summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/sgx/driver.c
AgeCommit message (Collapse)Author
2025-03-10x86/sgx: Warn explicitly if X86_FEATURE_SGX_LC is not enabledVladis Dronov
The kernel requires X86_FEATURE_SGX_LC to be able to create SGX enclaves, not just X86_FEATURE_SGX. There is quite a number of hardware which has X86_FEATURE_SGX but not X86_FEATURE_SGX_LC. A kernel running on such hardware does not create the /dev/sgx_enclave file and does so silently. Explicitly warn if X86_FEATURE_SGX_LC is not enabled to properly notify users that the kernel disabled the SGX driver. The X86_FEATURE_SGX_LC, a.k.a. SGX Launch Control, is a CPU feature that enables LE (Launch Enclave) hash MSRs to be writable (with additional opt-in required in the 'feature control' MSR) when running enclaves, i.e. using a custom root key rather than the Intel proprietary key for enclave signing. I've hit this issue myself and have spent some time researching where my /dev/sgx_enclave file went on SGX-enabled hardware. Related links: https://github.com/intel/linux-sgx/issues/837 https://patchwork.kernel.org/project/platform-driver-x86/patch/20180827185507.17087-3-jarkko.sakkinen@linux.intel.com/ [ mingo: Made the error message a bit more verbose, and added other cases where the kernel fails to create the /dev/sgx_enclave device node. ] Signed-off-by: Vladis Dronov <vdronov@redhat.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Kai Huang <kai.huang@intel.com> Cc: Jarkko Sakkinen <jarkko@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20250309172215.21777-2-vdronov@redhat.com
2024-04-25mm: switch mm->get_unmapped_area() to a flagRick Edgecombe
The mm_struct contains a function pointer *get_unmapped_area(), which is set to either arch_get_unmapped_area() or arch_get_unmapped_area_topdown() during the initialization of the mm. Since the function pointer only ever points to two functions that are named the same across all arch's, a function pointer is not really required. In addition future changes will want to add versions of the functions that take additional arguments. So to save a pointers worth of bytes in mm_struct, and prevent adding additional function pointers to mm_struct in future changes, remove it and keep the information about which get_unmapped_area() to use in a flag. Add the new flag to MMF_INIT_MASK so it doesn't get clobbered on fork by mmf_init_flags(). Most MM flags get clobbered on fork. In the pre-existing behavior mm->get_unmapped_area() would get copied to the new mm in dup_mm(), so not clobbering the flag preserves the existing behavior around inheriting the topdown-ness. Introduce a helper, mm_get_unmapped_area(), to easily convert code that refers to the old function pointer to instead select and call either arch_get_unmapped_area() or arch_get_unmapped_area_topdown() based on the flag. Then drop the mm->get_unmapped_area() function pointer. Leave the get_unmapped_area() pointer in struct file_operations alone. The main purpose of this change is to reorganize in preparation for future changes, but it also converts the calls of mm->get_unmapped_area() from indirect branches into a direct ones. The stress-ng bigheap benchmark calls realloc a lot, which calls through get_unmapped_area() in the kernel. On x86, the change yielded a ~1% improvement there on a retpoline config. In testing a few x86 configs, removing the pointer unfortunately didn't result in any actual size reductions in the compiled layout of mm_struct. But depending on compiler or arch alignment requirements, the change could shrink the size of mm_struct. Link: https://lkml.kernel.org/r/20240326021656.202649-3-rick.p.edgecombe@intel.com Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Deepak Gupta <debug@rivosinc.com> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: H. Peter Anvin (Intel) <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-09mm: replace vma->vm_flags direct modifications with modifier callsSuren Baghdasaryan
Replace direct modifications to vma->vm_flags with calls to modifier functions to be able to track flag changes and to keep vma locking correctness. [akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo] Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjun Roy <arjunroy@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Oskolkov <posk@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2021-04-06x86/sgx: Move provisioning device creation out of SGX driverSean Christopherson
And extract sgx_set_attribute() out of sgx_ioc_enclave_provision() and export it as symbol for KVM to use. The provisioning key is sensitive. The SGX driver only allows to create an enclave which can access the provisioning key when the enclave creator has permission to open /dev/sgx_provision. It should apply to a VM as well, as the provisioning key is platform-specific, thus an unrestricted VM can also potentially compromise the provisioning key. Move the provisioning device creation out of sgx_drv_init() to sgx_init() as a preparation for adding SGX virtualization support, so that even if the SGX driver is not enabled due to flexible launch control not being available, SGX virtualization can still be enabled, and use it to restrict a VM's capability of being able to access the provisioning key. [ bp: Massage commit message. ] Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Acked-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/0f4d044d621561f26d5f4ef73e8dc6cd18cc7e79.1616136308.git.kai.huang@intel.com
2021-02-08x86/sgx: Maintain encl->refcount for each encl->mm_list entryJarkko Sakkinen
This has been shown in tests: [ +0.000008] WARNING: CPU: 3 PID: 7620 at kernel/rcu/srcutree.c:374 cleanup_srcu_struct+0xed/0x100 This is essentially a use-after free, although SRCU notices it as an SRCU cleanup in an invalid context. == Background == SGX has a data structure (struct sgx_encl_mm) which keeps per-mm SGX metadata. This is separate from struct sgx_encl because, in theory, an enclave can be mapped from more than one mm. sgx_encl_mm includes a pointer back to the sgx_encl. This means that sgx_encl must have a longer lifetime than all of the sgx_encl_mm's that point to it. That's usually the case: sgx_encl_mm is freed only after the mmu_notifier is unregistered in sgx_release(). However, there's a race. If the process is exiting, sgx_mmu_notifier_release() can be called in parallel with sgx_release() instead of being called *by* it. The mmu_notifier path keeps encl_mm alive past when sgx_encl can be freed. This inverts the lifetime rules and means that sgx_mmu_notifier_release() can access a freed sgx_encl. == Fix == Increase encl->refcount when encl_mm->encl is established. Release this reference when encl_mm is freed. This ensures that encl outlives encl_mm. [ bp: Massage commit message. ] Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Reported-by: Haitao Huang <haitao.huang@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20210207221401.29933-1-jarkko@kernel.org
2020-11-18x86/sgx: Add a page reclaimerJarkko Sakkinen
Just like normal RAM, there is a limited amount of enclave memory available and overcommitting it is a very valuable tool to reduce resource use. Introduce a simple reclaim mechanism for enclave pages. In contrast to normal page reclaim, the kernel cannot directly access enclave memory. To get around this, the SGX architecture provides a set of functions to help. Among other things, these functions copy enclave memory to and from normal memory, encrypting it and protecting its integrity in the process. Implement a page reclaimer by using these functions. Picks victim pages in LRU fashion from all the enclaves running in the system. A new kernel thread (ksgxswapd) reclaims pages in the background based on watermarks, similar to normal kswapd. All enclave pages can be reclaimed, architecturally. But, there are some limits to this, such as the special SECS metadata page which must be reclaimed last. The page version array (used to mitigate replaying old reclaimed pages) is also architecturally reclaimable, but not yet implemented. The end result is that the vast majority of enclave pages are currently reclaimable. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-18x86/sgx: Add SGX_IOC_ENCLAVE_PROVISIONJarkko Sakkinen
The whole point of SGX is to create a hardware protected place to do “stuff”. But, before someone is willing to hand over the keys to the castle , an enclave must often prove that it is running on an SGX-protected processor. Provisioning enclaves play a key role in providing proof. There are actually three different enclaves in play in order to make this happen: 1. The application enclave. The familiar one we know and love that runs the actual code that’s doing real work. There can be many of these on a single system, or even in a single application. 2. The quoting enclave (QE). The QE is mentioned in lots of silly whitepapers, but, for the purposes of kernel enabling, just pretend they do not exist. 3. The provisioning enclave. There is typically only one of these enclaves per system. Provisioning enclaves have access to a special hardware key. They can use this key to help to generate certificates which serve as proof that enclaves are running on trusted SGX hardware. These certificates can be passed around without revealing the special key. Any user who can create a provisioning enclave can access the processor-unique Provisioning Certificate Key which has privacy and fingerprinting implications. Even if a user is permitted to create normal application enclaves (via /dev/sgx_enclave), they should not be able to create provisioning enclaves. That means a separate permissions scheme is needed to control provisioning enclave privileges. Implement a separate device file (/dev/sgx_provision) which allows creating provisioning enclaves. This device will typically have more strict permissions than the plain enclave device. The actual device “driver” is an empty stub. Open file descriptors for this device will represent a token which allows provisioning enclave duty. This file descriptor can be passed around and ultimately given as an argument to the /dev/sgx_enclave driver ioctl(). [ bp: Touchups. ] Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: linux-security-module@vger.kernel.org Link: https://lkml.kernel.org/r/20201112220135.165028-16-jarkko@kernel.org
2020-11-18x86/sgx: Add SGX_IOC_ENCLAVE_INITJarkko Sakkinen
Enclaves have two basic states. They are either being built and are malleable and can be modified by doing things like adding pages. Or, they are locked down and not accepting changes. They can only be run after they have been locked down. The ENCLS[EINIT] function induces the transition from being malleable to locked-down. Add an ioctl() that performs ENCLS[EINIT]. After this, new pages can no longer be added with ENCLS[EADD]. This is also the time where the enclave can be measured to verify its integrity. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-15-jarkko@kernel.org
2020-11-18x86/sgx: Add SGX_IOC_ENCLAVE_CREATEJarkko Sakkinen
Add an ioctl() that performs the ECREATE function of the ENCLS instruction, which creates an SGX Enclave Control Structure (SECS). Although the SECS is an in-memory data structure, it is present in enclave memory and is not directly accessible by software. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-13-jarkko@kernel.org
2020-11-18x86/sgx: Add an SGX misc driver interfaceJarkko Sakkinen
Intel(R) SGX is a new hardware functionality that can be used by applications to set aside private regions of code and data called enclaves. New hardware protects enclave code and data from outside access and modification. Add a driver that presents a device file and ioctl API to build and manage enclaves. [ bp: Small touchups, remove unused encl variable in sgx_encl_find() as Reported-by: kernel test robot <lkp@intel.com> ] Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-12-jarkko@kernel.org