Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"As usual, many cleanups. The below blurbiage describes 42 patchsets.
21 of those are partially or fully cleanup work. "cleans up",
"cleanup", "maintainability", "rationalizes", etc.
I never knew the MM code was so dirty.
"mm: ksm: prevent KSM from breaking merging of new VMAs" (Lorenzo Stoakes)
addresses an issue with KSM's PR_SET_MEMORY_MERGE mode: newly
mapped VMAs were not eligible for merging with existing adjacent
VMAs.
"mm/damon: introduce DAMON_STAT for simple and practical access monitoring" (SeongJae Park)
adds a new kernel module which simplifies the setup and usage of
DAMON in production environments.
"stop passing a writeback_control to swap/shmem writeout" (Christoph Hellwig)
is a cleanup to the writeback code which removes a couple of
pointers from struct writeback_control.
"drivers/base/node.c: optimization and cleanups" (Donet Tom)
contains largely uncorrelated cleanups to the NUMA node setup and
management code.
"mm: userfaultfd: assorted fixes and cleanups" (Tal Zussman)
does some maintenance work on the userfaultfd code.
"Readahead tweaks for larger folios" (Ryan Roberts)
implements some tuneups for pagecache readahead when it is reading
into order>0 folios.
"selftests/mm: Tweaks to the cow test" (Mark Brown)
provides some cleanups and consistency improvements to the
selftests code.
"Optimize mremap() for large folios" (Dev Jain)
does that. A 37% reduction in execution time was measured in a
memset+mremap+munmap microbenchmark.
"Remove zero_user()" (Matthew Wilcox)
expunges zero_user() in favor of the more modern memzero_page().
"mm/huge_memory: vmf_insert_folio_*() and vmf_insert_pfn_pud() fixes" (David Hildenbrand)
addresses some warts which David noticed in the huge page code.
These were not known to be causing any issues at this time.
"mm/damon: use alloc_migrate_target() for DAMOS_MIGRATE_{HOT,COLD" (SeongJae Park)
provides some cleanup and consolidation work in DAMON.
"use vm_flags_t consistently" (Lorenzo Stoakes)
uses vm_flags_t in places where we were inappropriately using other
types.
"mm/memfd: Reserve hugetlb folios before allocation" (Vivek Kasireddy)
increases the reliability of large page allocation in the memfd
code.
"mm: Remove pXX_devmap page table bit and pfn_t type" (Alistair Popple)
removes several now-unneeded PFN_* flags.
"mm/damon: decouple sysfs from core" (SeongJae Park)
implememnts some cleanup and maintainability work in the DAMON
sysfs layer.
"madvise cleanup" (Lorenzo Stoakes)
does quite a lot of cleanup/maintenance work in the madvise() code.
"madvise anon_name cleanups" (Vlastimil Babka)
provides additional cleanups on top or Lorenzo's effort.
"Implement numa node notifier" (Oscar Salvador)
creates a standalone notifier for NUMA node memory state changes.
Previously these were lumped under the more general memory
on/offline notifier.
"Make MIGRATE_ISOLATE a standalone bit" (Zi Yan)
cleans up the pageblock isolation code and fixes a potential issue
which doesn't seem to cause any problems in practice.
"selftests/damon: add python and drgn based DAMON sysfs functionality tests" (SeongJae Park)
adds additional drgn- and python-based DAMON selftests which are
more comprehensive than the existing selftest suite.
"Misc rework on hugetlb faulting path" (Oscar Salvador)
fixes a rather obscure deadlock in the hugetlb fault code and
follows that fix with a series of cleanups.
"cma: factor out allocation logic from __cma_declare_contiguous_nid" (Mike Rapoport)
rationalizes and cleans up the highmem-specific code in the CMA
allocator.
"mm/migration: rework movable_ops page migration (part 1)" (David Hildenbrand)
provides cleanups and future-preparedness to the migration code.
"mm/damon: add trace events for auto-tuned monitoring intervals and DAMOS quota" (SeongJae Park)
adds some tracepoints to some DAMON auto-tuning code.
"mm/damon: fix misc bugs in DAMON modules" (SeongJae Park)
does that.
"mm/damon: misc cleanups" (SeongJae Park)
also does what it claims.
"mm: folio_pte_batch() improvements" (David Hildenbrand)
cleans up the large folio PTE batching code.
"mm/damon/vaddr: Allow interleaving in migrate_{hot,cold} actions" (SeongJae Park)
facilitates dynamic alteration of DAMON's inter-node allocation
policy.
"Remove unmap_and_put_page()" (Vishal Moola)
provides a couple of page->folio conversions.
"mm: per-node proactive reclaim" (Davidlohr Bueso)
implements a per-node control of proactive reclaim - beyond the
current memcg-based implementation.
"mm/damon: remove damon_callback" (SeongJae Park)
replaces the damon_callback interface with a more general and
powerful damon_call()+damos_walk() interface.
"mm/mremap: permit mremap() move of multiple VMAs" (Lorenzo Stoakes)
implements a number of mremap cleanups (of course) in preparation
for adding new mremap() functionality: newly permit the remapping
of multiple VMAs when the user is specifying MREMAP_FIXED. It still
excludes some specialized situations where this cannot be performed
reliably.
"drop hugetlb_free_pgd_range()" (Anthony Yznaga)
switches some sparc hugetlb code over to the generic version and
removes the thus-unneeded hugetlb_free_pgd_range().
"mm/damon/sysfs: support periodic and automated stats update" (SeongJae Park)
augments the present userspace-requested update of DAMON sysfs
monitoring files. Automatic update is now provided, along with a
tunable to control the update interval.
"Some randome fixes and cleanups to swapfile" (Kemeng Shi)
does what is claims.
"mm: introduce snapshot_page" (Luiz Capitulino and David Hildenbrand)
provides (and uses) a means by which debug-style functions can grab
a copy of a pageframe and inspect it locklessly without tripping
over the races inherent in operating on the live pageframe
directly.
"use per-vma locks for /proc/pid/maps reads" (Suren Baghdasaryan)
addresses the large contention issues which can be triggered by
reads from that procfs file. Latencies are reduced by more than
half in some situations. The series also introduces several new
selftests for the /proc/pid/maps interface.
"__folio_split() clean up" (Zi Yan)
cleans up __folio_split()!
"Optimize mprotect() for large folios" (Dev Jain)
provides some quite large (>3x) speedups to mprotect() when dealing
with large folios.
"selftests/mm: reuse FORCE_READ to replace "asm volatile("" : "+r" (XXX));" and some cleanup" (wang lian)
does some cleanup work in the selftests code.
"tools/testing: expand mremap testing" (Lorenzo Stoakes)
extends the mremap() selftest in several ways, including adding
more checking of Lorenzo's recently added "permit mremap() move of
multiple VMAs" feature.
"selftests/damon/sysfs.py: test all parameters" (SeongJae Park)
extends the DAMON sysfs interface selftest so that it tests all
possible user-requested parameters. Rather than the present minimal
subset"
* tag 'mm-stable-2025-07-30-15-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (370 commits)
MAINTAINERS: add missing headers to mempory policy & migration section
MAINTAINERS: add missing file to cgroup section
MAINTAINERS: add MM MISC section, add missing files to MISC and CORE
MAINTAINERS: add missing zsmalloc file
MAINTAINERS: add missing files to page alloc section
MAINTAINERS: add missing shrinker files
MAINTAINERS: move memremap.[ch] to hotplug section
MAINTAINERS: add missing mm_slot.h file THP section
MAINTAINERS: add missing interval_tree.c to memory mapping section
MAINTAINERS: add missing percpu-internal.h file to per-cpu section
mm/page_alloc: remove trace_mm_alloc_contig_migrate_range_info()
selftests/damon: introduce _common.sh to host shared function
selftests/damon/sysfs.py: test runtime reduction of DAMON parameters
selftests/damon/sysfs.py: test non-default parameters runtime commit
selftests/damon/sysfs.py: generalize DAMON context commit assertion
selftests/damon/sysfs.py: generalize monitoring attributes commit assertion
selftests/damon/sysfs.py: generalize DAMOS schemes commit assertion
selftests/damon/sysfs.py: test DAMOS filters commitment
selftests/damon/sysfs.py: generalize DAMOS scheme commit assertion
selftests/damon/sysfs.py: test DAMOS destinations commitment
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
- Introduce and start using TRAILING_OVERLAP() helper for fixing
embedded flex array instances (Gustavo A. R. Silva)
- mux: Convert mux_control_ops to a flex array member in mux_chip
(Thorsten Blum)
- string: Group str_has_prefix() and strstarts() (Andy Shevchenko)
- Remove KCOV instrumentation from __init and __head (Ritesh Harjani,
Kees Cook)
- Refactor and rename stackleak feature to support Clang
- Add KUnit test for seq_buf API
- Fix KUnit fortify test under LTO
* tag 'hardening-v6.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits)
sched/task_stack: Add missing const qualifier to end_of_stack()
kstack_erase: Support Clang stack depth tracking
kstack_erase: Add -mgeneral-regs-only to silence Clang warnings
init.h: Disable sanitizer coverage for __init and __head
kstack_erase: Disable kstack_erase for all of arm compressed boot code
x86: Handle KCOV __init vs inline mismatches
arm64: Handle KCOV __init vs inline mismatches
s390: Handle KCOV __init vs inline mismatches
arm: Handle KCOV __init vs inline mismatches
mips: Handle KCOV __init vs inline mismatch
powerpc/mm/book3s64: Move kfence and debug_pagealloc related calls to __init section
configs/hardening: Enable CONFIG_INIT_ON_FREE_DEFAULT_ON
configs/hardening: Enable CONFIG_KSTACK_ERASE
stackleak: Split KSTACK_ERASE_CFLAGS from GCC_PLUGINS_CFLAGS
stackleak: Rename stackleak_track_stack to __sanitizer_cov_stack_depth
stackleak: Rename STACKLEAK to KSTACK_ERASE
seq_buf: Introduce KUnit tests
string: Group str_has_prefix() and strstarts()
kunit/fortify: Add back "volatile" for sizeof() constants
acpi: nfit: intel: avoid multiple -Wflex-array-member-not-at-end warnings
...
|
|
GCC appears to have kind of fragile inlining heuristics, in the
sense that it can change whether or not it inlines something based on
optimizations. It looks like the kcov instrumentation being added (or in
this case, removed) from a function changes the optimization results,
and some functions marked "inline" are _not_ inlined. In that case,
we end up with __init code calling a function not marked __init, and we
get the build warnings I'm trying to eliminate in the coming patch that
adds __no_sanitize_coverage to __init functions:
WARNING: modpost: vmlinux: section mismatch in reference: xbc_exit+0x8 (section: .text.unlikely) -> _xbc_exit (section: .init.text)
WARNING: modpost: vmlinux: section mismatch in reference: real_mode_size_needed+0x15 (section: .text.unlikely) -> real_mode_blob_end (section: .init.data)
WARNING: modpost: vmlinux: section mismatch in reference: __set_percpu_decrypted+0x16 (section: .text.unlikely) -> early_set_memory_decrypted (section: .init.text)
WARNING: modpost: vmlinux: section mismatch in reference: memblock_alloc_from+0x26 (section: .text.unlikely) -> memblock_alloc_try_nid (section: .init.text)
WARNING: modpost: vmlinux: section mismatch in reference: acpi_arch_set_root_pointer+0xc (section: .text.unlikely) -> x86_init (section: .init.data)
WARNING: modpost: vmlinux: section mismatch in reference: acpi_arch_get_root_pointer+0x8 (section: .text.unlikely) -> x86_init (section: .init.data)
WARNING: modpost: vmlinux: section mismatch in reference: efi_config_table_is_usable+0x16 (section: .text.unlikely) -> xen_efi_config_table_is_usable (section: .init.text)
This problem is somewhat fragile (though using either __always_inline
or __init will deterministically solve it), but we've tripped over
this before with GCC and the solution has usually been to just use
__always_inline and move on.
For x86 this means forcing several functions to be inline with
__always_inline.
Link: https://lore.kernel.org/r/20250724055029.3623499-2-kees@kernel.org
Signed-off-by: Kees Cook <kees@kernel.org>
|
|
MIGRATE_ISOLATE is a standalone bit, so a pageblock cannot be initialized
to just MIGRATE_ISOLATE. Add init_pageblock_migratetype() to enable
initialize a pageblock with a migratetype and isolated.
Link: https://lkml.kernel.org/r/20250617021115.2331563-4-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Brendan Jackman <jackmanb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Richard Chang <richardycc@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, when restoring higher order folios, kho_restore_folio() only
calls prep_compound_page() on all the pages. That is not enough to
properly initialize the folios. The managed page count does not get
updated, the reserved flag does not get dropped, and page count does not
get initialized properly.
Restoring a higher order folio with it results in the following BUG with
CONFIG_DEBUG_VM when attempting to free the folio:
BUG: Bad page state in process test pfn:104e2b
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffffffffffffffff pfn:0x104e2b
flags: 0x2fffff80000000(node=0|zone=2|lastcpupid=0x1fffff)
raw: 002fffff80000000 0000000000000000 00000000ffffffff 0000000000000000
raw: ffffffffffffffff 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: nonzero _refcount
[...]
Call Trace:
<TASK>
dump_stack_lvl+0x4b/0x70
bad_page.cold+0x97/0xb2
__free_frozen_pages+0x616/0x850
[...]
Combine the path for 0-order and higher order folios, initialize the tail
pages with a count of zero, and call adjust_managed_page_count() to
account for all the pages instead of just missing them.
In addition, since all the KHO-preserved pages get marked with
MEMBLOCK_RSRV_NOINIT by deserialize_bitmap(), the reserved flag is not
actually set (as can also be seen from the flags of the dumped page in the
logs above). So drop the ClearPageReserved() calls.
[ptyadav@amazon.de: declare i in the loop instead of at the top]
Link: https://lkml.kernel.org/r/20250613125916.39272-1-pratyush@kernel.org
Link: https://lkml.kernel.org/r/20250605171143.76963-1-pratyush@kernel.org
Fixes: fc33e4b44b27 ("kexec: enable KHO support for memory preservation")
Signed-off-by: Pratyush Yadav <ptyadav@amazon.de>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Kexec has 2 modes: A user space driven mode and a kernel driven mode. For
the kernel driven mode, kernel code determines the physical addresses of
all target buffers that the payload gets copied into.
With KHO, we can only safely copy payloads into the "scratch area". Teach
the kexec file loader about it, so it only allocates for that area. In
addition, enlighten it with support to ask the KHO subsystem for its
respective payloads to copy into target memory. Also teach the KHO
subsystem how to fill the images for file loads.
Link: https://lkml.kernel.org/r/20250509074635.3187114-8-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce APIs allowing KHO users to preserve memory across kexec and get
access to that memory after boot of the kexeced kernel
kho_preserve_folio() - record a folio to be preserved over kexec
kho_restore_folio() - recreates the folio from the preserved memory
kho_preserve_phys() - record physically contiguous range to be
preserved over kexec.
The memory preservations are tracked by two levels of xarrays to manage
chunks of per-order 512 byte bitmaps. For instance if PAGE_SIZE = 4096,
the entire 1G order of a 1TB x86 system would fit inside a single 512 byte
bitmap. For order 0 allocations each bitmap will cover 16M of address
space. Thus, for 16G of memory at most 512K of bitmap memory will be
needed for order 0.
At serialization time all bitmaps are recorded in a linked list of pages
for the next kernel to process and the physical address of the list is
recorded in KHO FDT.
The next kernel then processes that list, reserves the memory ranges and
later, when a user requests a folio or a physical range, KHO restores
corresponding memory map entries.
Link: https://lkml.kernel.org/r/20250509074635.3187114-7-changyuanl@google.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When we have a KHO kexec, we get an FDT blob and scratch region to
populate the state of the system. Provide helper functions that allow
architecture code to easily handle memory reservations based on them and
give device drivers visibility into the KHO FDT and memory reservations so
they can recover their own state.
Include a fix from Arnd Bergmann <arnd@arndb.de>
https://lore.kernel.org/lkml/20250424093302.3894961-1-arnd@kernel.org/.
Link: https://lkml.kernel.org/r/20250509074635.3187114-6-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the infrastructure to generate Kexec HandOver metadata. Kexec
HandOver is a mechanism that allows Linux to preserve state - arbitrary
properties as well as memory locations - across kexec.
It does so using 2 concepts:
1) KHO FDT - Every KHO kexec carries a KHO specific flattened device tree
blob that describes preserved memory regions. Device drivers can
register to KHO to serialize and preserve their states before kexec.
2) Scratch Regions - CMA regions that we allocate in the first kernel.
CMA gives us the guarantee that no handover pages land in those
regions, because handover pages must be at a static physical memory
location. We use these regions as the place to load future kexec
images so that they won't collide with any handover data.
Link: https://lkml.kernel.org/r/20250509074635.3187114-5-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Pratyush Yadav <ptyadav@amazon.de>
Signed-off-by: Pratyush Yadav <ptyadav@amazon.de>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|