slabs, &slab->list_node);
+ cache->nr_bufs += cache->bufs_per_slab;
+ cache->nr_slabs++;
+ cache->nr_free_slabs++;
+ }
+
+ /*
+ * Even if our slab creation failed, another thread might have succeeded
+ * in growing the cache.
+ */
+ empty = mem_cache_empty(cache);
+
+ pthread_mutex_unlock(&cache->lock);
+
+ return !empty;
+}
+
+static void mem_cache_reap(struct mem_cache *cache)
+{
+ struct mem_slab *slab;
+ struct list dead_slabs;
+
+ list_init(&dead_slabs);
+
+ pthread_mutex_lock(&cache->lock);
+
+ while (!list_empty(&cache->free_slabs)) {
+ slab = list_first_entry(&cache->free_slabs, struct mem_slab, list_node);
+ list_remove(&slab->list_node);
+ list_insert(&dead_slabs, &slab->list_node);
+ cache->nr_bufs -= cache->bufs_per_slab;
+ cache->nr_slabs--;
+ cache->nr_free_slabs--;
+ }
+
+ pthread_mutex_unlock(&cache->lock);
+
+ while (!list_empty(&dead_slabs)) {
+ slab = list_first_entry(&dead_slabs, struct mem_slab, list_node);
+ list_remove(&slab->list_node);
+ mem_slab_destroy(slab, cache);
+ }
+}
+
+void mem_cache_destroy(struct mem_cache *cache)
+{
+ struct mem_cpu_pool *cpu_pool;
+ void **ptr;
+ size_t i;
+
+ pthread_mutex_lock(&mem_cache_list_lock);
+ list_remove(&cache->node);
+ pthread_mutex_unlock(&mem_cache_list_lock);
+
+ for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++) {
+ cpu_pool = &cache->cpu_pools[i];
+
+ pthread_mutex_lock(&cpu_pool->lock);
+
+ if (cpu_pool->array == NULL) {
+ pthread_mutex_unlock(&cpu_pool->lock);
+ continue;
+ }
+
+ pthread_mutex_lock(&cache->lock);
+
+ for (ptr = cpu_pool->array + cpu_pool->nr_objs - 1;
+ ptr >= cpu_pool->array;
+ ptr--)
+ mem_cache_free_to_slab(cache, *ptr);
+
+ pthread_mutex_unlock(&cache->lock);
+
+ ptr = cpu_pool->array;
+ cpu_pool->size = 0;
+ cpu_pool->nr_objs = 0;
+ cpu_pool->array = NULL;
+ pthread_mutex_unlock(&cpu_pool->lock);
+
+ mem_cache_free(cache->cpu_pool_type->array_cache, ptr);
+ }
+
+ mem_cache_reap(cache);
+
+#ifndef NDEBUG
+ if (cache->nr_objs != 0)
+ mem_warn("'%s' not empty", cache->name);
+ else {
+ assert(list_empty(&cache->partial_slabs));
+ assert(list_empty(&cache->free_slabs));
+ assert(avltree_empty(&cache->active_slabs));
+ assert(cache->nr_bufs == 0);
+ assert(cache->nr_slabs == 0);
+ }
+#endif /* NDEBUG */
+
+ pthread_mutex_destroy(&cache->lock);
+
+ for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++)
+ pthread_mutex_destroy(&cache->cpu_pools[i].lock);
+
+ mem_cache_free(&mem_cache_cache, cache);
+}
+
+/*
+ * Allocate a raw (unconstructed) buffer from the slab layer of a cache.
+ *
+ * The cache must be locked before calling this function.
+ */
+static void * mem_cache_alloc_from_slab(struct mem_cache *cache)
+{
+ struct mem_slab *slab;
+ union mem_bufctl *bufctl;
+
+ if (!list_empty(&cache->partial_slabs))
+ slab = list_first_entry(&cache->partial_slabs, struct mem_slab,
+ list_node);
+ else if (!list_empty(&cache->free_slabs))
+ slab = list_first_entry(&cache->free_slabs, struct mem_slab, list_node);
+ else
+ return NULL;
+
+ bufctl = slab->first_free;
+ assert(bufctl != NULL);
+ slab->first_free = bufctl->next;
+ slab->nr_refs++;
+ cache->nr_objs++;
+
+ /*
+ * The slab has become complete.
+ */
+ if (slab->nr_refs == cache->bufs_per_slab) {
+ list_remove(&slab->list_node);
+
+ if (slab->nr_refs == 1)
+ cache->nr_free_slabs--;
+ } else if (slab->nr_refs == 1) {
+ /*
+ * The slab has become partial.
+ */
+ list_remove(&slab->list_node);
+ list_insert_tail(&cache->partial_slabs, &slab->list_node);
+ cache->nr_free_slabs--;
+ } else if (!list_singular(&cache->partial_slabs)) {
+ struct list *node;
+ struct mem_slab *tmp;
+
+ /*
+ * The slab remains partial. If there are more than one partial slabs,
+ * maintain the list sorted.
+ */
+
+ assert(slab->nr_refs > 1);
+
+ for (node = list_prev(&slab->list_node);
+ !list_end(&cache->partial_slabs, node);
+ node = list_prev(node)) {
+ tmp = list_entry(node, struct mem_slab, list_node);
+
+ if (tmp->nr_refs >= slab->nr_refs)
+ break;
+ }
+
+ /*
+ * If the direct neighbor was found, the list is already sorted.
+ * If no slab was found, the slab is inserted at the head of the list.
+ */
+ if (node != list_prev(&slab->list_node)) {
+ list_remove(&slab->list_node);
+ list_insert_after(node, &slab->list_node);
+ }
+ }
+
+ if ((slab->nr_refs == 1) && mem_slab_use_tree(cache->flags))
+ avltree_insert(&cache->active_slabs, &slab->tree_node,
+ mem_slab_cmp_insert);
+
+ return mem_bufctl_to_buf(bufctl, cache);
+}
+
+/*
+ * Release a buffer to the slab layer of a cache.
+ *
+ * The cache must be locked before calling this function.
+ */
+static void mem_cache_free_to_slab(struct mem_cache *cache, void *buf)
+{
+ struct mem_slab *slab;
+ union mem_bufctl *bufctl;
+
+ if (cache->flags & MEM_CF_DIRECT) {
+ assert(cache->slab_size == PAGE_SIZE);
+ slab = (struct mem_slab *)P2END((unsigned long)buf, cache->slab_size)
+ - 1;
+ } else {
+ struct avltree_node *node;
+
+ node = avltree_lookup_nearest(&cache->active_slabs, buf,
+ mem_slab_cmp_lookup, AVLTREE_LEFT);
+ assert(node != NULL);
+ slab = avltree_entry(node, struct mem_slab, tree_node);
+ assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr
+ + cache->slab_size, PAGE_SIZE)));
+ }
+
+ assert(slab->nr_refs >= 1);
+ assert(slab->nr_refs <= cache->bufs_per_slab);
+ bufctl = mem_buf_to_bufctl(buf, cache);
+ bufctl->next = slab->first_free;
+ slab->first_free = bufctl;
+ slab->nr_refs--;
+ cache->nr_objs--;
+
+ /*
+ * The slab has become free.
+ */
+ if (slab->nr_refs == 0) {
+ if (mem_slab_use_tree(cache->flags))
+ avltree_remove(&cache->active_slabs, &slab->tree_node);
+
+ /*
+ * The slab was partial.
+ */
+ if (cache->bufs_per_slab > 1)
+ list_remove(&slab->list_node);
+
+ list_insert_tail(&cache->free_slabs, &slab->list_node);
+ cache->nr_free_slabs++;
+ } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) {
+ /*
+ * The slab has become partial.
+ */
+ list_insert(&cache->partial_slabs, &slab->list_node);
+ } else if (!list_singular(&cache->partial_slabs)) {
+ struct list *node;
+ struct mem_slab *tmp;
+
+ /*
+ * The slab remains partial. If there are more than one partial slabs,
+ * maintain the list sorted.
+ */
+
+ assert(slab->nr_refs > 0);
+
+ for (node = list_next(&slab->list_node);
+ !list_end(&cache->partial_slabs, node);
+ node = list_next(node)) {
+ tmp = list_entry(node, struct mem_slab, list_node);
+
+ if (tmp->nr_refs <= slab->nr_refs)
+ break;
+ }
+
+ /*
+ * If the direct neighbor was found, the list is already sorted.
+ * If no slab was found, the slab is inserted at the tail of the list.
+ */
+ if (node != list_next(&slab->list_node)) {
+ list_remove(&slab->list_node);
+ list_insert_before(node, &slab->list_node);
+ }
+ }
+}
+
+static void mem_cache_alloc_verify(struct mem_cache *cache, void *buf,
+ int construct)
+{
+ struct mem_buftag *buftag;
+ union mem_bufctl *bufctl;
+ void *addr;
+
+ buftag = mem_buf_to_buftag(buf, cache);
+
+ if (buftag->state != MEM_BUFTAG_FREE)
+ mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag);
+
+ addr = mem_buf_verify_fill(buf, MEM_FREE_PATTERN, MEM_UNINIT_PATTERN,
+ cache->bufctl_dist);
+
+ if (addr != NULL)
+ mem_cache_error(cache, buf, MEM_ERR_MODIFIED, addr);
+
+ addr = buf + cache->obj_size;
+ memset(addr, MEM_REDZONE_BYTE, cache->redzone_pad);
+
+ bufctl = mem_buf_to_bufctl(buf, cache);
+ bufctl->redzone = MEM_REDZONE_WORD;
+ buftag->state = MEM_BUFTAG_ALLOC;
+
+ if (construct && (cache->ctor != NULL))
+ cache->ctor(buf);
+}
+
+void * mem_cache_alloc(struct mem_cache *cache)
+{
+ struct mem_cpu_pool *cpu_pool;
+ int filled;
+ void *buf;
+
+ cpu_pool = mem_cpu_pool_get(cache);
+
+ pthread_mutex_lock(&cpu_pool->lock);
+
+fast_alloc_retry:
+ if (likely(cpu_pool->nr_objs > 0)) {
+ buf = mem_cpu_pool_pop(cpu_pool);
+ pthread_mutex_unlock(&cpu_pool->lock);
+
+ if (cpu_pool->flags & MEM_CF_VERIFY)
+ mem_cache_alloc_verify(cache, buf, MEM_AV_CONSTRUCT);
+
+ return buf;
+ }
+
+ if (cpu_pool->array != NULL) {
+ filled = mem_cpu_pool_fill(cpu_pool, cache);
+
+ if (!filled) {
+ pthread_mutex_unlock(&cpu_pool->lock);
+
+ filled = mem_cache_grow(cache);
+
+ if (!filled)
+ return NULL;
+
+ pthread_mutex_lock(&cpu_pool->lock);
+ }
+
+ goto fast_alloc_retry;
+ }
+
+ pthread_mutex_unlock(&cpu_pool->lock);
+
+slow_alloc_retry:
+ pthread_mutex_lock(&cache->lock);
+ buf = mem_cache_alloc_from_slab(cache);
+ pthread_mutex_unlock(&cache->lock);
+
+ if (buf == NULL) {
+ filled = mem_cache_grow(cache);
+
+ if (!filled)
+ return NULL;
+
+ goto slow_alloc_retry;
+ }
+
+ if (cache->flags & MEM_CF_VERIFY)
+ mem_cache_alloc_verify(cache, buf, MEM_AV_NOCONSTRUCT);
+
+ if (cache->ctor != NULL)
+ cache->ctor(buf);
+
+ return buf;
+}
+
+static void mem_cache_free_verify(struct mem_cache *cache, void *buf)
+{
+ struct avltree_node *node;
+ struct mem_buftag *buftag;
+ struct mem_slab *slab;
+ union mem_bufctl *bufctl;
+ unsigned char *redzone_byte;
+ unsigned long slabend;
+
+ pthread_mutex_lock(&cache->lock);
+ node = avltree_lookup_nearest(&cache->active_slabs, buf,
+ mem_slab_cmp_lookup, AVLTREE_LEFT);
+ pthread_mutex_unlock(&cache->lock);
+
+ if (node == NULL)
+ mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL);
+
+ slab = avltree_entry(node, struct mem_slab, tree_node);
+ slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE);
+
+ if ((unsigned long)buf >= slabend)
+ mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL);
+
+ if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size)
+ != 0)
+ mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL);
+
+ /*
+ * As the buffer address is valid, accessing its buftag is safe.
+ */
+ buftag = mem_buf_to_buftag(buf, cache);
+
+ if (buftag->state != MEM_BUFTAG_ALLOC) {
+ if (buftag->state == MEM_BUFTAG_FREE)
+ mem_cache_error(cache, buf, MEM_ERR_DOUBLEFREE, NULL);
+ else
+ mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag);
+ }
+
+ redzone_byte = buf + cache->obj_size;
+ bufctl = mem_buf_to_bufctl(buf, cache);
+
+ while (redzone_byte < (unsigned char *)bufctl) {
+ if (*redzone_byte != MEM_REDZONE_BYTE)
+ mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte);
+
+ redzone_byte++;
+ }
+
+ if (bufctl->redzone != MEM_REDZONE_WORD) {
+ unsigned long word;
+
+ word = MEM_REDZONE_WORD;
+ redzone_byte = mem_buf_verify_bytes(&bufctl->redzone, &word,
+ sizeof(bufctl->redzone));
+ mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte);
+ }
+
+ mem_buf_fill(buf, MEM_FREE_PATTERN, cache->bufctl_dist);
+ buftag->state = MEM_BUFTAG_FREE;
+}
+
+void mem_cache_free(struct mem_cache *cache, void *obj)
+{
+ struct mem_cpu_pool *cpu_pool;
+ void **array;
+
+ cpu_pool = mem_cpu_pool_get(cache);
+
+ if (cpu_pool->flags & MEM_CF_VERIFY)
+ mem_cache_free_verify(cache, obj);
+
+ pthread_mutex_lock(&cpu_pool->lock);
+
+fast_free_retry:
+ if (likely(cpu_pool->nr_objs < cpu_pool->size)) {
+ mem_cpu_pool_push(cpu_pool, obj);
+ pthread_mutex_unlock(&cpu_pool->lock);
+ return;
+ }
+
+ if (cpu_pool->array != NULL) {
+ mem_cpu_pool_drain(cpu_pool, cache);
+ goto fast_free_retry;
+ }
+
+ pthread_mutex_unlock(&cpu_pool->lock);
+
+ array = mem_cache_alloc(cache->cpu_pool_type->array_cache);
+
+ if (array != NULL) {
+ pthread_mutex_lock(&cpu_pool->lock);
+
+ /*
+ * Another thread may have built the CPU pool while the lock was
+ * dropped.
+ */
+ if (cpu_pool->array != NULL) {
+ pthread_mutex_unlock(&cpu_pool->lock);
+ mem_cache_free(cache->cpu_pool_type->array_cache, array);
+ goto fast_free_retry;
+ }
+
+ mem_cpu_pool_build(cpu_pool, cache, array);
+ goto fast_free_retry;
+ }
+
+ mem_cache_free_to_slab(cache, obj);
+}
+
+void mem_cache_info(struct mem_cache *cache)
+{
+ struct mem_cache *cache_stats;
+ char flags_str[64];
+
+ if (cache == NULL) {
+ pthread_mutex_lock(&mem_cache_list_lock);
+
+ list_for_each_entry(&mem_cache_list, cache, node)
+ mem_cache_info(cache);
+
+ pthread_mutex_unlock(&mem_cache_list_lock);
+
+ return;
+ }
+
+ cache_stats = mem_alloc(sizeof(*cache_stats));
+
+ if (cache_stats == NULL) {
+ mem_warn("unable to allocate memory for cache stats");
+ return;
+ }
+
+ pthread_mutex_lock(&cache->lock);
+ cache_stats->flags = cache->flags;
+ cache_stats->obj_size = cache->obj_size;
+ cache_stats->align = cache->align;
+ cache_stats->buf_size = cache->buf_size;
+ cache_stats->bufctl_dist = cache->bufctl_dist;
+ cache_stats->slab_size = cache->slab_size;
+ cache_stats->color_max = cache->color_max;
+ cache_stats->bufs_per_slab = cache->bufs_per_slab;
+ cache_stats->nr_objs = cache->nr_objs;
+ cache_stats->nr_bufs = cache->nr_bufs;
+ cache_stats->nr_slabs = cache->nr_slabs;
+ cache_stats->nr_free_slabs = cache->nr_free_slabs;
+ strcpy(cache_stats->name, cache->name);
+ cache_stats->buftag_dist = cache->buftag_dist;
+ cache_stats->redzone_pad = cache->redzone_pad;
+ cache_stats->cpu_pool_type = cache->cpu_pool_type;
+ pthread_mutex_unlock(&cache->lock);
+
+ snprintf(flags_str, sizeof(flags_str), "%s%s%s",
+ (cache_stats->flags & MEM_CF_DIRECT) ? " DIRECT" : "",
+ (cache_stats->flags & MEM_CF_SLAB_EXTERNAL) ? " SLAB_EXTERNAL" : "",
+ (cache_stats->flags & MEM_CF_VERIFY) ? " VERIFY" : "");
+
+ mem_print("name: %s", cache_stats->name);
+ mem_print("flags: 0x%x%s", cache_stats->flags, flags_str);
+ mem_print("obj_size: %zu", cache_stats->obj_size);
+ mem_print("align: %zu", cache_stats->align);
+ mem_print("buf_size: %zu", cache_stats->buf_size);
+ mem_print("bufctl_dist: %zu", cache_stats->bufctl_dist);
+ mem_print("slab_size: %zu", cache_stats->slab_size);
+ mem_print("color_max: %zu", cache_stats->color_max);
+ mem_print("bufs_per_slab: %lu", cache_stats->bufs_per_slab);
+ mem_print("nr_objs: %lu", cache_stats->nr_objs);
+ mem_print("nr_bufs: %lu", cache_stats->nr_bufs);
+ mem_print("nr_slabs: %lu", cache_stats->nr_slabs);
+ mem_print("nr_free_slabs: %lu", cache_stats->nr_free_slabs);
+ mem_print("buftag_dist: %zu", cache_stats->buftag_dist);
+ mem_print("redzone_pad: %zu", cache_stats->redzone_pad);
+ mem_print("cpu_pool_size: %d", cache_stats->cpu_pool_type->array_size);
+ mem_print("--");
+
+ mem_free(cache_stats, sizeof(*cache_stats));
+}
+
+static void * mem_gc(void *arg)
+{
+ struct mem_cache *cache;
+ struct timespec ts;
+ int error;
+
+ (void)arg;
+
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+
+ for (;;) {
+ ts.tv_sec += MEM_GC_INTERVAL;
+
+ do
+ error = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &ts, NULL);
+ while (error == EINTR);
+
+ /*
+ * EINTR is the only expected error.
+ */
+ assert(error == 0);
+
+#if 0
+ mem_info();
+
+#ifdef CONFIG_MEM_USE_PHYS
+ phys_info();
+#endif /* CONFIG_MEM_USE_PHYS */
+#endif
+
+ pthread_mutex_lock(&mem_cache_list_lock);
+
+ list_for_each_entry(&mem_cache_list, cache, node)
+ mem_cache_reap(cache);
+
+ pthread_mutex_unlock(&mem_cache_list_lock);
+ }
+
+ return NULL;
+}
+
+void mem_init(void)
+{
+ static int mem_initialized = 0;
+ struct mem_cpu_pool_type *cpu_pool_type;
+ char name[MEM_NAME_SIZE];
+ pthread_t thread;
+ size_t i, size;
+ int error;
+
+ if (mem_initialized)
+ return;
+
+ mem_initialized = 1;
+
+ _pagesize = sysconf(_SC_PAGESIZE);
+ assert(ISP2(_pagesize));
+
+ /*
+ * Make sure a bufctl can always be stored in a buffer.
+ */
+ assert(sizeof(union mem_bufctl) <= MEM_ALIGN_MIN);
+
+#ifdef CONFIG_MEM_USE_PHYS
+ phys_init();
+#endif /* CONFIG_MEM_USE_PHYS */
+
+ list_init(&mem_cache_list);
+ pthread_mutex_init(&mem_cache_list_lock, NULL);
+
+ for (i = 0; i < ARRAY_SIZE(mem_cpu_pool_types); i++) {
+ cpu_pool_type = &mem_cpu_pool_types[i];
+ cpu_pool_type->array_cache = &mem_cpu_array_caches[i];
+ sprintf(name, "mem_cpu_array_%d", cpu_pool_type->array_size);
+ size = sizeof(void *) * cpu_pool_type->array_size;
+ mem_cache_init(cpu_pool_type->array_cache, name, size,
+ cpu_pool_type->array_align, NULL, NULL, 0);
+ }
+
+ /*
+ * Prevent off slab data for the slab cache to avoid infinite recursion.
+ */
+ mem_cache_init(&mem_slab_cache, "mem_slab", sizeof(struct mem_slab),
+ 0, NULL, NULL, MEM_CREATE_INTERNAL);
+ mem_cache_init(&mem_cache_cache, "mem_cache", sizeof(struct mem_cache),
+ CPU_L1_SIZE, NULL, NULL, 0);
+
+ size = 1 << MEM_CACHES_FIRST_SHIFT;
+
+ for (i = 0; i < ARRAY_SIZE(mem_caches); i++) {
+ sprintf(name, "mem_%zu", size);
+ mem_cache_init(&mem_caches[i], name, size, 0, NULL, NULL, 0);
+ size <<= 1;
+ }
+
+ error = pthread_create(&thread, NULL, mem_gc, NULL);
+
+ if (error)
+ mem_error("unable to create garbage collection thread: %s",
+ strerror(error));
+}
+
+/*
+ * Return the mem cache index matching the given allocation size, which
+ * must be strictly greater than 0.
+ */
+static inline size_t mem_get_index(size_t size)
+{
+ assert(size != 0);
+
+ size = (size - 1) >> MEM_CACHES_FIRST_SHIFT;
+
+ if (size == 0)
+ return 0;
+ else
+ return (sizeof(long) * CHAR_BIT) - __builtin_clzl(size);
+}
+
+static void mem_alloc_verify(struct mem_cache *cache, void *buf, size_t size)
+{
+ size_t redzone_size;
+ void *redzone;
+
+ assert(size <= cache->obj_size);
+
+ redzone = buf + size;
+ redzone_size = cache->obj_size - size;
+ memset(redzone, MEM_REDZONE_BYTE, redzone_size);
+}
+
+void * mem_alloc(size_t size)
+{
+ size_t index;
+ void *buf;
+
+ if (size == 0)
+ return NULL;
+
+ index = mem_get_index(size);
+
+ if (index < ARRAY_SIZE(mem_caches)) {
+ struct mem_cache *cache;
+
+ cache = &mem_caches[index];
+ buf = mem_cache_alloc(cache);
+
+ if ((buf != NULL) && (cache->flags & MEM_CF_VERIFY))
+ mem_alloc_verify(cache, buf, size);
+ } else {
+ buf = mem_default_alloc(size);
+ }
+
+ return buf;
+}
+
+void * mem_zalloc(size_t size)
+{
+ void *ptr;
+
+ ptr = mem_alloc(size);
+
+ if (ptr == NULL)
+ return NULL;
+
+ memset(ptr, 0, size);
+ return ptr;
+}
+
+static void mem_free_verify(struct mem_cache *cache, void *buf, size_t size)
+{
+ unsigned char *redzone_byte, *redzone_end;
+
+ assert(size <= cache->obj_size);
+
+ redzone_byte = buf + size;
+ redzone_end = buf + cache->obj_size;
+
+ while (redzone_byte < redzone_end) {
+ if (*redzone_byte != MEM_REDZONE_BYTE)
+ mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte);
+
+ redzone_byte++;
+ }
+}
+
+void mem_free(void *ptr, size_t size)
+{
+ size_t index;
+
+ if ((ptr == NULL) || (size == 0))
+ return;
+
+ index = mem_get_index(size);
+
+ if (index < ARRAY_SIZE(mem_caches)) {
+ struct mem_cache *cache;
+
+ cache = &mem_caches[index];
+
+ if (cache->flags & MEM_CF_VERIFY)
+ mem_free_verify(cache, ptr, size);
+
+ mem_cache_free(cache, ptr);
+ } else {
+ mem_default_free(ptr, size);
+ }
+}
+
+void mem_info(void)
+{
+ struct mem_cache *cache, *cache_stats;
+ size_t mem_usage, mem_reclaimable;
+
+ cache_stats = mem_alloc(sizeof(*cache_stats));
+
+ if (cache_stats == NULL) {
+ mem_warn("unable to allocate memory for cache stats");
+ return;
+ }
+
+ mem_print("-- cache obj slab bufs objs bufs "
+ " total reclaimable");
+ mem_print("-- name size size /slab usage count "
+ " memory memory");
+
+ pthread_mutex_lock(&mem_cache_list_lock);
+
+ list_for_each_entry(&mem_cache_list, cache, node) {
+ pthread_mutex_lock(&cache->lock);
+ cache_stats->obj_size = cache->obj_size;
+ cache_stats->slab_size = cache->slab_size;
+ cache_stats->bufs_per_slab = cache->bufs_per_slab;
+ cache_stats->nr_objs = cache->nr_objs;
+ cache_stats->nr_bufs = cache->nr_bufs;
+ cache_stats->nr_slabs = cache->nr_slabs;
+ cache_stats->nr_free_slabs = cache->nr_free_slabs;
+ strcpy(cache_stats->name, cache->name);
+ pthread_mutex_unlock(&cache->lock);
+
+ mem_usage = (cache_stats->nr_slabs * cache_stats->slab_size) >> 10;
+ mem_reclaimable =
+ (cache_stats->nr_free_slabs * cache_stats->slab_size) >> 10;
+
+ mem_print("%-27s %6zu %3zuk %4lu %6lu %6lu %7zuk %10zuk",
+ cache_stats->name, cache_stats->obj_size,
+ cache_stats->slab_size >> 10, cache_stats->bufs_per_slab,
+ cache_stats->nr_objs, cache_stats->nr_bufs, mem_usage,
+ mem_reclaimable);
+ }
+
+ pthread_mutex_unlock(&mem_cache_list_lock);
+
+ mem_free(cache_stats, sizeof(*cache_stats));
+}