Age | Commit message (Collapse) | Author |
|
Provide and pass the xflag parameter from pkey ioctls through
the pkey handler and further down to the implementations
(CCA, EP11, PCKMO and UV). So all the code is now prepared
and ready to support xflags ("execution flag").
The pkey layer supports the xflag PKEY_XFLAG_NOMEMALLOC: If this
flag is given in the xflags parameter, the pkey implementation is
not allowed to allocate memory but instead should fall back to use
preallocated memory or simple fail with -ENOMEM. This flag is for
protected key derive within a cipher or similar which must not
allocate memory which would cause io operations - see also the
CRYPTO_ALG_ALLOCATES_MEMORY flag in crypto.h.
Within the pkey handlers this flag is then to be translated to
appropriate zcrypt xflags before any zcrypt related functions
are called. So the PKEY_XFLAG_NOMEMALLOC translates to
ZCRYPT_XFLAG_NOMEMALLOC - If this flag is set, no memory
allocations which may trigger any IO operations are done.
The pkey in-kernel pkey API still does not provide this xflag
param. That's intended to come with a separate patch which
enables this functionality.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Link: https://lore.kernel.org/r/20250424133619.16495-25-freude@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
The pkey uv functions may be called in a situation where memory
allocations which trigger IO operations are not allowed. An example:
decryption of the swap partition with protected key (PAES).
The pkey uv code takes care of this by holding one preallocated
struct uv_secret_list to be used with the new UV function
uv_find_secret(). The older function uv_get_secret_metadata()
used before always allocates/frees an ephemeral memory buffer.
The preallocated struct is concurrency protected by a mutex.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Link: https://lore.kernel.org/r/20250424133619.16495-23-freude@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
This new pkey handler module supports the conversion of
Ultravisor retrievable secrets to protected keys.
The new module pkey-uv.ko is able to retrieve and verify
protected keys backed up by the Ultravisor layer which is
only available within protected execution environment.
The module is only automatically loaded if there is the
UV CPU feature flagged as available. Additionally on module
init there is a check for protected execution environment
and for UV supporting retrievable secrets. Also if the kernel
is not running as a protected execution guest, the module
unloads itself with errno ENODEV.
The pkey UV module currently supports these Ultravisor
secrets and is able to retrieve a protected key for these
UV secret types:
- UV_SECRET_AES_128
- UV_SECRET_AES_192
- UV_SECRET_AES_256
- UV_SECRET_AES_XTS_128
- UV_SECRET_AES_XTS_256
- UV_SECRET_HMAC_SHA_256
- UV_SECRET_HMAC_SHA_512
- UV_SECRET_ECDSA_P256
- UV_SECRET_ECDSA_P384
- UV_SECRET_ECDSA_P521
- UV_SECRET_ECDSA_ED25519
- UV_SECRET_ECDSA_ED448
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|