|
Original rationale for those had been the reduced cost of mntput()
for the stuff that is mounted somewhere. Mount refcount increments and
decrements are frequent; what's worse, they tend to concentrate on the
same instances and cacheline pingpong is quite noticable.
As the result, mount refcounts are per-cpu; that allows a very cheap
increment. Plain decrement would be just as easy, but decrement-and-test
is anything but (we need to add the components up, with exclusion against
possible increment-from-zero, etc.).
Fortunately, there is a very common case where we can tell that decrement
won't be the final one - if the thing we are dropping is currently
mounted somewhere. We have an RCU delay between the removal from mount
tree and dropping the reference that used to pin it there, so we can
just take rcu_read_lock() and check if the victim is mounted somewhere.
If it is, we can go ahead and decrement without and further checks -
the reference we are dropping is not the last one. If it isn't, we
get all the fun with locking, carefully adding up components, etc.,
but the majority of refcount decrements end up taking the fast path.
There is a major exception, though - pipes and sockets. Those live
on the internal filesystems that are not going to be mounted anywhere.
They are not going to be _un_mounted, of course, so having to take the
slow path every time a pipe or socket gets closed is really obnoxious.
Solution had been to mark them as long-lived ones - essentially faking
"they are mounted somewhere" indicator.
With minor modification that works even for ones that do eventually get
dropped - all it takes is making sure we have an RCU delay between
clearing the "mounted somewhere" indicator and dropping the reference.
There are some additional twists (if you want to drop a dozen of such
internal mounts, you'd be better off with clearing the indicator on
all of them, doing an RCU delay once, then dropping the references),
but in the basic form it had been
* use kern_mount() if you want your internal mount to be
a long-term one.
* use kern_unmount() to undo that.
Unfortunately, the things did rot a bit during the mount API reshuffling.
In several cases we have lost the "fake the indicator" part; kern_unmount()
on the unmount side remained (it doesn't warn if you use it on a mount
without the indicator), but all benefits regaring mntput() cost had been
lost.
To get rid of that bitrot, let's add a new helper that would work
with fs_context-based API: fc_mount_longterm(). It's a counterpart
of fc_mount() that does, on success, mark its result as long-term.
It must be paired with kern_unmount() or equivalents.
Converted:
1) mqueue (it used to use kern_mount_data() and the umount side
is still as it used to be)
2) hugetlbfs (used to use kern_mount_data(), internal mount is
never unmounted in this one)
3) i915 gemfs (used to be kern_mount() + manual remount to set
options, still uses kern_unmount() on umount side)
4) v3d gemfs (copied from i915)
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|