Age | Commit message (Collapse) | Author |
|
The continual trickle of small conversion patches is grating on me, and
is really not helping. Just get rid of the 'remove_new' member
function, which is just an alias for the plain 'remove', and had a
comment to that effect:
/*
* .remove_new() is a relic from a prototype conversion of .remove().
* New drivers are supposed to implement .remove(). Once all drivers are
* converted to not use .remove_new any more, it will be dropped.
*/
This was just a tree-wide 'sed' script that replaced '.remove_new' with
'.remove', with some care taken to turn a subsequent tab into two tabs
to make things line up.
I did do some minimal manual whitespace adjustment for places that used
spaces to line things up.
Then I just removed the old (sic) .remove_new member function, and this
is the end result. No more unnecessary conversion noise.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the big set of driver core changes for 6.11-rc1.
Lots of stuff in here, with not a huge diffstat, but apis are evolving
which required lots of files to be touched. Highlights of the changes
in here are:
- platform remove callback api final fixups (Uwe took many releases
to get here, finally!)
- Rust bindings for basic firmware apis and initial driver-core
interactions.
It's not all that useful for a "write a whole driver in rust" type
of thing, but the firmware bindings do help out the phy rust
drivers, and the driver core bindings give a solid base on which
others can start their work.
There is still a long way to go here before we have a multitude of
rust drivers being added, but it's a great first step.
- driver core const api changes.
This reached across all bus types, and there are some fix-ups for
some not-common bus types that linux-next and 0-day testing shook
out.
This work is being done to help make the rust bindings more safe,
as well as the C code, moving toward the end-goal of allowing us to
put driver structures into read-only memory. We aren't there yet,
but are getting closer.
- minor devres cleanups and fixes found by code inspection
- arch_topology minor changes
- other minor driver core cleanups
All of these have been in linux-next for a very long time with no
reported problems"
* tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits)
ARM: sa1100: make match function take a const pointer
sysfs/cpu: Make crash_hotplug attribute world-readable
dio: Have dio_bus_match() callback take a const *
zorro: make match function take a const pointer
driver core: module: make module_[add|remove]_driver take a const *
driver core: make driver_find_device() take a const *
driver core: make driver_[create|remove]_file take a const *
firmware_loader: fix soundness issue in `request_internal`
firmware_loader: annotate doctests as `no_run`
devres: Correct code style for functions that return a pointer type
devres: Initialize an uninitialized struct member
devres: Fix memory leakage caused by driver API devm_free_percpu()
devres: Fix devm_krealloc() wasting memory
driver core: platform: Switch to use kmemdup_array()
driver core: have match() callback in struct bus_type take a const *
MAINTAINERS: add Rust device abstractions to DRIVER CORE
device: rust: improve safety comments
MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer
MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER
firmware: rust: improve safety comments
...
|
|
Fix the 'make W=1' warnings:
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/libnvdimm.o
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/nd_pmem.o
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/nd_btt.o
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/nd_e820.o
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/of_pmem.o
WARNING: modpost: missing MODULE_DESCRIPTION() in drivers/nvdimm/nd_virtio.o
[iweiny: edit core module description]
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://patch.msgid.link/r/20240526-md-drivers-nvdimm-v1-1-9e583677e80f@quicinc.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
|
|
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.
To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new(), which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().
Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/fcb5545d45cf31caee31e0c66ed3521ead12c9b4.1712756722.git.u.kleine-koenig@pengutronix.de
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
|
|
Use the new phys_to_target_node() and numa_map_to_online_node() helpers
to retrieve the correct id for the 'numa_node' ("local" / online
initiator node) and 'target_node' (offline target memory node) sysfs
attributes.
Below is an example from a 4 NUMA node system where all the memory on
node2 is pmem / reserved. It should be noted that with the arrival of
the ACPI HMAT table and EFI Specific Purpose Memory the kernel will
start to see more platforms with reserved / performance differentiated
memory in its own NUMA node. Hence all the stakeholders on the Cc for
what is ostensibly a libnvdimm local patch.
=== Before ===
/* Notice no online memory on node2 at start */
# numactl --hardware
available: 3 nodes (0-1,3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
node 0 size: 3958 MB
node 0 free: 3708 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
node 1 size: 4027 MB
node 1 free: 3871 MB
node 3 cpus:
node 3 size: 3994 MB
node 3 free: 3971 MB
node distances:
node 0 1 3
0: 10 21 21
1: 21 10 21
3: 21 21 10
/*
* Put the pmem namespace into devdax mode so it can be assigned to the
* kmem driver
*/
# ndctl create-namespace -e namespace0.0 -m devdax -f
{
"dev":"namespace0.0",
"mode":"devdax",
"map":"dev",
"size":"3.94 GiB (4.23 GB)",
"uuid":"1650af9b-9ba3-4704-acd6-10178399d9a3",
[..]
}
/* Online Persistent Memory as System RAM */
# daxctl reconfigure-device --mode=system-ram dax0.0
libdaxctl: memblock_in_dev: dax0.0: memory0: Unable to determine phys_index: Success
libdaxctl: memblock_in_dev: dax0.0: memory0: Unable to determine phys_index: Success
libdaxctl: memblock_in_dev: dax0.0: memory0: Unable to determine phys_index: Success
libdaxctl: memblock_in_dev: dax0.0: memory0: Unable to determine phys_index: Success
[
{
"chardev":"dax0.0",
"size":4225761280,
"target_node":0,
"mode":"system-ram"
}
]
reconfigured 1 device
/* Note that the memory is onlined by default to the wrong node, node0 */
# numactl --hardware
available: 3 nodes (0-1,3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
node 0 size: 7926 MB
node 0 free: 7655 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
node 1 size: 4027 MB
node 1 free: 3871 MB
node 3 cpus:
node 3 size: 3994 MB
node 3 free: 3971 MB
node distances:
node 0 1 3
0: 10 21 21
1: 21 10 21
3: 21 21 10
=== After ===
/* Notice that the "phys_index" error messages are gone */
# daxctl reconfigure-device --mode=system-ram dax0.0
[
{
"chardev":"dax0.0",
"size":4225761280,
"target_node":2,
"mode":"system-ram"
}
]
reconfigured 1 device
/* Notice that node2 is now correctly populated */
# numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
node 0 size: 3958 MB
node 0 free: 3793 MB
node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
node 1 size: 4027 MB
node 1 free: 3851 MB
node 2 cpus:
node 2 size: 3968 MB
node 2 free: 3968 MB
node 3 cpus:
node 3 size: 3994 MB
node 3 free: 3908 MB
node distances:
node 0 1 2 3
0: 10 21 21 21
1: 21 10 21 21
2: 21 21 10 21
3: 21 21 21 10
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/158188327614.894464.13122730362187722603.stgit@dwillia2-desk3.amr.corp.intel.com
|
|
A 'struct device_type' instance can carry default attributes for the
device. Use this facility to remove the export of
nvdimm_bus_attribute_group and put the responsibility on the core rather
than leaf implementations to define this attribute.
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Link: https://lore.kernel.org/r/157309903815.1582359.6418211876315050283.stgit@dwillia2-desk3.amr.corp.intel.com
|
|
A 'struct device_type' instance can carry default attributes for the
device. Use this facility to remove the export of
nd_region_attribute_group and put the responsibility on the core rather
than leaf implementations to define this attribute.
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Link: https://lore.kernel.org/r/157309902169.1582359.16828508538444551337.stgit@dwillia2-desk3.amr.corp.intel.com
|
|
A 'struct device_type' instance can carry default attributes for the
device. Use this facility to remove the export of
nd_device_attribute_group and put the responsibility on the core rather
than leaf implementations to define this attribute.
For regions this creates a new nd_region_attribute_groups[] added to the
per-region device-type instances.
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Link: https://lore.kernel.org/r/157309901138.1582359.12909354140826530394.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have MODULE_LICENCE("GPL*") inside which was used in the initial
scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware
Interface Table), is the first known instance of a memory range
described by a unique "target" proximity domain. Where "initiator" and
"target" proximity domains is an approach that the ACPI HMAT
(Heterogeneous Memory Attributes Table) uses to described the unique
performance properties of a memory range relative to a given initiator
(e.g. CPU or DMA device).
Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y
char-device follows the traditional notion of 'numa-node' where the
attribute conveys the closest online numa-node. That numa-node attribute
is useful for cpu-binding and memory-binding processes *near* the
device. However, when the memory range backing a 'pmem', or 'dax' device
is onlined (memory hot-add) the memory-only-numa-node representing that
address needs to be differentiated from the set of online nodes. In
other words, the numa-node association of the device depends on whether
you can bind processes *near* the cpu-numa-node in the offline
device-case, or bind process *on* the memory-range directly after the
backing address range is onlined.
Allow for the case that platform firmware describes persistent memory
with a unique proximity domain, i.e. when it is distinct from the
proximity of DRAM and CPUs that are on the same socket. Plumb the Linux
numa-node translation of that proximity through the libnvdimm region
device to namespaces that are in device-dax mode. With this in place the
proposed kmem driver [1] can optionally discover a unique numa-node
number for the address range as it transitions the memory from an
offline state managed by a device-driver to an online memory range
managed by the core-mm.
[1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com
Reported-by: Fan Du <fan.du@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
There is currently a mismatch between the resources that will trigger
the e820_pmem driver to register/load and the resources that will
actually be surfaced as pmem ranges. register_e820_pmem() uses
walk_iomem_res_desc() which includes children and siblings. In contrast,
e820_pmem_probe() only considers top level resources. For example the
following resource tree results in the driver being loaded, but no
resources being registered:
398000000000-39bfffffffff : PCI Bus 0000:ae
39be00000000-39bf07ffffff : PCI Bus 0000:af
39be00000000-39beffffffff : 0000:af:00.0
39be10000000-39beffffffff : Persistent Memory (legacy)
Fix this up to allow definitions of "legacy" pmem ranges anywhere in
system-physical address space. Not that it is a recommended or safe to
define a pmem range in PCI space, but it is useful for debug /
experimentation, and the restriction on being a top-level resource was
arbitrary.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Use module_platform_driver for the e820 driver instead of open-coding it.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Let the provider module be explicitly passed in rather than implicitly
assumed by the module that calls nvdimm_bus_register(). This is in
preparation for unifying the nfit and nfit_test driver teardown paths.
Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Change the callers of walk_iomem_res() scanning for the
following resources by name to use walk_iomem_res_desc()
instead.
"ACPI Tables"
"ACPI Non-volatile Storage"
"Persistent Memory (legacy)"
"Crash kernel"
Note, the caller of walk_iomem_res() with "GART" will be removed
in a later patch.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Young <dyoung@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chun-Yi <joeyli.kernel@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Lee, Chun-Yi <joeyli.kernel@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Minfei Huang <mnfhuang@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Takao Indoh <indou.takao@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: kexec@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: linux-mm <linux-mm@kvack.org>
Cc: linux-nvdimm@lists.01.org
Link: http://lkml.kernel.org/r/1453841853-11383-15-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Rather than punt on the numa node for these e820 ranges try to find a
better answer with memory_add_physaddr_to_nid() when it is available.
Cc: <stable@vger.kernel.org>
Reported-by: Boaz Harrosh <boaz@plexistor.com>
Tested-by: Boaz Harrosh <boaz@plexistor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persistent memory. Larger capacities will be described via the ACPI
NFIT. When "allocate struct page from pmem" support is added this default
policy can be overridden by assigning a legacy pmem namespace to a pfn
device, however this would be only be necessary if a platform used the
legacy mechanism to define a very large range.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
We currently register a platform device for e820 type-12 memory and
register a nvdimm bus beneath it. Registering the platform device
triggers the device-core machinery to probe for a driver, but that
search currently comes up empty. Building the nvdimm-bus registration
into the e820_pmem platform device registration in this way forces
libnvdimm to be built-in. Instead, convert the built-in portion of
CONFIG_X86_PMEM_LEGACY to simply register a platform device and move the
rest of the logic to the driver for e820_pmem, for the following
reasons:
1/ Letting e820_pmem support be a module allows building and testing
libnvdimm.ko changes without rebooting
2/ All the normal policy around modules can be applied to e820_pmem
(unbind to disable and/or blacklisting the module from loading by
default)
3/ Moving the driver to a generic location and converting it to scan
"iomem_resource" rather than "e820.map" means any other architecture can
take advantage of this simple nvdimm resource discovery mechanism by
registering a resource named "Persistent Memory (legacy)"
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|