summaryrefslogtreecommitdiff
path: root/fs/afs/cell.c
AgeCommit message (Collapse)Author
10 daysafs: Set vllist to NULL if addr parsing failsEdward Adam Davis
syzbot reported a bug in in afs_put_vlserverlist. kAFS: bad VL server IP address BUG: unable to handle page fault for address: fffffffffffffffa ... Oops: Oops: 0002 [#1] SMP KASAN PTI ... RIP: 0010:refcount_dec_and_test include/linux/refcount.h:450 [inline] RIP: 0010:afs_put_vlserverlist+0x3a/0x220 fs/afs/vl_list.c:67 ... Call Trace: <TASK> afs_alloc_cell fs/afs/cell.c:218 [inline] afs_lookup_cell+0x12a5/0x1680 fs/afs/cell.c:264 afs_cell_init+0x17a/0x380 fs/afs/cell.c:386 afs_proc_rootcell_write+0x21f/0x290 fs/afs/proc.c:247 proc_simple_write+0x114/0x1b0 fs/proc/generic.c:825 pde_write fs/proc/inode.c:330 [inline] proc_reg_write+0x23d/0x330 fs/proc/inode.c:342 vfs_write+0x25c/0x1180 fs/read_write.c:682 ksys_write+0x12a/0x240 fs/read_write.c:736 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Because afs_parse_text_addrs() parses incorrectly, its return value -EINVAL is assigned to vllist, which results in -EINVAL being used as the vllist address when afs_put_vlserverlist() is executed. Set the vllist value to NULL when a parsing error occurs to avoid this issue. Fixes: e2c2cb8ef07a ("afs: Simplify cell record handling") Reported-by: syzbot+5c042fbab0b292c98fc6@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=5c042fbab0b292c98fc6 Tested-by: syzbot+5c042fbab0b292c98fc6@syzkaller.appspotmail.com Signed-off-by: Edward Adam Davis <eadavis@qq.com> Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/4119365.1753108011@warthog.procyon.org.uk cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-03-10afs: Simplify cell record handlingDavid Howells
Simplify afs_cell record handling to avoid very occasional races that cause module removal to hang (it waits for all cell records to be removed). There are two things that particularly contribute to the difficulty: firstly, the code tries to pass a ref on the cell to the cell's maintenance work item (which gets awkward if the work item is already queued); and, secondly, there's an overall cell manager that tries to use just one timer for the entire cell collection (to avoid having loads of timers). However, both of these are probably unnecessarily restrictive. To simplify this, the following changes are made: (1) The cell record collection manager is removed. Each cell record manages itself individually. (2) Each afs_cell is given a second work item (cell->destroyer) that is queued when its refcount reaches zero. This is not done in the context of the putting thread as it might be in an inconvenient place to sleep. (3) Each afs_cell is given its own timer. The timer is used to expire the cell record after a period of unuse if not otherwise pinned and can also be used for other maintenance tasks if necessary (of which there are currently none as DNS refresh is triggered by filesystem operations). (4) The afs_cell manager work item (cell->manager) is no longer given a ref on the cell when queued; rather, the manager must be deleted. This does away with the need to deal with the consequences of losing a race to queue cell->manager. Clean up of extra queuing is deferred to the destroyer. (5) The cell destroyer work item makes sure the cell timer is removed and that the normal cell work is cancelled before farming the actual destruction off to RCU. (6) When a network namespace is destroyed or the kafs module is unloaded, it's now a simple matter of marking the namespace as dead then just waking up all the cell work items. They will then remove and destroy themselves once all remaining activity counts and/or a ref counts are dropped. This makes sure that all server records are dropped first. (7) The cell record state set is reduced to just four states: SETTING_UP, ACTIVE, REMOVING and DEAD. The record persists in the active state even when it's not being used until the time comes to remove it rather than downgrading it to an inactive state from whence it can be restored. This means that the cell still appears in /proc and /afs when not in use until it switches to the REMOVING state - at which point it is removed. Note that the REMOVING state is included so that someone wanting to resurrect the cell record is forced to wait whilst the cell is torn down in that state. Once it's in the DEAD state, it has been removed from net->cells tree and is no longer findable and can be replaced. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250224234154.2014840-16-dhowells@redhat.com/ # v1 Link: https://lore.kernel.org/r/20250310094206.801057-12-dhowells@redhat.com/ # v4
2025-03-10afs: Fix afs_server ref accountingDavid Howells
The current way that afs_server refs are accounted and cleaned up sometimes cause rmmod to hang when it is waiting for cell records to be removed. The problem is that the cell cleanup might occasionally happen before the server cleanup and then there's nothing that causes the cell to garbage-collect the remaining servers as they become inactive. Partially fix this by: (1) Give each afs_server record its own management timer that rather than relying on the cell manager's central timer to drive each individual cell's maintenance work item to garbage collect servers. This timer is set when afs_unuse_server() reduces a server's activity count to zero and will schedule the server's destroyer work item upon firing. (2) Give each afs_server record its own destroyer work item that removes the record from the cell's database, shuts down the timer, cancels any pending work for itself, sends an RPC to the server to cancel outstanding callbacks. This change, in combination with the timer, obviates the need to try and coordinate so closely between the cell record and a bunch of other server records to try and tear everything down in a coordinated fashion. With this, the cell record is pinned until the server RCU is complete and namespace/module removal will wait until all the cell records are removed. (3) Now that incoming calls are mapped to servers (and thus cells) using data attached to an rxrpc_peer, the UUID-to-server mapping tree is moved from the namespace to the cell (cell->fs_servers). This means there can no longer be duplicates therein - and that allows the mapping tree to be simpler as there doesn't need to be a chain of same-UUID servers that are in different cells. (4) The lock protecting the UUID mapping tree is switched to an rw_semaphore on the cell rather than a seqlock on the namespace as it's now only used during mounting in contexts in which we're allowed to sleep. (5) When it comes time for a cell that is being removed to purge its set of servers, it just needs to iterate over them and wake them up. Once a server becomes inactive, its destroyer work item will observe the state of the cell and immediately remove that record. (6) When a server record is removed, it is marked AFS_SERVER_FL_EXPIRED to prevent reattempts at removal. The record will be dispatched to RCU for destruction once its refcount reaches 0. (7) The AFS_SERVER_FL_UNCREATED/CREATING flags are used to synchronise simultaneous creation attempts. If one attempt fails, it will abandon the attempt and allow another to try again. Note that the record can't just be abandoned when dead as it's bound into a server list attached to a volume and only subject to replacement if the server list obtained for the volume from the VLDB changes. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250224234154.2014840-15-dhowells@redhat.com/ # v1 Link: https://lore.kernel.org/r/20250310094206.801057-11-dhowells@redhat.com/ # v4
2025-03-10afs: Drop the net parameter from afs_unuse_cell()David Howells
Remove the redundant net parameter to afs_unuse_cell() as cell->net can be used instead. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250224234154.2014840-12-dhowells@redhat.com/ # v1 Link: https://lore.kernel.org/r/20250310094206.801057-8-dhowells@redhat.com/ # v4
2025-03-10afs: Make afs_lookup_cell() take a trace noteDavid Howells
Pass a note to be added to the afs_cell tracepoint to afs_lookup_cell() so that different callers can be distinguished. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250224234154.2014840-11-dhowells@redhat.com/ # v1 Link: https://lore.kernel.org/r/20250310094206.801057-7-dhowells@redhat.com/ # v4
2025-03-10afs: Change dynroot to create contents on demandDavid Howells
Change the AFS dynamic root to do things differently: (1) Rather than having the creation of cell records create inodes and dentries for cell mountpoints, create them on demand during lookup. This simplifies cell management and locking as we no longer have to create these objects in advance *and* on speculative lookup by the user for a cell that isn't precreated. (2) Rather than using the libfs dentry-based readdir (the dentries now no longer exist until accessed from (1)), have readdir generate the contents by reading the list of cells. The @cell symlinks get pushed in positions 2 and 3 if rootcell has been configured. (3) Make the @cell symlink dentries persist for the life of the superblock or until reclaimed, but make cell mountpoints disappear immediately if unused. It's not perfect as someone doing an "ls -l /afs" may create a whole bunch of dentries which will be garbage collected immediately. But any dentry that gets automounted will be pinned by the mount, so it shouldn't be too bad. (4) Allocate the inode numbers for the cell mountpoints from an IDR to prevent duplicates appearing in the event it cycles round. The number allocated from the IDR is doubled to provide two inode numbers - one for the normal cell name (RO) and one for the dotted cell name (RW). Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250224234154.2014840-8-dhowells@redhat.com/ # v1 Link: https://lore.kernel.org/r/20250310094206.801057-4-dhowells@redhat.com/ # v4
2025-03-10afs: Fix afs_atcell_get_link() to handle RCU pathwalkDavid Howells
The ->get_link() method may be entered under RCU pathwalk conditions (in which case, the dentry pointer is NULL). This is not taken account of by afs_atcell_get_link() and lockdep will complain when it tries to lock an rwsem. Fix this by marking net->ws_cell as __rcu and using RCU access macros on it and by making afs_atcell_get_link() just return a pointer to the name in RCU pathwalk without taking net->cells_lock or a ref on the cell as RCU will protect the name storage (the cell is already freed via call_rcu()). Fixes: 30bca65bbbae ("afs: Make /afs/@cell and /afs/.@cell symlinks") Reported-by: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20250310094206.801057-2-dhowells@redhat.com/ # v4
2025-01-10afs: Add rootcell checksDavid Howells
Add some checks for the validity of the cell name. It's may get put into a symlink, so preclude it containing any slashes or "..". Also disallow starting/ending with a dot. This makes /afs/@cell/ as a symlink less of a security risk. Also disallow multiple setting of /proc/net/afs/rootcell for any given network namespace. Once set, the value may not be changed. This makes it easier to only create /afs/@cell and /afs/.@cell if there's a rootcell. Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/20250107183454.608451-3-dhowells@redhat.com cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2025-01-10afs: Make /afs/.<cell> as well as /afs/<cell> mountpointsDavid Howells
When a cell is instantiated, automatically create an /afs/.<cell> mountpoint to match the /afs/<cell> mountpoint to match other AFS clients. Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/20250107183454.608451-2-dhowells@redhat.com cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-01-01afs: Overhaul invalidation handling to better support RO volumesDavid Howells
Overhaul the third party-induced invalidation handling, making use of the previously added volume-level event counters (cb_scrub and cb_ro_snapshot) that are now being parsed out of the VolSync record returned by the fileserver in many of its replies. This allows better handling of RO (and Backup) volumes. Since these are snapshot of a RW volume that are updated atomically simultantanously across all servers that host them, they only require a single callback promise for the entire volume. The currently upstream code assumes that RO volumes operate in the same manner as RW volumes, and that each file has its own individual callback - which means that it does a status fetch for *every* file in a RO volume, whether or not the volume got "released" (volume callback breaks can occur for other reasons too, such as the volumeserver taking ownership of a volume from a fileserver). To this end, make the following changes: (1) Change the meaning of the volume's cb_v_break counter so that it is now a hint that we need to issue a status fetch to work out the state of a volume. cb_v_break is incremented by volume break callbacks and by server initialisation callbacks. (2) Add a second counter, cb_v_check, to the afs_volume struct such that if this differs from cb_v_break, we need to do a check. When the check is complete, cb_v_check is advanced to what cb_v_break was at the start of the status fetch. (3) Move the list of mmap'd vnodes to the volume and trigger removal of PTEs that map to files on a volume break rather than on a server break. (4) When a server reinitialisation callback comes in, use the server-to-volume reverse mapping added in a preceding patch to iterate over all the volumes using that server and clear the volume callback promises for that server and the general volume promise as a whole to trigger reanalysis. (5) Replace the AFS_VNODE_CB_PROMISED flag with an AFS_NO_CB_PROMISE (TIME64_MIN) value in the cb_expires_at field, reducing the number of checks we need to make. (6) Change afs_check_validity() to quickly see if various event counters have been incremented or if the vnode or volume callback promise is due to expire/has expired without making any changes to the state. That is now left to afs_validate() as this may get more complicated in future as we may have to examine server records too. (7) Overhaul afs_validate() so that it does a single status fetch if we need to check the state of either the vnode or the volume - and do so under appropriate locking. The function does the following steps: (A) If the vnode/volume is no longer seen as valid, then we take the vnode validation lock and, if the volume promise has expired, the volume check lock also. The latter prevents redundant checks being made to find out if a new version of the volume got released. (B) If a previous RPC call found that the volsync changed unexpectedly or that a RO volume was updated, then we unmap all PTEs pointing to the file to stop mmap being used for access. (C) If the vnode is still seen to be of uncertain validity, then we perform an FS.FetchStatus RPC op to jointly update the volume status and the vnode status. This assessment is done as part of parsing the reply: If the RO volume creation timestamp advances, cb_ro_snapshot is incremented; if either the creation or update timestamps changes in an unexpected way, the cb_scrub counter is incremented If the Data Version returned doesn't match the copy we have locally, then we ask for the pagecache to be zapped. This takes care of handling RO update. (D) If cb_scrub differs between volume and vnode, the vnode's pagecache is zapped and the vnode's cb_scrub is updated unless the file is marked as having been deleted. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org
2024-01-01afs: Apply server breaks to mmap'd files in the call processorDavid Howells
Apply server breaks to mmap'd files that are being used from that server from the call processor work function rather than punting it off to a workqueue. The work item, afs_server_init_callback(), then bumps each individual inode off to its own work item introducing a potentially lengthy delay. This reduces that delay at the cost of extending the amount of time we delay replying to the CB.InitCallBack3 notification RPC from the server. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org
2024-01-01afs: Defer volume record destruction to a workqueueDavid Howells
Defer volume record destruction to a workqueue so that afs_put_volume() isn't going to run the destruction process in the callback workqueue whilst the server is holding up other clients whilst waiting for us to reply to a CB.CallBack notification RPC. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org
2024-01-01afs: Make it possible to find the volumes that are using a serverDavid Howells
Make it possible to find the afs_volume structs that are using an afs_server struct to aid in breaking volume callbacks. The way this is done is that each afs_volume already has an array of afs_server_entry records that point to the servers where that volume might be found. An afs_volume backpointer and a list node is added to each entry and each entry is then added to an RCU-traversable list on the afs_server to which it points. Signed-off-by: David Howells <dhowells@redhat.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org
2023-12-21afs: Fix overwriting of result of DNS queryDavid Howells
In afs_update_cell(), ret is the result of the DNS lookup and the errors are to be handled by a switch - however, the value gets clobbered in between by setting it to -ENOMEM in case afs_alloc_vlserver_list() fails. Fix this by moving the setting of -ENOMEM into the error handling for OOM failure. Further, only do it if we don't have an alternative error to return. Found by Linux Verification Center (linuxtesting.org) with SVACE. Based on a patch from Anastasia Belova [1]. Fixes: d5c32c89b208 ("afs: Fix cell DNS lookup") Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeffrey Altman <jaltman@auristor.com> cc: Anastasia Belova <abelova@astralinux.ru> cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: lvc-project@linuxtesting.org Link: https://lore.kernel.org/r/20231221085849.1463-1-abelova@astralinux.ru/ [1] Link: https://lore.kernel.org/r/1700862.1703168632@warthog.procyon.org.uk/ # v1 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-08-02afs: Use refcount_t rather than atomic_tDavid Howells
Use refcount_t rather than atomic_t in afs to make use of the count checking facilities provided. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org Link: https://lore.kernel.org/r/165911277768.3745403.423349776836296452.stgit@warthog.procyon.org.uk/ # v1
2022-01-07afs: Convert afs to use the new fscache APIDavid Howells
Change the afs filesystem to support the new afs driver. The following changes have been made: (1) The fscache_netfs struct is no more, and there's no need to register the filesystem as a whole. There's also no longer a cell cookie. (2) The volume cookie is now an fscache_volume cookie, allocated with fscache_acquire_volume(). This function takes three parameters: a string representing the "volume" in the index, a string naming the cache to use (or NULL) and a u64 that conveys coherency metadata for the volume. For afs, I've made it render the volume name string as: "afs,<cell>,<volume_id>" and the coherency data is currently 0. (3) The fscache_cookie_def is no more and needed information is passed directly to fscache_acquire_cookie(). The cache no longer calls back into the filesystem, but rather metadata changes are indicated at other times. fscache_acquire_cookie() is passed the same keying and coherency information as before, except that these are now stored in big endian form instead of cpu endian. This makes the cache more copyable. (4) fscache_use_cookie() and fscache_unuse_cookie() are called when a file is opened or closed to prevent a cache file from being culled and to keep resources to hand that are needed to do I/O. fscache_use_cookie() is given an indication if the cache is likely to be modified locally (e.g. the file is open for writing). fscache_unuse_cookie() is given a coherency update if we had the file open for writing and will update that. (5) fscache_invalidate() is now given uptodate auxiliary data and a file size. It can also take a flag to indicate if this was due to a DIO write. This is wrapped into afs_fscache_invalidate() now for convenience. (6) fscache_resize() now gets called from the finalisation of afs_setattr(), and afs_setattr() does use/unuse of the cookie around the call to support this. (7) fscache_note_page_release() is called from afs_release_page(). (8) Use a killable wait in nfs_vm_page_mkwrite() when waiting for PG_fscache to be cleared. Render the parts of the cookie key for an afs inode cookie as big endian. Changes ======= ver #2: - Use gfpflags_allow_blocking() rather than using flag directly. - fscache_acquire_volume() now returns errors. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Tested-by: kafs-testing@auristor.com cc: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819661382.215744.1485608824741611837.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906970002.143852.17678518584089878259.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967174665.1823006.1301789965454084220.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021568841.640689.6684240152253400380.stgit@warthog.procyon.org.uk/ # v4
2021-09-13afs: Fix mmap coherency vs 3rd-party changesDavid Howells
Fix the coherency management of mmap'd data such that 3rd-party changes become visible as soon as possible after the callback notification is delivered by the fileserver. This is done by the following means: (1) When we break a callback on a vnode specified by the CB.CallBack call from the server, we queue a work item (vnode->cb_work) to go and clobber all the PTEs mapping to that inode. This causes the CPU to trip through the ->map_pages() and ->page_mkwrite() handlers if userspace attempts to access the page(s) again. (Ideally, this would be done in the service handler for CB.CallBack, but the server is waiting for our reply before considering, and we have a list of vnodes, all of which need breaking - and the process of getting the mmap_lock and stripping the PTEs on all CPUs could be quite slow.) (2) Call afs_validate() from the ->map_pages() handler to check to see if the file has changed and to get a new callback promise from the server. Also handle the fileserver telling us that it's dropping all callbacks, possibly after it's been restarted by sending us a CB.InitCallBackState* call by the following means: (3) Maintain a per-cell list of afs files that are currently mmap'd (cell->fs_open_mmaps). (4) Add a work item to each server that is invoked if there are any open mmaps when CB.InitCallBackState happens. This work item goes through the aforementioned list and invokes the vnode->cb_work work item for each one that is currently using this server. This causes the PTEs to be cleared, causing ->map_pages() or ->page_mkwrite() to be called again, thereby calling afs_validate() again. I've chosen to simply strip the PTEs at the point of notification reception rather than invalidate all the pages as well because (a) it's faster, (b) we may get a notification for other reasons than the data being altered (in which case we don't want to clobber the pagecache) and (c) we need to ask the server to find out - and I don't want to wait for the reply before holding up userspace. This was tested using the attached test program: #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/mman.h> int main(int argc, char *argv[]) { size_t size = getpagesize(); unsigned char *p; bool mod = (argc == 3); int fd; if (argc != 2 && argc != 3) { fprintf(stderr, "Format: %s <file> [mod]\n", argv[0]); exit(2); } fd = open(argv[1], mod ? O_RDWR : O_RDONLY); if (fd < 0) { perror(argv[1]); exit(1); } p = mmap(NULL, size, mod ? PROT_READ|PROT_WRITE : PROT_READ, MAP_SHARED, fd, 0); if (p == MAP_FAILED) { perror("mmap"); exit(1); } for (;;) { if (mod) { p[0]++; msync(p, size, MS_ASYNC); fsync(fd); } printf("%02x", p[0]); fflush(stdout); sleep(1); } } It runs in two modes: in one mode, it mmaps a file, then sits in a loop reading the first byte, printing it and sleeping for a second; in the second mode it mmaps a file, then sits in a loop incrementing the first byte and flushing, then printing and sleeping. Two instances of this program can be run on different machines, one doing the reading and one doing the writing. The reader should see the changes made by the writer, but without this patch, they aren't because validity checking is being done lazily - only on entry to the filesystem. Testing the InitCallBackState change is more complicated. The server has to be taken offline, the saved callback state file removed and then the server restarted whilst the reading-mode program continues to run. The client machine then has to poke the server to trigger the InitCallBackState call. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Markus Suvanto <markus.suvanto@gmail.com> cc: linux-afs@lists.infradead.org Link: https://lore.kernel.org/r/163111668833.283156.382633263709075739.stgit@warthog.procyon.org.uk/
2020-10-27afs: Fix tracing deref-before-checkDavid Howells
The patch dca54a7bbb8c: "afs: Add tracing for cell refcount and active user count" from Oct 13, 2020, leads to the following Smatch complaint: fs/afs/cell.c:596 afs_unuse_cell() warn: variable dereferenced before check 'cell' (see line 592) Fix this by moving the retrieval of the cell debug ID to after the check of the validity of the cell pointer. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: dca54a7bbb8c ("afs: Add tracing for cell refcount and active user count") Signed-off-by: David Howells <dhowells@redhat.com> cc: Dan Carpenter <dan.carpenter@oracle.com>
2020-10-16afs: Add tracing for cell refcount and active user countDavid Howells
Add a tracepoint to log the cell refcount and active user count and pass in a reason code through various functions that manipulate these counters. Additionally, a helper function, afs_see_cell(), is provided to log interesting places that deal with a cell without actually doing any accounting directly. Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix cell removalDavid Howells
Fix cell removal by inserting a more final state than AFS_CELL_FAILED that indicates that the cell has been unpublished in case the manager is already requeued and will go through again. The new AFS_CELL_REMOVED state will just immediately leave the manager function. Going through a second time in the AFS_CELL_FAILED state will cause it to try to remove the cell again, potentially leading to the proc list being removed. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Reported-by: syzbot+b994ecf2b023f14832c1@syzkaller.appspotmail.com Reported-by: syzbot+0e0db88e1eb44a91ae8d@syzkaller.appspotmail.com Reported-by: syzbot+2d0585e5efcd43d113c2@syzkaller.appspotmail.com Reported-by: syzbot+1ecc2f9d3387f1d79d42@syzkaller.appspotmail.com Reported-by: syzbot+18d51774588492bf3f69@syzkaller.appspotmail.com Reported-by: syzbot+a5e4946b04d6ca8fa5f3@syzkaller.appspotmail.com Suggested-by: Hillf Danton <hdanton@sina.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Hillf Danton <hdanton@sina.com>
2020-10-16afs: Fix cell purging with aliasesDavid Howells
When the afs module is removed, one of the things that has to be done is to purge the cell database. afs_cell_purge() cancels the management timer and then starts the cell manager work item to do the purging. This does a single run through and then assumes that all cells are now purged - but this is no longer the case. With the introduction of alias detection, a later cell in the database can now be holding an active count on an earlier cell (cell->alias_of). The purge scan passes by the earlier cell first, but this can't be got rid of until it has discarded the alias. Ordinarily, afs_unuse_cell() would handle this by setting the management timer to trigger another pass - but afs_set_cell_timer() doesn't do anything if the namespace is being removed (net->live == false). rmmod then hangs in the wait on cells_outstanding in afs_cell_purge(). Fix this by making afs_set_cell_timer() directly queue the cell manager if net->live is false. This causes additional management passes. Queueing the cell manager increments cells_outstanding to make sure the wait won't complete until all cells are destroyed. Fixes: 8a070a964877 ("afs: Detect cell aliases 1 - Cells with root volumes") Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix cell refcounting by splitting the usage counterDavid Howells
Management of the lifetime of afs_cell struct has some problems due to the usage counter being used to determine whether objects of that type are in use in addition to whether anyone might be interested in the structure. This is made trickier by cell objects being cached for a period of time in case they're quickly reused as they hold the result of a setup process that may be slow (DNS lookups, AFS RPC ops). Problems include the cached root volume from alias resolution pinning its parent cell record, rmmod occasionally hanging and occasionally producing assertion failures. Fix this by splitting the count of active users from the struct reference count. Things then work as follows: (1) The cell cache keeps +1 on the cell's activity count and this has to be dropped before the cell can be removed. afs_manage_cell() tries to exchange the 1 to a 0 with the cells_lock write-locked, and if successful, the record is removed from the net->cells. (2) One struct ref is 'owned' by the activity count. That is put when the active count is reduced to 0 (final_destruction label). (3) A ref can be held on a cell whilst it is queued for management on a work queue without confusing the active count. afs_queue_cell() is added to wrap this. (4) The queue's ref is dropped at the end of the management. This is split out into a separate function, afs_manage_cell_work(). (5) The root volume record is put after a cell is removed (at the final_destruction label) rather then in the RCU destruction routine. (6) Volumes hold struct refs, but aren't active users. (7) Both counts are displayed in /proc/net/afs/cells. There are some management function changes: (*) afs_put_cell() now just decrements the refcount and triggers the RCU destruction if it becomes 0. It no longer sets a timer to have the manager do this. (*) afs_use_cell() and afs_unuse_cell() are added to increase and decrease the active count. afs_unuse_cell() sets the management timer. (*) afs_queue_cell() is added to queue a cell with approprate refs. There are also some other fixes: (*) Don't let /proc/net/afs/cells access a cell's vllist if it's NULL. (*) Make sure that candidate cells in lookups are properly destroyed rather than being simply kfree'd. This ensures the bits it points to are destroyed also. (*) afs_dec_cells_outstanding() is now called in cell destruction rather than at "final_destruction". This ensures that cell->net is still valid to the end of the destructor. (*) As a consequence of the previous two changes, move the increment of net->cells_outstanding that was at the point of insertion into the tree to the allocation routine to correctly balance things. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix rapid cell addition/removal by not using RCU on cells treeDavid Howells
There are a number of problems that are being seen by the rapidly mounting and unmounting an afs dynamic root with an explicit cell and volume specified (which should probably be rejected, but that's a separate issue): What the tests are doing is to look up/create a cell record for the name given and then tear it down again without actually using it to try to talk to a server. This is repeated endlessly, very fast, and the new cell collides with the old one if it's not quick enough to reuse it. It appears (as suggested by Hillf Danton) that the search through the RB tree under a read_seqbegin_or_lock() under RCU conditions isn't safe and that it's not blocking the write_seqlock(), despite taking two passes at it. He suggested that the code should take a ref on the cell it's attempting to look at - but this shouldn't be necessary until we've compared the cell names. It's possible that I'm missing a barrier somewhere. However, using an RCU search for this is overkill, really - we only need to access the cell name in a few places, and they're places where we're may end up sleeping anyway. Fix this by switching to an R/W semaphore instead. Additionally, draw the down_read() call inside the function (renamed to afs_find_cell()) since all the callers were taking the RCU read lock (or should've been[*]). [*] afs_probe_cell_name() should have been, but that doesn't appear to be involved in the bug reports. The symptoms of this look like: general protection fault, probably for non-canonical address 0xf27d208691691fdb: 0000 [#1] PREEMPT SMP KASAN KASAN: maybe wild-memory-access in range [0x93e924348b48fed8-0x93e924348b48fedf] ... RIP: 0010:strncasecmp lib/string.c:52 [inline] RIP: 0010:strncasecmp+0x5f/0x240 lib/string.c:43 afs_lookup_cell_rcu+0x313/0x720 fs/afs/cell.c:88 afs_lookup_cell+0x2ee/0x1440 fs/afs/cell.c:249 afs_parse_source fs/afs/super.c:290 [inline] ... Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Reported-by: syzbot+459a5dce0b4cb70fd076@syzkaller.appspotmail.com Signed-off-by: David Howells <dhowells@redhat.com> cc: Hillf Danton <hdanton@sina.com> cc: syzkaller-bugs@googlegroups.com
2020-06-27afs: Fix storage of cell namesDavid Howells
The cell name stored in the afs_cell struct is a 64-char + NUL buffer - when it needs to be able to handle up to AFS_MAXCELLNAME (256 chars) + NUL. Fix this by changing the array to a pointer and allocating the string. Found using Coverity. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Reported-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04afs: Reorganise volume and server trees to be rooted on the cellDavid Howells
Reorganise afs_volume objects such that they're in a tree keyed on volume ID, rooted at on an afs_cell object rather than being in multiple trees, each of which is rooted on an afs_server object. afs_server structs become per-cell and acquire a pointer to the cell. The process of breaking a callback then starts with finding the server by its network address, following that to the cell and then looking up each volume ID in the volume tree. This is simpler than the afs_vol_interest/afs_cb_interest N:M mapping web and allows those structs and the code for maintaining them to be simplified or removed. It does make a couple of things a bit more tricky, though: (1) Operations now start with a volume, not a server, so there can be more than one answer as to whether or not the server we'll end up using supports the FS.InlineBulkStatus RPC. (2) CB RPC operations that specify the server UUID. There's still a tree of servers by UUID on the afs_net struct, but the UUIDs in it aren't guaranteed unique. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Add a tracepoint to track the lifetime of the afs_volume structDavid Howells
Add a tracepoint to track the lifetime of the afs_volume struct. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Detect cell aliases 1 - Cells with root volumesDavid Howells
Put in the first phase of cell alias detection. This part handles alias detection for cells that have root.cell volumes (which is expected to be likely). When a cell becomes newly active, it is probed for its root.cell volume, and if it has one, this volume is compared against other root.cell volumes to find out if the list of fileserver UUIDs have any in common - and if that's the case, do the address lists of those fileservers have any addresses in common. If they do, the new cell is adjudged to be an alias of the old cell and the old cell is used instead. Comparing is aided by the server list in struct afs_server_list being sorted in UUID order and the addresses in the fileserver address lists being sorted in address order. The cell then retains the afs_volume object for the root.cell volume, even if it's not mounted for future alias checking. This necessary because: (1) Whilst fileservers have UUIDs that are meant to be globally unique, in practice they are not because cells get cloned without changing the UUIDs - so afs_server records need to be per cell. (2) Sometimes the DNS is used to make cell aliases - but if we don't know they're the same, we may end up with multiple superblocks and multiple afs_server records for the same thing, impairing our ability to deliver callback notifications of third party changes (3) The fileserver RPC API doesn't contain the cell name, so it can't tell us which cell it's notifying and can't see that a change made to to one cell should notify the same client that's also accessed as the other cell. Reported-by: Jeffrey Altman <jaltman@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2020-01-26afs: Fix characters allowed into cell namesDavid Howells
The afs filesystem needs to prohibit certain characters from cell names, such as '/', as these are used to form filenames in procfs, leading to the following warning being generated: WARNING: CPU: 0 PID: 3489 at fs/proc/generic.c:178 Fix afs_alloc_cell() to disallow nonprintable characters, '/', '@' and names that begin with a dot. Remove the check for "@cell" as that is then redundant. This can be tested by running: echo add foo/.bar 1.2.3.4 >/proc/fs/afs/cells Note that we will also need to deal with: - Names ending in ".invalid" shouldn't be passed to the DNS. - Names that contain non-valid domainname chars shouldn't be passed to the DNS. - DNS replies that say "your-dns-needs-immediate-attention.<gTLD>" and replies containing A records that say 127.0.53.53 should be considered invalid. [https://www.icann.org/en/system/files/files/name-collision-mitigation-01aug14-en.pdf] but these need to be dealt with by the kafs-client DNS program rather than the kernel. Reported-by: syzbot+b904ba7c947a37b4b291@syzkaller.appspotmail.com Cc: stable@kernel.org Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-22afs: Fix leak in afs_lookup_cell_rcu()David Howells
Fix a leak on the cell refcount in afs_lookup_cell_rcu() due to non-clearance of the default error in the case a NULL cell name is passed and the workstation default cell is used. Also put a bit at the end to make sure we don't leak a cell ref if we're going to be returning an error. This leak results in an assertion like the following when the kafs module is unloaded: AFS: Assertion failed 2 == 1 is false 0x2 == 0x1 is false ------------[ cut here ]------------ kernel BUG at fs/afs/cell.c:770! ... RIP: 0010:afs_manage_cells+0x220/0x42f [kafs] ... process_one_work+0x4c2/0x82c ? pool_mayday_timeout+0x1e1/0x1e1 ? do_raw_spin_lock+0x134/0x175 worker_thread+0x336/0x4a6 ? rescuer_thread+0x4af/0x4af kthread+0x1de/0x1ee ? kthread_park+0xd4/0xd4 ret_from_fork+0x24/0x30 Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-16afs: Fix cell DNS lookupDavid Howells
Currently, once configured, AFS cells are looked up in the DNS at regular intervals - which is a waste of resources if those cells aren't being used. It also leads to a problem where cells preloaded, but not configured, before the network is brought up end up effectively statically configured with no VL servers and are unable to get any. Fix this by not doing the DNS lookup until the first time a cell is touched. It is waited for if we don't have any cached records yet, otherwise the DNS lookup to maintain the record is done in the background. This has the downside that the first time you touch a cell, you now have to wait for the upcall to do the required DNS lookups rather than them already being cached. Further, the record is not replaced if the old record has at least one server in it and the new record doesn't have any. Fixes: 0a5143f2f89c ("afs: Implement VL server rotation") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-15afs: Fix afs_cell records to always have a VL server list recordDavid Howells
Fix it such that afs_cell records always have a VL server list record attached, even if it's a dummy one, so that various checks can be removed. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-15afs: Fix missing lock when replacing VL server listDavid Howells
When afs_update_cell() replaces the cell->vl_servers list, it uses RCU protocol so that proc is protected, but doesn't take ->vl_servers_lock to protect afs_start_vl_iteration() (which does actually take a shared lock). Fix this by making afs_update_cell() take an exclusive lock when replacing ->vl_servers. Fixes: 0a5143f2f89c ("afs: Implement VL server rotation") Signed-off-by: David Howells <dhowells@redhat.com>
2019-02-25afs: Fix manually set volume location server listDavid Howells
When a cell with a volume location server list is added manually by echoing the details into /proc/net/afs/cells, a record is added but the flag saying it has been looked up isn't set. This causes the VL server rotation code to wait forever, with the top of /proc/pid/stack looking like: afs_select_vlserver+0x3a6/0x6f3 afs_vl_lookup_vldb+0x4b/0x92 afs_create_volume+0x25/0x1b9 ... with the thread stuck in afs_start_vl_iteration() waiting for AFS_CELL_FL_NO_LOOKUP_YET to be cleared. Fix this by clearing AFS_CELL_FL_NO_LOOKUP_YET when setting up a record if that record's details were supplied manually. Fixes: 0a5143f2f89c ("afs: Implement VL server rotation") Reported-by: Dave Botsch <dwb7@cornell.edu> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-24afs: Fix TTL on VL server and address listsDavid Howells
Currently the TTL on VL server and address lists isn't set in all circumstances and may be set to poor choices in others, since the TTL is derived from the SRV/AFSDB DNS record if and when available. Fix the TTL by limiting the range to a minimum and maximum from the current time. At some point these can be made into sysctl knobs. Further, use the TTL we obtained from the upcall to set the expiry on negative results too; in future a mechanism can be added to force reloading of such data. Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-24afs: Implement VL server rotationDavid Howells
Track VL servers as independent entities rather than lumping all their addresses together into one set and implement server-level rotation by: (1) Add the concept of a VL server list, where each server has its own separate address list. This code is similar to the FS server list. (2) Use the DNS resolver to retrieve a set of servers and their associated addresses, ports, preference and weight ratings. (3) In the case of a legacy DNS resolver or an address list given directly through /proc/net/afs/cells, create a list containing just a dummy server record and attach all the addresses to that. (4) Implement a simple rotation policy, for the moment ignoring the priorities and weights assigned to the servers. (5) Show the address list through /proc/net/afs/<cell>/vlservers. This also displays the source and status of the data as indicated by the upcall. Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-12afs: Fix cell proc listDavid Howells
Access to the list of cells by /proc/net/afs/cells has a couple of problems: (1) It should be checking against SEQ_START_TOKEN for the keying the header line. (2) It's only holding the RCU read lock, so it can't just walk over the list without following the proper RCU methods. Fix these by using an hlist instead of an ordinary list and using the appropriate accessor functions to follow it with RCU. Since the code that adds a cell to the list must also necessarily change, sort the list on insertion whilst we're at it. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-15afs: Display manually added cells in dynamic root mountDavid Howells
Alter the dynroot mount so that cells created by manipulation of /proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root cell as a module parameter will cause directories for those cells to be created in the dynamic root superblock for the network namespace[*]. To this end: (1) Only one dynamic root superblock is now created per network namespace and this is shared between all attempts to mount it. This makes it easier to find the superblock to modify. (2) When a dynamic root superblock is created, the list of cells is walked and directories created for each cell already defined. (3) When a new cell is added, if a dynamic root superblock exists, a directory is created for it. (4) When a cell is destroyed, the directory is removed. (5) These directories are created by calling lookup_one_len() on the root dir which automatically creates them if they don't exist. [*] Inasmuch as network namespaces are currently supported here. Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-23afs: Implement network namespacingDavid Howells
Implement network namespacing within AFS, but don't yet let mounts occur outside the init namespace. An additional patch will be required propagate the network namespace across automounts. Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-23afs: Mark afs_net::ws_cell as __rcu and set using rcu functionsDavid Howells
The afs_net::ws_cell member is sometimes used under RCU conditions from within an seq-readlock. It isn't, however, marked __rcu and it isn't set using the proper RCU barrier-imposing functions. Fix this by annotating it with __rcu and using appropriate barriers to make sure accesses are correctly ordered. Without this, the code can produce the following warning: >> fs/afs/proc.c:151:24: sparse: incompatible types in comparison expression (different address spaces) Fixes: f044c8847bb6 ("afs: Lay the groundwork for supporting network namespaces") Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-09afs: Implement @cell substitution handlingDavid Howells
Implement @cell substitution handling such that if @cell is seen as a name in a dynamic root mount, then the name of the root cell for that network namespace will be substituted for @cell during lookup. The substitution of @cell for the current net namespace is set by writing the cell name to /proc/fs/afs/rootcell. The value can be obtained by reading the file. For example: # mount -t afs none /kafs -o dyn # echo grand.central.org >/proc/fs/afs/rootcell # ls /kafs/@cell archive/ cvs/ doc/ local/ project/ service/ software/ user/ www/ # cat /proc/fs/afs/rootcell grand.central.org Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-09afs: Don't over-increment the cell usage count when pinning itDavid Howells
AFS cells that are added or set as the workstation cell through /proc are pinned against removal by setting the AFS_CELL_FL_NO_GC flag on them and taking a ref. The ref should be only taken if the flag wasn't already set. Fix this by making it conditional. Without this an assertion failure will occur during module removal indicating that the refcount is too elevated. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-09afs: Fix checker warningsDavid Howells
Fix warnings raised by checker, including: (*) Warnings raised by unequal comparison for the purposes of sorting, where the endianness doesn't matter: fs/afs/addr_list.c:246:21: warning: restricted __be16 degrades to integer fs/afs/addr_list.c:246:30: warning: restricted __be16 degrades to integer fs/afs/addr_list.c:248:21: warning: restricted __be32 degrades to integer fs/afs/addr_list.c:248:49: warning: restricted __be32 degrades to integer fs/afs/addr_list.c:283:21: warning: restricted __be16 degrades to integer fs/afs/addr_list.c:283:30: warning: restricted __be16 degrades to integer (*) afs_set_cb_interest() is not actually used and can be removed. (*) afs_cell_gc_delay() should be provided with a sysctl. (*) afs_cell_destroy() needs to use rcu_access_pointer() to read cell->vl_addrs. (*) afs_init_fs_cursor() should be static. (*) struct afs_vnode::permit_cache needs to be marked __rcu. (*) afs_server_rcu() needs to use rcu_access_pointer(). (*) afs_destroy_server() should use rcu_access_pointer() on server->addresses as the server object is no longer accessible. (*) afs_find_server() casts __be16/__be32 values to int in order to directly compare them for the purpose of finding a match in a list, but is should also annotate the cast with __force to avoid checker warnings. (*) afs_check_permit() accesses vnode->permit_cache outside of the RCU readlock, though it doesn't then access the value; the extraneous access is deleted. False positives: (*) Conditional locking around the code in xdr_decode_AFSFetchStatus. This can be dealt with in a separate patch. fs/afs/fsclient.c:148:9: warning: context imbalance in 'xdr_decode_AFSFetchStatus' - different lock contexts for basic block (*) Incorrect handling of seq-retry lock context balance: fs/afs/inode.c:455:38: warning: context imbalance in 'afs_getattr' - different lock contexts for basic block fs/afs/server.c:52:17: warning: context imbalance in 'afs_find_server' - different lock contexts for basic block fs/afs/server.c:128:17: warning: context imbalance in 'afs_find_server_by_uuid' - different lock contexts for basic block Errors: (*) afs_lookup_cell_rcu() needs to break out of the seq-retry loop, not go round again if it successfully found the workstation cell. (*) Fix UUID decode in afs_deliver_cb_probe_uuid(). (*) afs_cache_permit() has a missing rcu_read_unlock() before one of the jumps to the someone_else_changed_it label. Move the unlock to after the label. (*) afs_vl_get_addrs_u() is using ntohl() rather than htonl() when encoding to XDR. (*) afs_deliver_yfsvl_get_endpoints() is using htonl() rather than ntohl() when decoding from XDR. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06fscache: Pass object size in rather than calling back for itDavid Howells
Pass the object size in to fscache_acquire_cookie() and fscache_write_page() rather than the netfs providing a callback by which it can be received. This makes it easier to update the size of the object when a new page is written that extends the object. The current object size is also passed by fscache to the check_aux function, obviating the need to store it in the aux data. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
2018-04-04fscache: Attach the index key and aux data to the cookieDavid Howells
Attach copies of the index key and auxiliary data to the fscache cookie so that: (1) The callbacks to the netfs for this stuff can be eliminated. This can simplify things in the cache as the information is still available, even after the cache has relinquished the cookie. (2) Simplifies the locking requirements of accessing the information as we don't have to worry about the netfs object going away on us. (3) The cache can do lazy updating of the coherency information on disk. As long as the cache is flushed before reboot/poweroff, there's no need to update the coherency info on disk every time it changes. (4) Cookies can be hashed or put in a tree as the index key is easily available. This allows: (a) Checks for duplicate cookies can be made at the top fscache layer rather than down in the bowels of the cache backend. (b) Caching can be added to a netfs object that has a cookie if the cache is brought online after the netfs object is allocated. A certain amount of space is made in the cookie for inline copies of the data, but if it won't fit there, extra memory will be allocated for it. The downside of this is that live cache operation requires more memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
2018-03-20sched/wait, fs/afs: Convert wait_on_atomic_t() usage to the new ↵Peter Zijlstra
wait_var_event() API The old wait_on_atomic_t() is going to get removed, use the more flexible wait_var_event() API instead. No change in functionality. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-24afs: cell: Remove unnecessary code in afs_lookup_cellGustavo A. R. Silva
Due to recent changes this piece of code is no longer needed. Addresses-Coverity-ID: 1462033 Link: https://lkml.kernel.org/r/4923.1510957307@warthog.procyon.org.uk Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul volume and server record caching and fileserver rotationDavid Howells
The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Add an address list conceptDavid Howells
Add an RCU replaceable address list structure to hold a list of server addresses. The list also holds the To this end: (1) A cell's VL server address list can be loaded directly via insmod or echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB or SRV records. (2) Anyone wanting to use a cell's VL server address must wait until the cell record comes online and has tried to obtain some addresses. (3) An FS server's address list, for the moment, has a single entry that is the key to the server list. This will change in the future when a server is instead keyed on its UUID and the VL.GetAddrsU operation is used. (4) An 'address cursor' concept is introduced to handle iteration through the address list. This is passed to the afs_make_call() as, in the future, stuff (such as abort code) that doesn't outlast the call will be returned in it. In the future, we might want to annotate the list with information about how each address fares. We might then want to propagate such annotations over address list replacement. Whilst we're at it, we allow IPv6 addresses to be specified in colon-delimited lists by enclosing them in square brackets. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul cell database managementDavid Howells
Overhaul the way that the in-kernel AFS client keeps track of cells in the following manner: (1) Cells are now held in an rbtree to make walking them quicker and RCU managed (though this is probably overkill). (2) Cells now have a manager work item that: (A) Looks after fetching and refreshing the VL server list. (B) Manages cell record lifetime, including initialising and destruction. (B) Manages cell record caching whereby threads are kept around for a certain time after last use and then destroyed. (C) Manages the FS-Cache index cookie for a cell. It is not permitted for a cookie to be in use twice, so we have to be careful to not allow a new cell record to exist at the same time as an old record of the same name. (3) Each AFS network namespace is given a manager work item that manages the cells within it, maintaining a single timer to prod cells into updating their DNS records. This uses the reduce_timer() facility to make the timer expire at the soonest timed event that needs happening. (4) When a module is being unloaded, cells and cell managers are now counted out using dec_after_work() to make sure the module text is pinned until after the data structures have been cleaned up. (5) Each cell's VL server list is now protected by a seqlock rather than a semaphore. Signed-off-by: David Howells <dhowells@redhat.com>