diff options
Diffstat (limited to 'mem.c')
-rw-r--r-- | mem.c | 1816 |
1 files changed, 0 insertions, 1816 deletions
@@ -1,1816 +0,0 @@ -/* - * Copyright (c) 2010, 2011 Richard Braun. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * - * Object caching and general purpose memory allocator. - * - * This allocator is based on the following works : - * - "The Slab Allocator: An Object-Caching Kernel Memory Allocator", - * by Jeff Bonwick. - * - * It allows the allocation of objects (i.e. fixed-size typed buffers) from - * caches and is efficient in both space and time. This implementation follows - * many of the indications from the paper mentioned. The most notable - * differences are outlined below. - * - * The per-cache self-scaling hash table for buffer-to-bufctl conversion, - * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by - * an AVL tree storing slabs, sorted by address. The use of a self-balancing - * tree for buffer-to-slab conversions provides a few advantages over a hash - * table. Unlike a hash table, a BST provides a "lookup nearest" operation, - * so obtaining the slab data (whether it is embedded in the slab or off - * slab) from a buffer address simply consists of a "lookup nearest towards - * 0" tree search. Storing slabs instead of buffers also considerably reduces - * the number of elements to retain. Finally, a self-balancing tree is a true - * self-scaling data structure, whereas a hash table requires periodic - * maintenance and complete resizing, which is expensive. The only drawback is - * that releasing a buffer to the slab layer takes logarithmic time instead of - * constant time. But as the data set size is kept reasonable (because slabs - * are stored instead of buffers) and because the CPU pool layer services most - * requests, avoiding many accesses to the slab layer, it is considered an - * acceptable tradeoff. - * - * This implementation uses per-cpu pools of objects, which service most - * allocation requests. These pools act as caches (but are named differently - * to avoid confusion with CPU caches) that reduce contention on multiprocessor - * systems. When a pool is empty and cannot provide an object, it is filled by - * transferring multiple objects from the slab layer. The symmetric case is - * handled likewise. - */ - -#include <time.h> -#include <errno.h> -#include <sched.h> -#include <stdio.h> -#include <assert.h> -#include <limits.h> -#include <stddef.h> -#include <stdint.h> -#include <stdlib.h> -#include <string.h> -#include <unistd.h> -#include <pthread.h> -#include <sys/mman.h> - -#include "cpu.h" -#include "mem.h" -#include "list.h" -#include "error.h" -#include "macros.h" -#include "avltree.h" - -/* - * The system page size. - * - * This macro actually expands to a global variable that is set on - * initialization. - */ -#define PAGE_SIZE ((unsigned long)_pagesize) - -/* - * Minimum required alignment. - */ -#define MEM_ALIGN_MIN 8 - -/* - * Minimum number of buffers per slab. - * - * This value is ignored when the slab size exceeds a threshold. - */ -#define MEM_MIN_BUFS_PER_SLAB 8 - -/* - * Special slab size beyond which the minimum number of buffers per slab is - * ignored when computing the slab size of a cache. - */ -#define MEM_SLAB_SIZE_THRESHOLD (8 * PAGE_SIZE) - -/* - * Special buffer size under which slab data is unconditionnally allocated - * from its associated slab. - */ -#define MEM_BUF_SIZE_THRESHOLD (PAGE_SIZE / 8) - -/* - * Time (in seconds) between two garbage collection operations. - */ -#define MEM_GC_INTERVAL 15 - -/* - * The transfer size of a CPU pool is computed by dividing the pool size by - * this value. - */ -#define MEM_CPU_POOL_TRANSFER_RATIO 2 - -/* - * Shift for the first general cache size. - */ -#define MEM_CACHES_FIRST_SHIFT 5 - -/* - * Number of caches backing general purpose allocations. - */ -#define MEM_NR_MEM_CACHES 13 - -/* - * Per-processor cache of pre-constructed objects. - * - * The flags member is a read-only CPU-local copy of the parent cache flags. - */ -struct mem_cpu_pool { - pthread_mutex_t lock; - int flags; - int size; - int transfer_size; - int nr_objs; - void **array; -} __aligned(CPU_L1_SIZE); - -/* - * When a cache is created, its CPU pool type is determined from the buffer - * size. For small buffer sizes, many objects can be cached in a CPU pool. - * Conversely, for large buffer sizes, this would incur much overhead, so only - * a few objects are stored in a CPU pool. - */ -struct mem_cpu_pool_type { - size_t buf_size; - int array_size; - size_t array_align; - struct mem_cache *array_cache; -}; - -/* - * Buffer descriptor. - * - * For normal caches (i.e. without MEM_CF_VERIFY), bufctls are located at the - * end of (but inside) each buffer. If MEM_CF_VERIFY is set, bufctls are located - * after each buffer. - * - * When an object is allocated to a client, its bufctl isn't used. This memory - * is instead used for redzoning if cache debugging is in effect. - */ -union mem_bufctl { - union mem_bufctl *next; - unsigned long redzone; -}; - -/* - * Redzone guard word. - */ -#ifdef __LP64__ -#if _HOST_BIG_ENDIAN -#define MEM_REDZONE_WORD 0xfeedfacefeedfaceUL -#else /* _HOST_BIG_ENDIAN */ -#define MEM_REDZONE_WORD 0xcefaedfecefaedfeUL -#endif /* _HOST_BIG_ENDIAN */ -#else /* __LP64__ */ -#if _HOST_BIG_ENDIAN -#define MEM_REDZONE_WORD 0xfeedfaceUL -#else /* _HOST_BIG_ENDIAN */ -#define MEM_REDZONE_WORD 0xcefaedfeUL -#endif /* _HOST_BIG_ENDIAN */ -#endif /* __LP64__ */ - -/* - * Redzone byte for padding. - */ -#define MEM_REDZONE_BYTE 0xbb - -/* - * Buffer tag. - * - * This structure is only used for MEM_CF_VERIFY caches. It is located after - * the bufctl and includes information about the state of the buffer it - * describes (allocated or not). It should be thought of as a debugging - * extension of the bufctl. - */ -struct mem_buftag { - unsigned long state; -}; - -/* - * Values the buftag state member can take. - */ -#ifdef __LP64__ -#if _HOST_BIG_ENDIAN -#define MEM_BUFTAG_ALLOC 0xa110c8eda110c8edUL -#define MEM_BUFTAG_FREE 0xf4eeb10cf4eeb10cUL -#else /* _HOST_BIG_ENDIAN */ -#define MEM_BUFTAG_ALLOC 0xedc810a1edc810a1UL -#define MEM_BUFTAG_FREE 0x0cb1eef40cb1eef4UL -#endif /* _HOST_BIG_ENDIAN */ -#else /* __LP64__ */ -#if _HOST_BIG_ENDIAN -#define MEM_BUFTAG_ALLOC 0xa110c8edUL -#define MEM_BUFTAG_FREE 0xf4eeb10cUL -#else /* _HOST_BIG_ENDIAN */ -#define MEM_BUFTAG_ALLOC 0xedc810a1UL -#define MEM_BUFTAG_FREE 0x0cb1eef4UL -#endif /* _HOST_BIG_ENDIAN */ -#endif /* __LP64__ */ - -/* - * Free and uninitialized patterns. - * - * These values are unconditionnally 64-bit wide since buffers are at least - * 8-byte aligned. - */ -#if _HOST_BIG_ENDIAN -#define MEM_FREE_PATTERN 0xdeadbeefdeadbeefULL -#define MEM_UNINIT_PATTERN 0xbaddcafebaddcafeULL -#else /* _HOST_BIG_ENDIAN */ -#define MEM_FREE_PATTERN 0xefbeaddeefbeaddeULL -#define MEM_UNINIT_PATTERN 0xfecaddbafecaddbaULL -#endif /* _HOST_BIG_ENDIAN */ - -/* - * Page-aligned collection of unconstructed buffers. - */ -struct mem_slab { - struct list list_node; - struct avltree_node tree_node; - unsigned long nr_refs; - union mem_bufctl *first_free; - void *addr; -}; - -/* - * Private cache creation flags. - */ -#define MEM_CREATE_INTERNAL 0x0100 /* Prevent off slab data */ - -/* - * Cache name buffer size. - */ -#define MEM_NAME_SIZE 32 - -/* - * Cache flags. - * - * The flags don't change once set and can be tested without locking. - */ -#define MEM_CF_DIRECT 0x0001 /* No buf-to-slab tree lookup */ -#define MEM_CF_SLAB_EXTERNAL 0x0002 /* Slab data is off slab */ - -/* - * Debugging flags - */ -#define MEM_CF_VERIFY 0x0100 /* Use debugging facilities */ - -/* - * Cache of objects. - * - * Locking order : cpu_pool -> cache. CPU pools locking is ordered by CPU ID. - * - * The partial slabs list is sorted by slab references. Slabs with a high - * number of references are placed first on the list to reduce fragmentation. - * Sorting occurs at insertion/removal of buffers in a slab. As the list - * is maintained sorted, and the number of references only changes by one, - * this is a very cheap operation in the average case and the worst (linear) - * case is very unlikely. - */ -struct mem_cache { - /* CPU pool layer */ - struct mem_cpu_pool cpu_pools[NR_CPUS]; - struct mem_cpu_pool_type *cpu_pool_type; - - /* Slab layer */ - pthread_mutex_t lock; - struct list node; /* Cache list linkage */ - struct list partial_slabs; - struct list free_slabs; - struct avltree active_slabs; - int flags; - size_t obj_size; /* User-provided size */ - size_t align; - size_t buf_size; /* Aligned object size */ - size_t bufctl_dist; /* Distance from buffer to bufctl */ - size_t slab_size; - size_t color; - size_t color_max; - unsigned long bufs_per_slab; - unsigned long nr_objs; /* Number of allocated objects */ - unsigned long nr_bufs; /* Total number of buffers */ - unsigned long nr_slabs; - unsigned long nr_free_slabs; - mem_cache_ctor_t ctor; - struct mem_source source; - char name[MEM_NAME_SIZE]; - size_t buftag_dist; /* Distance from buffer to buftag */ - size_t redzone_pad; /* Bytes from end of object to redzone word */ -}; - -/* - * Options for mem_cache_alloc_verify(). - */ -#define MEM_AV_NOCONSTRUCT 0 -#define MEM_AV_CONSTRUCT 1 - -/* - * Error codes for mem_cache_error(). - */ -#define MEM_ERR_INVALID 0 /* Invalid address being freed */ -#define MEM_ERR_DOUBLEFREE 1 /* Freeing already free address */ -#define MEM_ERR_BUFTAG 2 /* Invalid buftag content */ -#define MEM_ERR_MODIFIED 3 /* Buffer modified while free */ -#define MEM_ERR_REDZONE 4 /* Redzone violation */ - -/* - * See PAGE_SIZE. - */ -static long _pagesize; - -/* - * Available CPU pool types. - * - * For each entry, the CPU pool size applies from the entry buf_size - * (excluded) up to (and including) the buf_size of the preceding entry. - * - * See struct cpu_pool_type for a description of the values. - */ -static struct mem_cpu_pool_type mem_cpu_pool_types[] = { - { 32768, 1, 0, NULL }, - { 4096, 8, CPU_L1_SIZE, NULL }, - { 256, 64, CPU_L1_SIZE, NULL }, - { 0, 128, CPU_L1_SIZE, NULL } -}; - -/* - * Caches where CPU pool arrays are allocated from. - */ -static struct mem_cache mem_cpu_array_caches[ARRAY_SIZE(mem_cpu_pool_types)]; - -/* - * Cache for off slab data. - */ -static struct mem_cache mem_slab_cache; - -/* - * Cache for dynamically created caches. - */ -static struct mem_cache mem_cache_cache; - -/* - * General caches array. - */ -static struct mem_cache mem_caches[MEM_NR_MEM_CACHES]; - -/* - * List of all caches managed by the allocator. - */ -static struct list mem_cache_list; -static pthread_mutex_t mem_cache_list_lock; - -/* - * Default backend functions. - */ -static void * mem_default_alloc(size_t size); -static void mem_default_free(void *ptr, size_t size); - -/* - * Default source of memory. - */ -static struct mem_source mem_default_source = { - mem_default_alloc, - mem_default_free -}; - -#define mem_error(format, ...) \ - fprintf(stderr, "mem: error: %s(): " format "\n", __func__, \ - ## __VA_ARGS__) - -#define mem_warn(format, ...) \ - fprintf(stderr, "mem: warning: %s(): " format "\n", __func__, \ - ## __VA_ARGS__) - -#define mem_print(format, ...) \ - fprintf(stderr, format "\n", ## __VA_ARGS__) - -static void mem_cache_error(struct mem_cache *cache, void *buf, int error, - void *arg); -static void * mem_cache_alloc_from_slab(struct mem_cache *cache); -static void mem_cache_free_to_slab(struct mem_cache *cache, void *buf); - -#if CONFIG_MEM_USE_PHYS -#include "phys.h" - -static void * -mem_default_alloc(size_t size) -{ - return (void *)phys_alloc(size); -} - -static void -mem_default_free(void *ptr, size_t size) -{ - phys_free((phys_paddr_t)ptr, size); -} -#else /* CONFIG_MEM_USE_PHYS */ -static void * -mem_default_alloc(size_t size) -{ - void *addr; - - addr = mmap(NULL, size, PROT_READ | PROT_WRITE, - MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); - - if (addr == MAP_FAILED) - return NULL; - - return addr; -} - -static void -mem_default_free(void *ptr, size_t size) -{ - munmap(ptr, size); -} -#endif /* CONFIG_MEM_USE_PHYS */ - -static void * -mem_buf_verify_bytes(void *buf, void *pattern, size_t size) -{ - char *ptr, *pattern_ptr, *end; - - end = buf + size; - - for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++) - if (*ptr != *pattern_ptr) - return ptr; - - return NULL; -} - -static void * -mem_buf_verify(void *buf, uint64_t pattern, size_t size) -{ - uint64_t *ptr, *end; - - assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); - assert(P2ALIGNED(size, sizeof(uint64_t))); - - end = buf + size; - - for (ptr = buf; ptr < end; ptr++) - if (*ptr != pattern) - return mem_buf_verify_bytes(ptr, &pattern, sizeof(pattern)); - - return NULL; -} - -static void -mem_buf_fill(void *buf, uint64_t pattern, size_t size) -{ - uint64_t *ptr, *end; - - assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); - assert(P2ALIGNED(size, sizeof(uint64_t))); - - end = buf + size; - - for (ptr = buf; ptr < end; ptr++) - *ptr = pattern; -} - -static void * -mem_buf_verify_fill(void *buf, uint64_t old, uint64_t new, size_t size) -{ - uint64_t *ptr, *end; - - assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); - assert(P2ALIGNED(size, sizeof(uint64_t))); - - end = buf + size; - - for (ptr = buf; ptr < end; ptr++) { - if (*ptr != old) - return mem_buf_verify_bytes(ptr, &old, sizeof(old)); - - *ptr = new; - } - - return NULL; -} - -static inline union mem_bufctl * -mem_buf_to_bufctl(void *buf, struct mem_cache *cache) -{ - return (union mem_bufctl *)(buf + cache->bufctl_dist); -} - -static inline struct mem_buftag * -mem_buf_to_buftag(void *buf, struct mem_cache *cache) -{ - return (struct mem_buftag *)(buf + cache->buftag_dist); -} - -static inline void * -mem_bufctl_to_buf(union mem_bufctl *bufctl, struct mem_cache *cache) -{ - return (void *)bufctl - cache->bufctl_dist; -} - -static void -mem_slab_create_verify(struct mem_slab *slab, struct mem_cache *cache) -{ - struct mem_buftag *buftag; - size_t buf_size; - unsigned long buffers; - void *buf; - - buf_size = cache->buf_size; - buf = slab->addr; - buftag = mem_buf_to_buftag(buf, cache); - - for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { - mem_buf_fill(buf, MEM_FREE_PATTERN, cache->bufctl_dist); - buftag->state = MEM_BUFTAG_FREE; - buf += buf_size; - buftag = mem_buf_to_buftag(buf, cache); - } -} - -/* - * Create an empty slab for a cache. - * - * The caller must drop all locks before calling this function. - */ -static struct mem_slab * -mem_slab_create(struct mem_cache *cache, size_t color) -{ - struct mem_slab *slab; - union mem_bufctl *bufctl; - size_t buf_size; - unsigned long buffers; - void *slab_buf; - - slab_buf = cache->source.alloc_fn(cache->slab_size); - - if (slab_buf == NULL) - return NULL; - - if (cache->flags & MEM_CF_SLAB_EXTERNAL) { - slab = mem_cache_alloc(&mem_slab_cache); - - if (slab == NULL) { - cache->source.free_fn(slab_buf, cache->slab_size); - return NULL; - } - } else { - slab = (struct mem_slab *)(slab_buf + cache->slab_size) - 1; - } - - list_node_init(&slab->list_node); - avltree_node_init(&slab->tree_node); - slab->nr_refs = 0; - slab->first_free = NULL; - slab->addr = slab_buf + color; - - buf_size = cache->buf_size; - bufctl = mem_buf_to_bufctl(slab->addr, cache); - - for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { - bufctl->next = slab->first_free; - slab->first_free = bufctl; - bufctl = (union mem_bufctl *)((void *)bufctl + buf_size); - } - - if (cache->flags & MEM_CF_VERIFY) - mem_slab_create_verify(slab, cache); - - return slab; -} - -static void -mem_slab_destroy_verify(struct mem_slab *slab, struct mem_cache *cache) -{ - struct mem_buftag *buftag; - size_t buf_size; - unsigned long buffers; - void *buf, *addr; - - buf_size = cache->buf_size; - buf = slab->addr; - buftag = mem_buf_to_buftag(buf, cache); - - for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { - if (buftag->state != MEM_BUFTAG_FREE) - mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag); - - addr = mem_buf_verify(buf, MEM_FREE_PATTERN, cache->bufctl_dist); - - if (addr != NULL) - mem_cache_error(cache, buf, MEM_ERR_MODIFIED, addr); - - buf += buf_size; - buftag = mem_buf_to_buftag(buf, cache); - } -} - -/* - * Destroy a slab. - * - * The caller must drop all locks before calling this function. - */ -static void -mem_slab_destroy(struct mem_slab *slab, struct mem_cache *cache) -{ - void *slab_buf; - - assert(slab->nr_refs == 0); - assert(slab->first_free != NULL); - - if (cache->flags & MEM_CF_VERIFY) - mem_slab_destroy_verify(slab, cache); - - slab_buf = (void *)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE); - cache->source.free_fn(slab_buf, cache->slab_size); - - if (cache->flags & MEM_CF_SLAB_EXTERNAL) - mem_cache_free(&mem_slab_cache, slab); -} - -static inline int -mem_slab_use_tree(int flags) -{ - return !(flags & MEM_CF_DIRECT) || (flags & MEM_CF_VERIFY); -} - -static inline int -mem_slab_cmp_lookup(const void *addr, const struct avltree_node *node) -{ - struct mem_slab *slab; - - slab = avltree_entry(node, struct mem_slab, tree_node); - - if (addr == slab->addr) - return 0; - else if (addr < slab->addr) - return -1; - else - return 1; -} - -static inline int -mem_slab_cmp_insert(const struct avltree_node *a, const struct avltree_node *b) -{ - struct mem_slab *slab; - - slab = avltree_entry(a, struct mem_slab, tree_node); - return mem_slab_cmp_lookup(slab->addr, b); -} - -static void -mem_cpu_pool_init(struct mem_cpu_pool *cpu_pool, struct mem_cache *cache) -{ - pthread_mutex_init(&cpu_pool->lock, NULL); - cpu_pool->flags = cache->flags; - cpu_pool->size = 0; - cpu_pool->transfer_size = 0; - cpu_pool->nr_objs = 0; - cpu_pool->array = NULL; -} - -/* - * Return a CPU pool. - * - * This function will generally return the pool matching the CPU running the - * calling thread. Because of context switches and thread migration, the - * caller might be running on another processor after this function returns. - * Although not optimal, this should rarely happen, and it doesn't affect the - * allocator operations in any other way, as CPU pools are always valid, and - * their access is serialized by a lock. - */ -static inline struct mem_cpu_pool * -mem_cpu_pool_get(struct mem_cache *cache) -{ - return &cache->cpu_pools[cpu_id()]; -} - -static inline void -mem_cpu_pool_build(struct mem_cpu_pool *cpu_pool, struct mem_cache *cache, - void **array) -{ - cpu_pool->size = cache->cpu_pool_type->array_size; - cpu_pool->transfer_size = (cpu_pool->size + MEM_CPU_POOL_TRANSFER_RATIO - 1) - / MEM_CPU_POOL_TRANSFER_RATIO; - cpu_pool->array = array; -} - -static inline void * -mem_cpu_pool_pop(struct mem_cpu_pool *cpu_pool) -{ - cpu_pool->nr_objs--; - return cpu_pool->array[cpu_pool->nr_objs]; -} - -static inline void -mem_cpu_pool_push(struct mem_cpu_pool *cpu_pool, void *obj) -{ - cpu_pool->array[cpu_pool->nr_objs] = obj; - cpu_pool->nr_objs++; -} - -static int -mem_cpu_pool_fill(struct mem_cpu_pool *cpu_pool, struct mem_cache *cache) -{ - void *obj; - int i; - - pthread_mutex_lock(&cache->lock); - - for (i = 0; i < cpu_pool->transfer_size; i++) { - obj = mem_cache_alloc_from_slab(cache); - - if (obj == NULL) - break; - - mem_cpu_pool_push(cpu_pool, obj); - } - - pthread_mutex_unlock(&cache->lock); - - return i; -} - -static void -mem_cpu_pool_drain(struct mem_cpu_pool *cpu_pool, struct mem_cache *cache) -{ - void *obj; - int i; - - pthread_mutex_lock(&cache->lock); - - for (i = cpu_pool->transfer_size; i > 0; i--) { - obj = mem_cpu_pool_pop(cpu_pool); - mem_cache_free_to_slab(cache, obj); - } - - pthread_mutex_unlock(&cache->lock); -} - -static void -mem_cache_error(struct mem_cache *cache, void *buf, int error, void *arg) -{ - struct mem_buftag *buftag; - - mem_error("cache: %s, buffer: %p", cache->name, buf); - - switch(error) { - case MEM_ERR_INVALID: - mem_error("freeing invalid address"); - break; - case MEM_ERR_DOUBLEFREE: - mem_error("attempting to free the same address twice"); - break; - case MEM_ERR_BUFTAG: - mem_error("invalid buftag content"); - buftag = arg; - mem_error("buftag state: %p", (void *)buftag->state); - break; - case MEM_ERR_MODIFIED: - mem_error("free buffer modified"); - mem_error("fault address: %p, offset in buffer: %td", arg, arg - buf); - break; - case MEM_ERR_REDZONE: - mem_error("write beyond end of buffer"); - mem_error("fault address: %p, offset in buffer: %td", arg, arg - buf); - break; - default: - mem_error("unknown error"); - } - - error_die(ERR_MEM_CACHE); - - /* - * Never reached. - */ -} - -/* - * Compute an appropriate slab size for the given cache. - * - * Once the slab size is known, this function sets the related properties - * (buffers per slab and maximum color). It can also set the MEM_CF_DIRECT - * and/or MEM_CF_SLAB_EXTERNAL flags depending on the resulting layout. - */ -static void -mem_cache_compute_sizes(struct mem_cache *cache, int flags) -{ - size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size; - size_t waste, waste_min; - int embed, optimal_embed; - - buf_size = cache->buf_size; - - if (buf_size < MEM_BUF_SIZE_THRESHOLD) - flags |= MEM_CREATE_INTERNAL; - - i = 0; - waste_min = (size_t)-1; - - do { - i++; - slab_size = P2ROUND(i * buf_size, PAGE_SIZE); - free_slab_size = slab_size; - - if (flags & MEM_CREATE_INTERNAL) - free_slab_size -= sizeof(struct mem_slab); - - buffers = free_slab_size / buf_size; - waste = free_slab_size % buf_size; - - if (buffers > i) - i = buffers; - - if (flags & MEM_CREATE_INTERNAL) - embed = 1; - else if (sizeof(struct mem_slab) <= waste) { - embed = 1; - waste -= sizeof(struct mem_slab); - } else { - embed = 0; - } - - if (waste <= waste_min) { - waste_min = waste; - optimal_size = slab_size; - optimal_embed = embed; - } - } while ((buffers < MEM_MIN_BUFS_PER_SLAB) - && (slab_size < MEM_SLAB_SIZE_THRESHOLD)); - - assert(!(flags & MEM_CREATE_INTERNAL) || optimal_embed); - - cache->slab_size = optimal_size; - slab_size = cache->slab_size - (optimal_embed - ? sizeof(struct mem_slab) - : 0); - cache->bufs_per_slab = slab_size / buf_size; - cache->color_max = slab_size % buf_size; - - if (cache->color_max >= PAGE_SIZE) - cache->color_max = PAGE_SIZE - 1; - - if (optimal_embed) { - if (cache->slab_size == PAGE_SIZE) - cache->flags |= MEM_CF_DIRECT; - } else { - cache->flags |= MEM_CF_SLAB_EXTERNAL; - } -} - -static void -mem_cache_init(struct mem_cache *cache, const char *name, - size_t obj_size, size_t align, mem_cache_ctor_t ctor, - const struct mem_source *source, int flags) -{ - struct mem_cpu_pool_type *cpu_pool_type; - size_t i, buf_size; - -#if CONFIG_MEM_VERIFY - cache->flags = MEM_CF_VERIFY; -#else - cache->flags = 0; -#endif - - if (flags & MEM_CACHE_VERIFY) - cache->flags |= MEM_CF_VERIFY; - - if (align < MEM_ALIGN_MIN) - align = MEM_ALIGN_MIN; - - assert(obj_size > 0); - assert(ISP2(align)); - assert(align < PAGE_SIZE); - - buf_size = P2ROUND(obj_size, align); - - if (source == NULL) - source = &mem_default_source; - - pthread_mutex_init(&cache->lock, NULL); - list_node_init(&cache->node); - list_init(&cache->partial_slabs); - list_init(&cache->free_slabs); - avltree_init(&cache->active_slabs); - cache->obj_size = obj_size; - cache->align = align; - cache->buf_size = buf_size; - cache->bufctl_dist = buf_size - sizeof(union mem_bufctl); - cache->color = 0; - cache->nr_objs = 0; - cache->nr_bufs = 0; - cache->nr_slabs = 0; - cache->nr_free_slabs = 0; - cache->ctor = ctor; - cache->source = *source; - strncpy(cache->name, name, MEM_NAME_SIZE); - cache->name[MEM_NAME_SIZE - 1] = '\0'; - cache->buftag_dist = 0; - cache->redzone_pad = 0; - - if (cache->flags & MEM_CF_VERIFY) { - cache->bufctl_dist = buf_size; - cache->buftag_dist = cache->bufctl_dist + sizeof(union mem_bufctl); - cache->redzone_pad = cache->bufctl_dist - cache->obj_size; - buf_size += sizeof(union mem_bufctl) + sizeof(struct mem_buftag); - buf_size = P2ROUND(buf_size, align); - cache->buf_size = buf_size; - } - - mem_cache_compute_sizes(cache, flags); - - for (cpu_pool_type = mem_cpu_pool_types; - buf_size <= cpu_pool_type->buf_size; - cpu_pool_type++); - - cache->cpu_pool_type = cpu_pool_type; - - for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++) - mem_cpu_pool_init(&cache->cpu_pools[i], cache); - - pthread_mutex_lock(&mem_cache_list_lock); - list_insert_tail(&mem_cache_list, &cache->node); - pthread_mutex_unlock(&mem_cache_list_lock); -} - -struct mem_cache * -mem_cache_create(const char *name, size_t obj_size, size_t align, - mem_cache_ctor_t ctor, const struct mem_source *source, - int flags) -{ - struct mem_cache *cache; - - cache = mem_cache_alloc(&mem_cache_cache); - - if (cache == NULL) - return NULL; - - mem_cache_init(cache, name, obj_size, align, ctor, source, flags); - - return cache; -} - -static inline int -mem_cache_empty(struct mem_cache *cache) -{ - return cache->nr_objs == cache->nr_bufs; -} - -static int -mem_cache_grow(struct mem_cache *cache) -{ - struct mem_slab *slab; - size_t color; - int empty; - - pthread_mutex_lock(&cache->lock); - - if (!mem_cache_empty(cache)) { - pthread_mutex_unlock(&cache->lock); - return 1; - } - - color = cache->color; - cache->color += cache->align; - - if (cache->color > cache->color_max) - cache->color = 0; - - pthread_mutex_unlock(&cache->lock); - - slab = mem_slab_create(cache, color); - - pthread_mutex_lock(&cache->lock); - - if (slab != NULL) { - list_insert_tail(&cache->free_slabs, &slab->list_node); - cache->nr_bufs += cache->bufs_per_slab; - cache->nr_slabs++; - cache->nr_free_slabs++; - } - - /* - * Even if our slab creation failed, another thread might have succeeded - * in growing the cache. - */ - empty = mem_cache_empty(cache); - - pthread_mutex_unlock(&cache->lock); - - return !empty; -} - -static void -mem_cache_reap(struct mem_cache *cache) -{ - struct mem_slab *slab; - struct list dead_slabs; - - list_init(&dead_slabs); - - pthread_mutex_lock(&cache->lock); - - while (!list_empty(&cache->free_slabs)) { - slab = list_first_entry(&cache->free_slabs, struct mem_slab, list_node); - list_remove(&slab->list_node); - list_insert(&dead_slabs, &slab->list_node); - cache->nr_bufs -= cache->bufs_per_slab; - cache->nr_slabs--; - cache->nr_free_slabs--; - } - - pthread_mutex_unlock(&cache->lock); - - while (!list_empty(&dead_slabs)) { - slab = list_first_entry(&dead_slabs, struct mem_slab, list_node); - list_remove(&slab->list_node); - mem_slab_destroy(slab, cache); - } -} - -void -mem_cache_destroy(struct mem_cache *cache) -{ - struct mem_cpu_pool *cpu_pool; - void **ptr; - size_t i; - - pthread_mutex_lock(&mem_cache_list_lock); - list_remove(&cache->node); - pthread_mutex_unlock(&mem_cache_list_lock); - - for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++) { - cpu_pool = &cache->cpu_pools[i]; - - pthread_mutex_lock(&cpu_pool->lock); - - if (cpu_pool->array == NULL) { - pthread_mutex_unlock(&cpu_pool->lock); - continue; - } - - pthread_mutex_lock(&cache->lock); - - for (ptr = cpu_pool->array + cpu_pool->nr_objs - 1; - ptr >= cpu_pool->array; - ptr--) - mem_cache_free_to_slab(cache, *ptr); - - pthread_mutex_unlock(&cache->lock); - - ptr = cpu_pool->array; - cpu_pool->size = 0; - cpu_pool->nr_objs = 0; - cpu_pool->array = NULL; - pthread_mutex_unlock(&cpu_pool->lock); - - mem_cache_free(cache->cpu_pool_type->array_cache, ptr); - } - - mem_cache_reap(cache); - -#ifndef NDEBUG - if (cache->nr_objs != 0) - mem_warn("'%s' not empty", cache->name); - else { - assert(list_empty(&cache->partial_slabs)); - assert(list_empty(&cache->free_slabs)); - assert(avltree_empty(&cache->active_slabs)); - assert(cache->nr_bufs == 0); - assert(cache->nr_slabs == 0); - } -#endif /* NDEBUG */ - - pthread_mutex_destroy(&cache->lock); - - for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++) - pthread_mutex_destroy(&cache->cpu_pools[i].lock); - - mem_cache_free(&mem_cache_cache, cache); -} - -/* - * Allocate a raw (unconstructed) buffer from the slab layer of a cache. - * - * The cache must be locked before calling this function. - */ -static void * -mem_cache_alloc_from_slab(struct mem_cache *cache) -{ - struct mem_slab *slab; - union mem_bufctl *bufctl; - - if (!list_empty(&cache->partial_slabs)) - slab = list_first_entry(&cache->partial_slabs, struct mem_slab, - list_node); - else if (!list_empty(&cache->free_slabs)) - slab = list_first_entry(&cache->free_slabs, struct mem_slab, list_node); - else - return NULL; - - bufctl = slab->first_free; - assert(bufctl != NULL); - slab->first_free = bufctl->next; - slab->nr_refs++; - cache->nr_objs++; - - /* - * The slab has become complete. - */ - if (slab->nr_refs == cache->bufs_per_slab) { - list_remove(&slab->list_node); - - if (slab->nr_refs == 1) - cache->nr_free_slabs--; - } else if (slab->nr_refs == 1) { - /* - * The slab has become partial. - */ - list_remove(&slab->list_node); - list_insert_tail(&cache->partial_slabs, &slab->list_node); - cache->nr_free_slabs--; - } else if (!list_singular(&cache->partial_slabs)) { - struct list *node; - struct mem_slab *tmp; - - /* - * The slab remains partial. If there are more than one partial slabs, - * maintain the list sorted. - */ - - assert(slab->nr_refs > 1); - - for (node = list_prev(&slab->list_node); - !list_end(&cache->partial_slabs, node); - node = list_prev(node)) { - tmp = list_entry(node, struct mem_slab, list_node); - - if (tmp->nr_refs >= slab->nr_refs) - break; - } - - /* - * If the direct neighbor was found, the list is already sorted. - * If no slab was found, the slab is inserted at the head of the list. - */ - if (node != list_prev(&slab->list_node)) { - list_remove(&slab->list_node); - list_insert_after(node, &slab->list_node); - } - } - - if ((slab->nr_refs == 1) && mem_slab_use_tree(cache->flags)) - avltree_insert(&cache->active_slabs, &slab->tree_node, - mem_slab_cmp_insert); - - return mem_bufctl_to_buf(bufctl, cache); -} - -/* - * Release a buffer to the slab layer of a cache. - * - * The cache must be locked before calling this function. - */ -static void -mem_cache_free_to_slab(struct mem_cache *cache, void *buf) -{ - struct mem_slab *slab; - union mem_bufctl *bufctl; - - if (cache->flags & MEM_CF_DIRECT) { - assert(cache->slab_size == PAGE_SIZE); - slab = (struct mem_slab *)P2END((unsigned long)buf, cache->slab_size) - - 1; - } else { - struct avltree_node *node; - - node = avltree_lookup_nearest(&cache->active_slabs, buf, - mem_slab_cmp_lookup, AVLTREE_LEFT); - assert(node != NULL); - slab = avltree_entry(node, struct mem_slab, tree_node); - assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr - + cache->slab_size, PAGE_SIZE))); - } - - assert(slab->nr_refs >= 1); - assert(slab->nr_refs <= cache->bufs_per_slab); - bufctl = mem_buf_to_bufctl(buf, cache); - bufctl->next = slab->first_free; - slab->first_free = bufctl; - slab->nr_refs--; - cache->nr_objs--; - - /* - * The slab has become free. - */ - if (slab->nr_refs == 0) { - if (mem_slab_use_tree(cache->flags)) - avltree_remove(&cache->active_slabs, &slab->tree_node); - - /* - * The slab was partial. - */ - if (cache->bufs_per_slab > 1) - list_remove(&slab->list_node); - - list_insert_tail(&cache->free_slabs, &slab->list_node); - cache->nr_free_slabs++; - } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) { - /* - * The slab has become partial. - */ - list_insert(&cache->partial_slabs, &slab->list_node); - } else if (!list_singular(&cache->partial_slabs)) { - struct list *node; - struct mem_slab *tmp; - - /* - * The slab remains partial. If there are more than one partial slabs, - * maintain the list sorted. - */ - - assert(slab->nr_refs > 0); - - for (node = list_next(&slab->list_node); - !list_end(&cache->partial_slabs, node); - node = list_next(node)) { - tmp = list_entry(node, struct mem_slab, list_node); - - if (tmp->nr_refs <= slab->nr_refs) - break; - } - - /* - * If the direct neighbor was found, the list is already sorted. - * If no slab was found, the slab is inserted at the tail of the list. - */ - if (node != list_next(&slab->list_node)) { - list_remove(&slab->list_node); - list_insert_before(node, &slab->list_node); - } - } -} - -static void -mem_cache_alloc_verify(struct mem_cache *cache, void *buf, int construct) -{ - struct mem_buftag *buftag; - union mem_bufctl *bufctl; - void *addr; - - buftag = mem_buf_to_buftag(buf, cache); - - if (buftag->state != MEM_BUFTAG_FREE) - mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag); - - addr = mem_buf_verify_fill(buf, MEM_FREE_PATTERN, MEM_UNINIT_PATTERN, - cache->bufctl_dist); - - if (addr != NULL) - mem_cache_error(cache, buf, MEM_ERR_MODIFIED, addr); - - addr = buf + cache->obj_size; - memset(addr, MEM_REDZONE_BYTE, cache->redzone_pad); - - bufctl = mem_buf_to_bufctl(buf, cache); - bufctl->redzone = MEM_REDZONE_WORD; - buftag->state = MEM_BUFTAG_ALLOC; - - if (construct && (cache->ctor != NULL)) - cache->ctor(buf); -} - -void * -mem_cache_alloc(struct mem_cache *cache) -{ - struct mem_cpu_pool *cpu_pool; - int filled; - void *buf; - - cpu_pool = mem_cpu_pool_get(cache); - - pthread_mutex_lock(&cpu_pool->lock); - -fast_alloc_retry: - if (likely(cpu_pool->nr_objs > 0)) { - buf = mem_cpu_pool_pop(cpu_pool); - pthread_mutex_unlock(&cpu_pool->lock); - - if (cpu_pool->flags & MEM_CF_VERIFY) - mem_cache_alloc_verify(cache, buf, MEM_AV_CONSTRUCT); - - return buf; - } - - if (cpu_pool->array != NULL) { - filled = mem_cpu_pool_fill(cpu_pool, cache); - - if (!filled) { - pthread_mutex_unlock(&cpu_pool->lock); - - filled = mem_cache_grow(cache); - - if (!filled) - return NULL; - - pthread_mutex_lock(&cpu_pool->lock); - } - - goto fast_alloc_retry; - } - - pthread_mutex_unlock(&cpu_pool->lock); - -slow_alloc_retry: - pthread_mutex_lock(&cache->lock); - buf = mem_cache_alloc_from_slab(cache); - pthread_mutex_unlock(&cache->lock); - - if (buf == NULL) { - filled = mem_cache_grow(cache); - - if (!filled) - return NULL; - - goto slow_alloc_retry; - } - - if (cache->flags & MEM_CF_VERIFY) - mem_cache_alloc_verify(cache, buf, MEM_AV_NOCONSTRUCT); - - if (cache->ctor != NULL) - cache->ctor(buf); - - return buf; -} - -static void -mem_cache_free_verify(struct mem_cache *cache, void *buf) -{ - struct avltree_node *node; - struct mem_buftag *buftag; - struct mem_slab *slab; - union mem_bufctl *bufctl; - unsigned char *redzone_byte; - unsigned long slabend; - - pthread_mutex_lock(&cache->lock); - node = avltree_lookup_nearest(&cache->active_slabs, buf, - mem_slab_cmp_lookup, AVLTREE_LEFT); - pthread_mutex_unlock(&cache->lock); - - if (node == NULL) - mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL); - - slab = avltree_entry(node, struct mem_slab, tree_node); - slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE); - - if ((unsigned long)buf >= slabend) - mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL); - - if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size) - != 0) - mem_cache_error(cache, buf, MEM_ERR_INVALID, NULL); - - /* - * As the buffer address is valid, accessing its buftag is safe. - */ - buftag = mem_buf_to_buftag(buf, cache); - - if (buftag->state != MEM_BUFTAG_ALLOC) { - if (buftag->state == MEM_BUFTAG_FREE) - mem_cache_error(cache, buf, MEM_ERR_DOUBLEFREE, NULL); - else - mem_cache_error(cache, buf, MEM_ERR_BUFTAG, buftag); - } - - redzone_byte = buf + cache->obj_size; - bufctl = mem_buf_to_bufctl(buf, cache); - - while (redzone_byte < (unsigned char *)bufctl) { - if (*redzone_byte != MEM_REDZONE_BYTE) - mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte); - - redzone_byte++; - } - - if (bufctl->redzone != MEM_REDZONE_WORD) { - unsigned long word; - - word = MEM_REDZONE_WORD; - redzone_byte = mem_buf_verify_bytes(&bufctl->redzone, &word, - sizeof(bufctl->redzone)); - mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte); - } - - mem_buf_fill(buf, MEM_FREE_PATTERN, cache->bufctl_dist); - buftag->state = MEM_BUFTAG_FREE; -} - -void -mem_cache_free(struct mem_cache *cache, void *obj) -{ - struct mem_cpu_pool *cpu_pool; - void **array; - - cpu_pool = mem_cpu_pool_get(cache); - - if (cpu_pool->flags & MEM_CF_VERIFY) - mem_cache_free_verify(cache, obj); - - pthread_mutex_lock(&cpu_pool->lock); - -fast_free_retry: - if (likely(cpu_pool->nr_objs < cpu_pool->size)) { - mem_cpu_pool_push(cpu_pool, obj); - pthread_mutex_unlock(&cpu_pool->lock); - return; - } - - if (cpu_pool->array != NULL) { - mem_cpu_pool_drain(cpu_pool, cache); - goto fast_free_retry; - } - - pthread_mutex_unlock(&cpu_pool->lock); - - array = mem_cache_alloc(cache->cpu_pool_type->array_cache); - - if (array != NULL) { - pthread_mutex_lock(&cpu_pool->lock); - - /* - * Another thread may have built the CPU pool while the lock was - * dropped. - */ - if (cpu_pool->array != NULL) { - pthread_mutex_unlock(&cpu_pool->lock); - mem_cache_free(cache->cpu_pool_type->array_cache, array); - pthread_mutex_lock(&cpu_pool->lock); - goto fast_free_retry; - } - - mem_cpu_pool_build(cpu_pool, cache, array); - goto fast_free_retry; - } - - pthread_mutex_lock(&cache->lock); - mem_cache_free_to_slab(cache, obj); - pthread_mutex_unlock(&cache->lock); -} - -void -mem_cache_info(struct mem_cache *cache) -{ - struct mem_cache *cache_stats; - char flags_str[64]; - - if (cache == NULL) { - pthread_mutex_lock(&mem_cache_list_lock); - - list_for_each_entry(&mem_cache_list, cache, node) - mem_cache_info(cache); - - pthread_mutex_unlock(&mem_cache_list_lock); - - return; - } - - cache_stats = mem_alloc(sizeof(*cache_stats)); - - if (cache_stats == NULL) { - mem_warn("unable to allocate memory for cache stats"); - return; - } - - pthread_mutex_lock(&cache->lock); - cache_stats->flags = cache->flags; - cache_stats->obj_size = cache->obj_size; - cache_stats->align = cache->align; - cache_stats->buf_size = cache->buf_size; - cache_stats->bufctl_dist = cache->bufctl_dist; - cache_stats->slab_size = cache->slab_size; - cache_stats->color_max = cache->color_max; - cache_stats->bufs_per_slab = cache->bufs_per_slab; - cache_stats->nr_objs = cache->nr_objs; - cache_stats->nr_bufs = cache->nr_bufs; - cache_stats->nr_slabs = cache->nr_slabs; - cache_stats->nr_free_slabs = cache->nr_free_slabs; - strcpy(cache_stats->name, cache->name); - cache_stats->buftag_dist = cache->buftag_dist; - cache_stats->redzone_pad = cache->redzone_pad; - cache_stats->cpu_pool_type = cache->cpu_pool_type; - pthread_mutex_unlock(&cache->lock); - - snprintf(flags_str, sizeof(flags_str), "%s%s%s", - (cache_stats->flags & MEM_CF_DIRECT) ? " DIRECT" : "", - (cache_stats->flags & MEM_CF_SLAB_EXTERNAL) ? " SLAB_EXTERNAL" : "", - (cache_stats->flags & MEM_CF_VERIFY) ? " VERIFY" : ""); - - mem_print("name: %s", cache_stats->name); - mem_print("flags: 0x%x%s", cache_stats->flags, flags_str); - mem_print("obj_size: %zu", cache_stats->obj_size); - mem_print("align: %zu", cache_stats->align); - mem_print("buf_size: %zu", cache_stats->buf_size); - mem_print("bufctl_dist: %zu", cache_stats->bufctl_dist); - mem_print("slab_size: %zu", cache_stats->slab_size); - mem_print("color_max: %zu", cache_stats->color_max); - mem_print("bufs_per_slab: %lu", cache_stats->bufs_per_slab); - mem_print("nr_objs: %lu", cache_stats->nr_objs); - mem_print("nr_bufs: %lu", cache_stats->nr_bufs); - mem_print("nr_slabs: %lu", cache_stats->nr_slabs); - mem_print("nr_free_slabs: %lu", cache_stats->nr_free_slabs); - mem_print("buftag_dist: %zu", cache_stats->buftag_dist); - mem_print("redzone_pad: %zu", cache_stats->redzone_pad); - mem_print("cpu_pool_size: %d", cache_stats->cpu_pool_type->array_size); - mem_print("--"); - - mem_free(cache_stats, sizeof(*cache_stats)); -} - -static void * -mem_gc(void *arg) -{ - struct mem_cache *cache; - struct timespec ts; - int error; - - (void)arg; - - clock_gettime(CLOCK_MONOTONIC, &ts); - - for (;;) { - ts.tv_sec += MEM_GC_INTERVAL; - - do - error = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &ts, NULL); - while (error == EINTR); - - /* - * EINTR is the only expected error. - */ - assert(error == 0); - -#if 0 - mem_info(); - -#if CONFIG_MEM_USE_PHYS - phys_info(); -#endif /* CONFIG_MEM_USE_PHYS */ -#endif - - pthread_mutex_lock(&mem_cache_list_lock); - - list_for_each_entry(&mem_cache_list, cache, node) - mem_cache_reap(cache); - - pthread_mutex_unlock(&mem_cache_list_lock); - } - - return NULL; -} - -void -mem_setup(void) -{ - static int mem_initialized = 0; - struct mem_cpu_pool_type *cpu_pool_type; - char name[MEM_NAME_SIZE]; - pthread_t thread; - size_t i, size; - int error; - - if (mem_initialized) - return; - - mem_initialized = 1; - - _pagesize = sysconf(_SC_PAGESIZE); - assert(ISP2(_pagesize)); - - /* - * Make sure a bufctl can always be stored in a buffer. - */ - assert(sizeof(union mem_bufctl) <= MEM_ALIGN_MIN); - -#if CONFIG_MEM_USE_PHYS - phys_setup(); -#endif /* CONFIG_MEM_USE_PHYS */ - - list_init(&mem_cache_list); - pthread_mutex_init(&mem_cache_list_lock, NULL); - - for (i = 0; i < ARRAY_SIZE(mem_cpu_pool_types); i++) { - cpu_pool_type = &mem_cpu_pool_types[i]; - cpu_pool_type->array_cache = &mem_cpu_array_caches[i]; - sprintf(name, "mem_cpu_array_%d", cpu_pool_type->array_size); - size = sizeof(void *) * cpu_pool_type->array_size; - mem_cache_init(cpu_pool_type->array_cache, name, size, - cpu_pool_type->array_align, NULL, NULL, 0); - } - - /* - * Prevent off slab data for the slab cache to avoid infinite recursion. - */ - mem_cache_init(&mem_slab_cache, "mem_slab", sizeof(struct mem_slab), - 0, NULL, NULL, MEM_CREATE_INTERNAL); - mem_cache_init(&mem_cache_cache, "mem_cache", sizeof(struct mem_cache), - CPU_L1_SIZE, NULL, NULL, 0); - - size = 1 << MEM_CACHES_FIRST_SHIFT; - - for (i = 0; i < ARRAY_SIZE(mem_caches); i++) { - sprintf(name, "mem_%zu", size); - mem_cache_init(&mem_caches[i], name, size, 0, NULL, NULL, 0); - size <<= 1; - } - - error = pthread_create(&thread, NULL, mem_gc, NULL); - - if (error) - mem_error("unable to create garbage collection thread: %s", - strerror(error)); -} - -/* - * Return the mem cache index matching the given allocation size, which - * must be strictly greater than 0. - */ -static inline size_t -mem_get_index(size_t size) -{ - assert(size != 0); - - size = (size - 1) >> MEM_CACHES_FIRST_SHIFT; - - if (size == 0) - return 0; - else - return (sizeof(long) * CHAR_BIT) - __builtin_clzl(size); -} - -static void -mem_alloc_verify(struct mem_cache *cache, void *buf, size_t size) -{ - size_t redzone_size; - void *redzone; - - assert(size <= cache->obj_size); - - redzone = buf + size; - redzone_size = cache->obj_size - size; - memset(redzone, MEM_REDZONE_BYTE, redzone_size); -} - -void * -mem_alloc(size_t size) -{ - size_t index; - void *buf; - - if (size == 0) - return NULL; - - index = mem_get_index(size); - - if (index < ARRAY_SIZE(mem_caches)) { - struct mem_cache *cache; - - cache = &mem_caches[index]; - buf = mem_cache_alloc(cache); - - if ((buf != NULL) && (cache->flags & MEM_CF_VERIFY)) - mem_alloc_verify(cache, buf, size); - } else { - buf = mem_default_alloc(size); - } - - return buf; -} - -void * -mem_zalloc(size_t size) -{ - void *ptr; - - ptr = mem_alloc(size); - - if (ptr == NULL) - return NULL; - - memset(ptr, 0, size); - return ptr; -} - -static void -mem_free_verify(struct mem_cache *cache, void *buf, size_t size) -{ - unsigned char *redzone_byte, *redzone_end; - - assert(size <= cache->obj_size); - - redzone_byte = buf + size; - redzone_end = buf + cache->obj_size; - - while (redzone_byte < redzone_end) { - if (*redzone_byte != MEM_REDZONE_BYTE) - mem_cache_error(cache, buf, MEM_ERR_REDZONE, redzone_byte); - - redzone_byte++; - } -} - -void -mem_free(void *ptr, size_t size) -{ - size_t index; - - if ((ptr == NULL) || (size == 0)) - return; - - index = mem_get_index(size); - - if (index < ARRAY_SIZE(mem_caches)) { - struct mem_cache *cache; - - cache = &mem_caches[index]; - - if (cache->flags & MEM_CF_VERIFY) - mem_free_verify(cache, ptr, size); - - mem_cache_free(cache, ptr); - } else { - mem_default_free(ptr, size); - } -} - -void -mem_info(void) -{ - struct mem_cache *cache, *cache_stats; - size_t mem_usage, mem_reclaimable; - - cache_stats = mem_alloc(sizeof(*cache_stats)); - - if (cache_stats == NULL) { - mem_warn("unable to allocate memory for cache stats"); - return; - } - - mem_print("-- cache obj slab bufs objs bufs " - " total reclaimable"); - mem_print("-- name size size /slab usage count " - " memory memory"); - - pthread_mutex_lock(&mem_cache_list_lock); - - list_for_each_entry(&mem_cache_list, cache, node) { - pthread_mutex_lock(&cache->lock); - cache_stats->obj_size = cache->obj_size; - cache_stats->slab_size = cache->slab_size; - cache_stats->bufs_per_slab = cache->bufs_per_slab; - cache_stats->nr_objs = cache->nr_objs; - cache_stats->nr_bufs = cache->nr_bufs; - cache_stats->nr_slabs = cache->nr_slabs; - cache_stats->nr_free_slabs = cache->nr_free_slabs; - strcpy(cache_stats->name, cache->name); - pthread_mutex_unlock(&cache->lock); - - mem_usage = (cache_stats->nr_slabs * cache_stats->slab_size) >> 10; - mem_reclaimable = - (cache_stats->nr_free_slabs * cache_stats->slab_size) >> 10; - - mem_print("%-27s %6zu %3zuk %4lu %6lu %6lu %7zuk %10zuk", - cache_stats->name, cache_stats->obj_size, - cache_stats->slab_size >> 10, cache_stats->bufs_per_slab, - cache_stats->nr_objs, cache_stats->nr_bufs, mem_usage, - mem_reclaimable); - } - - pthread_mutex_unlock(&mem_cache_list_lock); - - mem_free(cache_stats, sizeof(*cache_stats)); -} |