Age | Commit message (Collapse) | Author |
|
Provide and pass the xflag parameter from pkey ioctls through
the pkey handler and further down to the implementations
(CCA, EP11, PCKMO and UV). So all the code is now prepared
and ready to support xflags ("execution flag").
The pkey layer supports the xflag PKEY_XFLAG_NOMEMALLOC: If this
flag is given in the xflags parameter, the pkey implementation is
not allowed to allocate memory but instead should fall back to use
preallocated memory or simple fail with -ENOMEM. This flag is for
protected key derive within a cipher or similar which must not
allocate memory which would cause io operations - see also the
CRYPTO_ALG_ALLOCATES_MEMORY flag in crypto.h.
Within the pkey handlers this flag is then to be translated to
appropriate zcrypt xflags before any zcrypt related functions
are called. So the PKEY_XFLAG_NOMEMALLOC translates to
ZCRYPT_XFLAG_NOMEMALLOC - If this flag is set, no memory
allocations which may trigger any IO operations are done.
The pkey in-kernel pkey API still does not provide this xflag
param. That's intended to come with a separate patch which
enables this functionality.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Link: https://lore.kernel.org/r/20250424133619.16495-25-freude@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
The calculation of the length of a protected key based on
the protected key type is scattered over certain places within
the pkey code. By introducing a new inline function
pkey_keytype_to_size() this can be centralized and the calling
code can be reduced and simplified.
With this also comes a slight rework of the generation of
protected keys. Now the pkey_pckmo module is able to generate
all but ECC keys.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Add support for deriving protected keys from clear key token for
AES xts and HMAC keys via PCKMO instruction. Add support for
protected key generation and unwrap of protected key tokens for
these key types. Furthermore 4 new sysfs attributes are introduced:
- /sys/devices/virtual/misc/pkey/protkey/protkey_aes_xts_128
- /sys/devices/virtual/misc/pkey/protkey/protkey_aes_xts_256
- /sys/devices/virtual/misc/pkey/protkey/protkey_hmac_512
- /sys/devices/virtual/misc/pkey/protkey/protkey_hmac_1024
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Ingo Franzki <ifranzki@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
There is a use case during early boot with an secure key encrypted
root file system where the paes cipher may try to derive a protected
key from secure key while the AP bus is still in the process of
scanning the bus and building up the zcrypt device drivers. As the
detection of CEX cards also triggers the modprobe of the pkey handler
modules, these modules may come into existence too late.
Yet another use case happening during early boot is for use of an
protected key encrypted swap file(system). There is an ephemeral
protected key read via sysfs to set up the swap file. But this only
works when the pkey_pckmo module is already in - which may happen at a
later time as the load is triggered via CPU feature.
This patch introduces a new function pkey_handler_request_modules()
and invokes it which unconditional tries to load in the pkey handler
modules. This function is called for the in-kernel API to derive a
protected key from whatever and in the sysfs API when the first
attempt to simple invoke the handler function failed.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
For some keys there exists an alternative but usually slower
path to convert the key material into a protected key.
This patch introduces a new handler function
slowpath_key_to_protkey()
which provides this alternate path for the CCA and EP11
handler code. With that even the knowledge about how
and when this can be used within the pkey API code can
be removed. So now the pkey API just tries the primary
way and if that fails simple tries the alternative way.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Introduce pkey base kernel code with a simple pkey handler registry.
Regroup the pkey code into these kernel modules:
- pkey is the pkey api supporting the ioctls, sysfs and in-kernel api.
Also the pkey base code which offers the handler registry and
handler wrapping invocation functions is integrated there. This
module is automatically loaded in via CPU feature if the MSA feature
is available.
- pkey-cca is the CCA related handler code kernel module a offering
CCA specific implementation for pkey. This module is loaded in
via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available.
- pkey-ep11 is the EP11 related handler code kernel module offering an
EP11 specific implementation for pkey. This module is loaded in via
MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available.
- pkey-pckmo is the PCKMO related handler code kernel module. This
module is loaded in via CPU feature if the MSA feature is available,
but on init a check for availability of the pckmo instruction is
performed.
The handler modules register via a pkey_handler struct at the pkey
base code and the pkey customer (that is currently the pkey api code
fetches a handler via pkey handler registry functions and calls the
unified handler functions via the pkey base handler functions.
As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get
independent from each other and it becomes possible to write new
handlers which offer another kind of implementation without implicit
dependencies to other handler implementations and/or kernel device
drivers.
For each of these 4 kernel modules there is an individual Kconfig
entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY
CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and
CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler
modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api
of the zcrypt device driver.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
As a preparation step for introducing a common function API
between the pkey API module and the handlers (that is the
cca, ep11 and pckmo code) this patch unifies the functions
signatures exposed by the handlers and reworks all the
invocation code of these functions.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
This is a huge rework of all the pkey kernel module code.
The goal is to split the code into individual parts with
a dedicated calling interface:
- move all the sysfs related code into pkey_sysfs.c
- all the CCA related code goes to pkey_cca.c
- the EP11 stuff has been moved to pkey_ep11.c
- the PCKMO related code is now in pkey_pckmo.c
The CCA, EP11 and PCKMO code may be seen as "handlers" with
a similar calling interface. The new header file pkey_base.h
declares this calling interface. The remaining code in
pkey_api.c handles the ioctl, the pkey module things and the
"handler" independent code on top of the calling interface
invoking the handlers.
This regrouping of the code will be the base for a real
pkey kernel module split into a pkey base module which acts
as a dispatcher and handler modules providing their service.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|