summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/pre_fault_memory_test.c
blob: f04768c1d2e4529802f7cae40f3a654f23693670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2024, Intel, Inc
 *
 * Author:
 * Isaku Yamahata <isaku.yamahata at gmail.com>
 */
#include <linux/sizes.h>

#include <test_util.h>
#include <kvm_util.h>
#include <processor.h>
#include <pthread.h>

/* Arbitrarily chosen values */
#define TEST_SIZE		(SZ_2M + PAGE_SIZE)
#define TEST_NPAGES		(TEST_SIZE / PAGE_SIZE)
#define TEST_SLOT		10

static void guest_code(uint64_t base_gpa)
{
	volatile uint64_t val __used;
	int i;

	for (i = 0; i < TEST_NPAGES; i++) {
		uint64_t *src = (uint64_t *)(base_gpa + i * PAGE_SIZE);

		val = *src;
	}

	GUEST_DONE();
}

struct slot_worker_data {
	struct kvm_vm *vm;
	u64 gpa;
	uint32_t flags;
	bool worker_ready;
	bool prefault_ready;
	bool recreate_slot;
};

static void *delete_slot_worker(void *__data)
{
	struct slot_worker_data *data = __data;
	struct kvm_vm *vm = data->vm;

	WRITE_ONCE(data->worker_ready, true);

	while (!READ_ONCE(data->prefault_ready))
		cpu_relax();

	vm_mem_region_delete(vm, TEST_SLOT);

	while (!READ_ONCE(data->recreate_slot))
		cpu_relax();

	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, data->gpa,
				    TEST_SLOT, TEST_NPAGES, data->flags);

	return NULL;
}

static void pre_fault_memory(struct kvm_vcpu *vcpu, u64 base_gpa, u64 offset,
			     u64 size, u64 expected_left, bool private)
{
	struct kvm_pre_fault_memory range = {
		.gpa = base_gpa + offset,
		.size = size,
		.flags = 0,
	};
	struct slot_worker_data data = {
		.vm = vcpu->vm,
		.gpa = base_gpa,
		.flags = private ? KVM_MEM_GUEST_MEMFD : 0,
	};
	bool slot_recreated = false;
	pthread_t slot_worker;
	int ret, save_errno;
	u64 prev;

	/*
	 * Concurrently delete (and recreate) the slot to test KVM's handling
	 * of a racing memslot deletion with prefaulting.
	 */
	pthread_create(&slot_worker, NULL, delete_slot_worker, &data);

	while (!READ_ONCE(data.worker_ready))
		cpu_relax();

	WRITE_ONCE(data.prefault_ready, true);

	for (;;) {
		prev = range.size;
		ret = __vcpu_ioctl(vcpu, KVM_PRE_FAULT_MEMORY, &range);
		save_errno = errno;
		TEST_ASSERT((range.size < prev) ^ (ret < 0),
			    "%sexpecting range.size to change on %s",
			    ret < 0 ? "not " : "",
			    ret < 0 ? "failure" : "success");

		/*
		 * Immediately retry prefaulting if KVM was interrupted by an
		 * unrelated signal/event.
		 */
		if (ret < 0 && save_errno == EINTR)
			continue;

		/*
		 * Tell the worker to recreate the slot in order to complete
		 * prefaulting (if prefault didn't already succeed before the
		 * slot was deleted) and/or to prepare for the next testcase.
		 * Wait for the worker to exit so that the next invocation of
		 * prefaulting is guaranteed to complete (assuming no KVM bugs).
		 */
		if (!slot_recreated) {
			WRITE_ONCE(data.recreate_slot, true);
			pthread_join(slot_worker, NULL);
			slot_recreated = true;

			/*
			 * Retry prefaulting to get a stable result, i.e. to
			 * avoid seeing random EAGAIN failures.  Don't retry if
			 * prefaulting already succeeded, as KVM disallows
			 * prefaulting with size=0, i.e. blindly retrying would
			 * result in test failures due to EINVAL.  KVM should
			 * always return success if all bytes are prefaulted,
			 * i.e. there is no need to guard against EAGAIN being
			 * returned.
			 */
			if (range.size)
				continue;
		}

		/*
		 * All done if there are no remaining bytes to prefault, or if
		 * prefaulting failed (EINTR was handled above, and EAGAIN due
		 * to prefaulting a memslot that's being actively deleted should
		 * be impossible since the memslot has already been recreated).
		 */
		if (!range.size || ret < 0)
			break;
	}

	TEST_ASSERT(range.size == expected_left,
		    "Completed with %llu bytes left, expected %lu",
		    range.size, expected_left);

	/*
	 * Assert success if prefaulting the entire range should succeed, i.e.
	 * complete with no bytes remaining.  Otherwise prefaulting should have
	 * failed due to ENOENT (due to RET_PF_EMULATE for emulated MMIO when
	 * no memslot exists).
	 */
	if (!expected_left)
		TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_PRE_FAULT_MEMORY, ret, vcpu->vm);
	else
		TEST_ASSERT_VM_VCPU_IOCTL(ret && save_errno == ENOENT,
					  KVM_PRE_FAULT_MEMORY, ret, vcpu->vm);
}

static void __test_pre_fault_memory(unsigned long vm_type, bool private)
{
	const struct vm_shape shape = {
		.mode = VM_MODE_DEFAULT,
		.type = vm_type,
	};
	struct kvm_vcpu *vcpu;
	struct kvm_run *run;
	struct kvm_vm *vm;
	struct ucall uc;

	uint64_t guest_test_phys_mem;
	uint64_t guest_test_virt_mem;
	uint64_t alignment, guest_page_size;

	vm = vm_create_shape_with_one_vcpu(shape, &vcpu, guest_code);

	alignment = guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size;
	guest_test_phys_mem = (vm->max_gfn - TEST_NPAGES) * guest_page_size;
#ifdef __s390x__
	alignment = max(0x100000UL, guest_page_size);
#else
	alignment = SZ_2M;
#endif
	guest_test_phys_mem = align_down(guest_test_phys_mem, alignment);
	guest_test_virt_mem = guest_test_phys_mem & ((1ULL << (vm->va_bits - 1)) - 1);

	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
				    guest_test_phys_mem, TEST_SLOT, TEST_NPAGES,
				    private ? KVM_MEM_GUEST_MEMFD : 0);
	virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, TEST_NPAGES);

	if (private)
		vm_mem_set_private(vm, guest_test_phys_mem, TEST_SIZE);

	pre_fault_memory(vcpu, guest_test_phys_mem, 0, SZ_2M, 0, private);
	pre_fault_memory(vcpu, guest_test_phys_mem, SZ_2M, PAGE_SIZE * 2, PAGE_SIZE, private);
	pre_fault_memory(vcpu, guest_test_phys_mem, TEST_SIZE, PAGE_SIZE, PAGE_SIZE, private);

	vcpu_args_set(vcpu, 1, guest_test_virt_mem);
	vcpu_run(vcpu);

	run = vcpu->run;
	TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
		    "Wanted KVM_EXIT_IO, got exit reason: %u (%s)",
		    run->exit_reason, exit_reason_str(run->exit_reason));

	switch (get_ucall(vcpu, &uc)) {
	case UCALL_ABORT:
		REPORT_GUEST_ASSERT(uc);
		break;
	case UCALL_DONE:
		break;
	default:
		TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
		break;
	}

	kvm_vm_free(vm);
}

static void test_pre_fault_memory(unsigned long vm_type, bool private)
{
	if (vm_type && !(kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(vm_type))) {
		pr_info("Skipping tests for vm_type 0x%lx\n", vm_type);
		return;
	}

	__test_pre_fault_memory(vm_type, private);
}

int main(int argc, char *argv[])
{
	TEST_REQUIRE(kvm_check_cap(KVM_CAP_PRE_FAULT_MEMORY));

	test_pre_fault_memory(0, false);
#ifdef __x86_64__
	test_pre_fault_memory(KVM_X86_SW_PROTECTED_VM, false);
	test_pre_fault_memory(KVM_X86_SW_PROTECTED_VM, true);
#endif
	return 0;
}