Age | Commit message (Collapse) | Author |
|
Explicitly include <linux/export.h> in files which contain an
EXPORT_SYMBOL().
See commit a934a57a42f6 ("scripts/misc-check: check missing #include
<linux/export.h> when W=1") for more details.
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
Provide and pass the xflag parameter from pkey ioctls through
the pkey handler and further down to the implementations
(CCA, EP11, PCKMO and UV). So all the code is now prepared
and ready to support xflags ("execution flag").
The pkey layer supports the xflag PKEY_XFLAG_NOMEMALLOC: If this
flag is given in the xflags parameter, the pkey implementation is
not allowed to allocate memory but instead should fall back to use
preallocated memory or simple fail with -ENOMEM. This flag is for
protected key derive within a cipher or similar which must not
allocate memory which would cause io operations - see also the
CRYPTO_ALG_ALLOCATES_MEMORY flag in crypto.h.
Within the pkey handlers this flag is then to be translated to
appropriate zcrypt xflags before any zcrypt related functions
are called. So the PKEY_XFLAG_NOMEMALLOC translates to
ZCRYPT_XFLAG_NOMEMALLOC - If this flag is set, no memory
allocations which may trigger any IO operations are done.
The pkey in-kernel pkey API still does not provide this xflag
param. That's intended to come with a separate patch which
enables this functionality.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Link: https://lore.kernel.org/r/20250424133619.16495-25-freude@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
This new pkey handler module supports the conversion of
Ultravisor retrievable secrets to protected keys.
The new module pkey-uv.ko is able to retrieve and verify
protected keys backed up by the Ultravisor layer which is
only available within protected execution environment.
The module is only automatically loaded if there is the
UV CPU feature flagged as available. Additionally on module
init there is a check for protected execution environment
and for UV supporting retrievable secrets. Also if the kernel
is not running as a protected execution guest, the module
unloads itself with errno ENODEV.
The pkey UV module currently supports these Ultravisor
secrets and is able to retrieve a protected key for these
UV secret types:
- UV_SECRET_AES_128
- UV_SECRET_AES_192
- UV_SECRET_AES_256
- UV_SECRET_AES_XTS_128
- UV_SECRET_AES_XTS_256
- UV_SECRET_HMAC_SHA_256
- UV_SECRET_HMAC_SHA_512
- UV_SECRET_ECDSA_P256
- UV_SECRET_ECDSA_P384
- UV_SECRET_ECDSA_P521
- UV_SECRET_ECDSA_ED25519
- UV_SECRET_ECDSA_ED448
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
There is a static array of pkey handler kernel module names
used in case the pkey_handler_request_modules() is invoked.
This static array is walked through and if the module is not
already loaded a module_request() is performed.
This patch reworks the code to instead of unconditionally
building up a list of module names into the array, only the
pkey handler modules available based on the current kernel
config options are inserted.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
There is a use case during early boot with an secure key encrypted
root file system where the paes cipher may try to derive a protected
key from secure key while the AP bus is still in the process of
scanning the bus and building up the zcrypt device drivers. As the
detection of CEX cards also triggers the modprobe of the pkey handler
modules, these modules may come into existence too late.
Yet another use case happening during early boot is for use of an
protected key encrypted swap file(system). There is an ephemeral
protected key read via sysfs to set up the swap file. But this only
works when the pkey_pckmo module is already in - which may happen at a
later time as the load is triggered via CPU feature.
This patch introduces a new function pkey_handler_request_modules()
and invokes it which unconditional tries to load in the pkey handler
modules. This function is called for the in-kernel API to derive a
protected key from whatever and in the sysfs API when the first
attempt to simple invoke the handler function failed.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
For some keys there exists an alternative but usually slower
path to convert the key material into a protected key.
This patch introduces a new handler function
slowpath_key_to_protkey()
which provides this alternate path for the CCA and EP11
handler code. With that even the knowledge about how
and when this can be used within the pkey API code can
be removed. So now the pkey API just tries the primary
way and if that fails simple tries the alternative way.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Introduce pkey base kernel code with a simple pkey handler registry.
Regroup the pkey code into these kernel modules:
- pkey is the pkey api supporting the ioctls, sysfs and in-kernel api.
Also the pkey base code which offers the handler registry and
handler wrapping invocation functions is integrated there. This
module is automatically loaded in via CPU feature if the MSA feature
is available.
- pkey-cca is the CCA related handler code kernel module a offering
CCA specific implementation for pkey. This module is loaded in
via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available.
- pkey-ep11 is the EP11 related handler code kernel module offering an
EP11 specific implementation for pkey. This module is loaded in via
MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available.
- pkey-pckmo is the PCKMO related handler code kernel module. This
module is loaded in via CPU feature if the MSA feature is available,
but on init a check for availability of the pckmo instruction is
performed.
The handler modules register via a pkey_handler struct at the pkey
base code and the pkey customer (that is currently the pkey api code
fetches a handler via pkey handler registry functions and calls the
unified handler functions via the pkey base handler functions.
As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get
independent from each other and it becomes possible to write new
handlers which offer another kind of implementation without implicit
dependencies to other handler implementations and/or kernel device
drivers.
For each of these 4 kernel modules there is an individual Kconfig
entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY
CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and
CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler
modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api
of the zcrypt device driver.
Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Reviewed-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|