summaryrefslogtreecommitdiff
path: root/arch/x86/events/amd/core.c
AgeCommit message (Collapse)Author
2025-05-26Merge tag 'x86-core-2025-05-25' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: "Boot code changes: - A large series of changes to reorganize the x86 boot code into a better isolated and easier to maintain base of PIC early startup code in arch/x86/boot/startup/, by Ard Biesheuvel. Motivation & background: | Since commit | | c88d71508e36 ("x86/boot/64: Rewrite startup_64() in C") | | dated Jun 6 2017, we have been using C code on the boot path in a way | that is not supported by the toolchain, i.e., to execute non-PIC C | code from a mapping of memory that is different from the one provided | to the linker. It should have been obvious at the time that this was a | bad idea, given the need to sprinkle fixup_pointer() calls left and | right to manipulate global variables (including non-pointer variables) | without crashing. | | This C startup code has been expanding, and in particular, the SEV-SNP | startup code has been expanding over the past couple of years, and | grown many of these warts, where the C code needs to use special | annotations or helpers to access global objects. This tree includes the first phase of this work-in-progress x86 boot code reorganization. Scalability enhancements and micro-optimizations: - Improve code-patching scalability (Eric Dumazet) - Remove MFENCEs for X86_BUG_CLFLUSH_MONITOR (Andrew Cooper) CPU features enumeration updates: - Thorough reorganization and cleanup of CPUID parsing APIs (Ahmed S. Darwish) - Fix, refactor and clean up the cacheinfo code (Ahmed S. Darwish, Thomas Gleixner) - Update CPUID bitfields to x86-cpuid-db v2.3 (Ahmed S. Darwish) Memory management changes: - Allow temporary MMs when IRQs are on (Andy Lutomirski) - Opt-in to IRQs-off activate_mm() (Andy Lutomirski) - Simplify choose_new_asid() and generate better code (Borislav Petkov) - Simplify 32-bit PAE page table handling (Dave Hansen) - Always use dynamic memory layout (Kirill A. Shutemov) - Make SPARSEMEM_VMEMMAP the only memory model (Kirill A. Shutemov) - Make 5-level paging support unconditional (Kirill A. Shutemov) - Stop prefetching current->mm->mmap_lock on page faults (Mateusz Guzik) - Predict valid_user_address() returning true (Mateusz Guzik) - Consolidate initmem_init() (Mike Rapoport) FPU support and vector computing: - Enable Intel APX support (Chang S. Bae) - Reorgnize and clean up the xstate code (Chang S. Bae) - Make task_struct::thread constant size (Ingo Molnar) - Restore fpu_thread_struct_whitelist() to fix CONFIG_HARDENED_USERCOPY=y (Kees Cook) - Simplify the switch_fpu_prepare() + switch_fpu_finish() logic (Oleg Nesterov) - Always preserve non-user xfeatures/flags in __state_perm (Sean Christopherson) Microcode loader changes: - Help users notice when running old Intel microcode (Dave Hansen) - AMD: Do not return error when microcode update is not necessary (Annie Li) - AMD: Clean the cache if update did not load microcode (Boris Ostrovsky) Code patching (alternatives) changes: - Simplify, reorganize and clean up the x86 text-patching code (Ingo Molnar) - Make smp_text_poke_batch_process() subsume smp_text_poke_batch_finish() (Nikolay Borisov) - Refactor the {,un}use_temporary_mm() code (Peter Zijlstra) Debugging support: - Add early IDT and GDT loading to debug relocate_kernel() bugs (David Woodhouse) - Print the reason for the last reset on modern AMD CPUs (Yazen Ghannam) - Add AMD Zen debugging document (Mario Limonciello) - Fix opcode map (!REX2) superscript tags (Masami Hiramatsu) - Stop decoding i64 instructions in x86-64 mode at opcode (Masami Hiramatsu) CPU bugs and bug mitigations: - Remove X86_BUG_MMIO_UNKNOWN (Borislav Petkov) - Fix SRSO reporting on Zen1/2 with SMT disabled (Borislav Petkov) - Restructure and harmonize the various CPU bug mitigation methods (David Kaplan) - Fix spectre_v2 mitigation default on Intel (Pawan Gupta) MSR API: - Large MSR code and API cleanup (Xin Li) - In-kernel MSR API type cleanups and renames (Ingo Molnar) PKEYS: - Simplify PKRU update in signal frame (Chang S. Bae) NMI handling code: - Clean up, refactor and simplify the NMI handling code (Sohil Mehta) - Improve NMI duration console printouts (Sohil Mehta) Paravirt guests interface: - Restrict PARAVIRT_XXL to 64-bit only (Kirill A. Shutemov) SEV support: - Share the sev_secrets_pa value again (Tom Lendacky) x86 platform changes: - Introduce the <asm/amd/> header namespace (Ingo Molnar) - i2c: piix4, x86/platform: Move the SB800 PIIX4 FCH definitions to <asm/amd/fch.h> (Mario Limonciello) Fixes and cleanups: - x86 assembly code cleanups and fixes (Uros Bizjak) - Misc fixes and cleanups (Andi Kleen, Andy Lutomirski, Andy Shevchenko, Ard Biesheuvel, Bagas Sanjaya, Baoquan He, Borislav Petkov, Chang S. Bae, Chao Gao, Dan Williams, Dave Hansen, David Kaplan, David Woodhouse, Eric Biggers, Ingo Molnar, Josh Poimboeuf, Juergen Gross, Malaya Kumar Rout, Mario Limonciello, Nathan Chancellor, Oleg Nesterov, Pawan Gupta, Peter Zijlstra, Shivank Garg, Sohil Mehta, Thomas Gleixner, Uros Bizjak, Xin Li)" * tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (331 commits) x86/bugs: Fix spectre_v2 mitigation default on Intel x86/bugs: Restructure ITS mitigation x86/xen/msr: Fix uninitialized variable 'err' x86/msr: Remove a superfluous inclusion of <asm/asm.h> x86/paravirt: Restrict PARAVIRT_XXL to 64-bit only x86/mm/64: Make 5-level paging support unconditional x86/mm/64: Make SPARSEMEM_VMEMMAP the only memory model x86/mm/64: Always use dynamic memory layout x86/bugs: Fix indentation due to ITS merge x86/cpuid: Rename hypervisor_cpuid_base()/for_each_possible_hypervisor_cpuid_base() to cpuid_base_hypervisor()/for_each_possible_cpuid_base_hypervisor() x86/cpu/intel: Rename CPUID(0x2) descriptors iterator parameter x86/cacheinfo: Rename CPUID(0x2) descriptors iterator parameter x86/cpuid: Rename cpuid_get_leaf_0x2_regs() to cpuid_leaf_0x2() x86/cpuid: Rename have_cpuid_p() to cpuid_feature() x86/cpuid: Set <asm/cpuid/api.h> as the main CPUID header x86/cpuid: Move CPUID(0x2) APIs into <cpuid/api.h> x86/msr: Add rdmsrl_on_cpu() compatibility wrapper x86/mm: Fix kernel-doc descriptions of various pgtable methods x86/asm-offsets: Export certain 'struct cpuinfo_x86' fields for 64-bit asm use too x86/boot: Defer initialization of VM space related global variables ...
2025-05-21perf/x86/amd: Remove driver-specific throttle supportKan Liang
The throttle support has been added in the generic code. Remove the driver-specific throttle support. Besides the throttle, perf_event_overflow may return true because of event_limit. It already does an inatomic event disable. The pmu->stop is not required either. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250520181644.2673067-5-kan.liang@linux.intel.com
2025-05-02x86/msr: Add explicit includes of <asm/msr.h>Xin Li (Intel)
For historic reasons there are some TSC-related functions in the <asm/msr.h> header, even though there's an <asm/tsc.h> header. To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h> to <asm/tsc.h> and to eventually eliminate the inclusion of <asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency to the source files that reference definitions from <asm/msr.h>. [ mingo: Clarified the changelog. ] Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
2025-04-10x86/msr: Rename 'wrmsrl()' to 'wrmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-10x86/msr: Rename 'rdmsrl()' to 'rdmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2024-11-19perf/core: Check sample_type in perf_sample_save_brstackYabin Cui
Check sample_type in perf_sample_save_brstack() to prevent saving branch stack data when it isn't required. Suggested-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20240515193610.2350456-4-yabinc@google.com
2024-10-07perf/x86/amd: Warn only on new bits setBreno Leitao
Warning at every leaking bits can cause a flood of message, triggering various stall-warning mechanisms to fire, including CSD locks, which makes the machine to be unusable. Track the bits that are being leaked, and only warn when a new bit is set. That said, this patch will help with the following issues: 1) It will tell us which bits are being set, so, it is easy to communicate it back to vendor, and to do a root-cause analyzes. 2) It avoid the machine to be unusable, because, worst case scenario, the user gets less than 60 WARNs (one per unhandled bit). Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Sandipan Das <sandipan.das@amd.com> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lkml.kernel.org/r/20241001141020.2620361-1-leitao@debian.org
2024-07-04perf/x86: Support counter maskKan Liang
The current perf assumes that both GP and fixed counters are contiguous. But it's not guaranteed on newer Intel platforms or in a virtualization environment. Use the counter mask to replace the number of counters for both GP and the fixed counters. For the other ARCHs or old platforms which don't support a counter mask, using GENMASK_ULL(num_counter - 1, 0) to replace. There is no functional change for them. The interface to KVM is not changed. The number of counters still be passed to KVM. It can be updated later separately. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lkml.kernel.org/r/20240626143545.480761-3-kan.liang@linux.intel.com
2024-05-18perf/x86/amd: Use try_cmpxchg() in events/amd/{un,}core.cUros Bizjak
Replace this pattern in events/amd/{un,}core.c: cmpxchg(*ptr, old, new) == old ... with the simpler and faster: try_cmpxchg(*ptr, &old, new) The x86 CMPXCHG instruction returns success in the ZF flag, so this change saves a compare after the CMPXCHG. No functional change intended. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240425101708.5025-1-ubizjak@gmail.com
2024-04-03perf/x86/amd: Support capturing LBR from software eventsAndrii Nakryiko
Upstream commit c22ac2a3d4bd ("perf: Enable branch record for software events") added ability to capture LBR (Last Branch Records) on Intel CPUs from inside BPF program at pretty much any arbitrary point. This is extremely useful capability that allows to figure out otherwise hard to debug problems, because LBR is now available based on some application-defined conditions, not just hardware-supported events. 'retsnoop' is one such tool that takes a huge advantage of this functionality and has proved to be an extremely useful tool in practice: https://github.com/anakryiko/retsnoop Now, AMD Zen4 CPUs got support for similar LBR functionality, but necessary wiring inside the kernel is not yet setup. This patch seeks to rectify this and follows a similar approach to the original patch for Intel CPUs. We implement an AMD-specific callback set to be called through perf_snapshot_branch_stack static call. Previous preparatory patches ensured that amd_pmu_core_disable_all() and __amd_pmu_lbr_disable() will be completely inlined and will have no branches, so LBR snapshot contamination will be minimized. This was tested on AMD Bergamo CPU and worked well when utilized from the aforementioned retsnoop tool. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Sandipan Das <sandipan.das@amd.com> Link: https://lore.kernel.org/r/20240402022118.1046049-4-andrii@kernel.org
2024-04-03perf/x86/amd: Ensure amd_pmu_core_disable_all() is always inlinedAndrii Nakryiko
In the following patches we will enable LBR capture on AMD CPUs at arbitrary point in time, which means that LBR recording won't be frozen by hardware automatically as part of hardware overflow event. So we need to take care to minimize amount of branches and function calls/returns on the path to freezing LBR, minimizing LBR snapshot altering as much as possible. amd_pmu_core_disable_all() is one of the functions on this path, and is already marked as __always_inline. But it calls amd_pmu_set_global_ctl() which is marked as just inline. So to guarantee no function call will be generated thoughout mark amd_pmu_set_global_ctl() as __always_inline as well. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Sandipan Das <sandipan.das@amd.com> Link: https://lore.kernel.org/r/20240402022118.1046049-2-andrii@kernel.org
2024-03-26perf/x86/amd/core: Define a proper ref-cycles event for Zen 4 and laterSandipan Das
Add the "ref-cycles" event for AMD processors based on Zen 4 and later microarchitectures. The backing event is based on PMCx120 which counts cycles not in halt state in P0 frequency (same as MPERF). Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/089155f19f7c7e65aeb1caa727a882e2ca9b8b04.1711352180.git.sandipan.das@amd.com
2024-03-26perf/x86/amd/core: Update and fix stalled-cycles-* events for Zen 2 and laterSandipan Das
AMD processors based on Zen 2 and later microarchitectures do not support PMCx087 (instruction pipe stalls) which is used as the backing event for "stalled-cycles-frontend" and "stalled-cycles-backend". Use PMCx0A9 (cycles where micro-op queue is empty) instead to count frontend stalls and remove the entry for backend stalls since there is no direct replacement. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ian Rogers <irogers@google.com> Fixes: 3fe3331bb285 ("perf/x86/amd: Add event map for AMD Family 17h") Link: https://lore.kernel.org/r/03d7fc8fa2a28f9be732116009025bdec1b3ec97.1711352180.git.sandipan.das@amd.com
2024-03-25perf/x86/amd/lbr: Use freeze based on availabilitySandipan Das
Currently, the LBR code assumes that LBR Freeze is supported on all processors when X86_FEATURE_AMD_LBR_V2 is available i.e. CPUID leaf 0x80000022[EAX] bit 1 is set. This is incorrect as the availability of the feature is additionally dependent on CPUID leaf 0x80000022[EAX] bit 2 being set, which may not be set for all Zen 4 processors. Define a new feature bit for LBR and PMC freeze and set the freeze enable bit (FLBRI) in DebugCtl (MSR 0x1d9) conditionally. It should still be possible to use LBR without freeze for profile-guided optimization of user programs by using an user-only branch filter during profiling. When the user-only filter is enabled, branches are no longer recorded after the transition to CPL 0 upon PMI arrival. When branch entries are read in the PMI handler, the branch stack does not change. E.g. $ perf record -j any,u -e ex_ret_brn_tkn ./workload Since the feature bit is visible under flags in /proc/cpuinfo, it can be used to determine the feasibility of use-cases which require LBR Freeze to be supported by the hardware such as profile-guided optimization of kernels. Fixes: ca5b7c0d9621 ("perf/x86/amd/lbr: Add LbrExtV2 branch record support") Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/69a453c97cfd11c6f2584b19f937fe6df741510f.1711091584.git.sandipan.das@amd.com
2024-03-13perf/x86/amd/core: Avoid register reset when CPU is deadSandipan Das
When bringing a CPU online, some of the PMC and LBR related registers are reset. The same is done when a CPU is taken offline although that is unnecessary. This currently happens in the "cpu_dead" callback which is also incorrect as the callback runs on a control CPU instead of the one that is being taken offline. This also affects hibernation and suspend to RAM on some platforms as reported in the link below. Fixes: 21d59e3e2c40 ("perf/x86/amd/core: Detect PerfMonV2 support") Reported-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/550a026764342cf7e5812680e3e2b91fe662b5ac.1706526029.git.sandipan.das@amd.com
2024-02-15x86/cpu/amd: Provide a separate accessor for Node IDThomas Gleixner
AMD (ab)uses topology_die_id() to store the Node ID information and topology_max_dies_per_pkg to store the number of nodes per package. This collides with the proper processor die level enumeration which is coming on AMD with CPUID 8000_0026, unless there is a correlation between the two. There is zero documentation about that. So provide new storage and new accessors which for now still access die_id and topology_max_die_per_pkg(). Will be mopped up after AMD and HYGON are converted over. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153624.956116738@linutronix.de
2024-01-08Merge tag 'perf-core-2024-01-08' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: - Add branch stack counters ABI extension to better capture the growing amount of information the PMU exposes via branch stack sampling. There's matching tooling support. - Fix race when creating the nr_addr_filters sysfs file - Add Intel Sierra Forest and Grand Ridge intel/cstate PMU support - Add Intel Granite Rapids, Sierra Forest and Grand Ridge uncore PMU support - Misc cleanups & fixes * tag 'perf-core-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/uncore: Factor out topology_gidnid_map() perf/x86/intel/uncore: Fix NULL pointer dereference issue in upi_fill_topology() perf/x86/amd: Reject branch stack for IBS events perf/x86/intel/uncore: Support Sierra Forest and Grand Ridge perf/x86/intel/uncore: Support IIO free-running counters on GNR perf/x86/intel/uncore: Support Granite Rapids perf/x86/uncore: Use u64 to replace unsigned for the uncore offsets array perf/x86/intel/uncore: Generic uncore_get_uncores and MMIO format of SPR perf: Fix the nr_addr_filters fix perf/x86/intel/cstate: Add Grand Ridge support perf/x86/intel/cstate: Add Sierra Forest support x86/smp: Export symbol cpu_clustergroup_mask() perf/x86/intel/cstate: Cleanup duplicate attr_groups perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file perf/x86/intel: Support branch counters logging perf/x86/intel: Reorganize attrs and is_visible perf: Add branch_sample_call_stack perf/x86: Add PERF_X86_EVENT_NEEDS_BRANCH_STACK flag perf: Add branch stack counters
2024-01-03arch/x86: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2023-10-27perf: Add branch stack countersKan Liang
Currently, the additional information of a branch entry is stored in a u64 space. With more and more information added, the space is running out. For example, the information of occurrences of events will be added for each branch. Two places were suggested to append the counters. https://lore.kernel.org/lkml/20230802215814.GH231007@hirez.programming.kicks-ass.net/ One place is right after the flags of each branch entry. It changes the existing struct perf_branch_entry. The later ARCH specific implementation has to be really careful to consistently pick the right struct. The other place is right after the entire struct perf_branch_stack. The disadvantage is that the pointer of the extra space has to be recorded. The common interface perf_sample_save_brstack() has to be updated. The latter is much straightforward, and should be easily understood and maintained. It is implemented in the patch. Add a new branch sample type, PERF_SAMPLE_BRANCH_COUNTERS, to indicate the event which is recorded in the branch info. The "u64 counters" may store the occurrences of several events. The information regarding the number of events/counters and the width of each counter should be exposed via sysfs as a reference for the perf tool. Define the branch_counter_nr and branch_counter_width ABI here. The support will be implemented later in the Intel-specific patch. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231025201626.3000228-1-kan.liang@linux.intel.com
2023-09-25perf/x86/amd: Do not WARN() on every IRQBreno Leitao
Zen 4 systems running buggy microcode can hit a WARN_ON() in the PMI handler, as shown below, several times while perf runs. A simple `perf top` run is enough to render the system unusable: WARNING: CPU: 18 PID: 20608 at arch/x86/events/amd/core.c:944 amd_pmu_v2_handle_irq+0x1be/0x2b0 This happens because the Performance Counter Global Status Register (PerfCntGlobalStatus) has one or more bits set which are considered reserved according to the "AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, 24593": https://www.amd.com/system/files/TechDocs/24593.pdf To make this less intrusive, warn just once if any reserved bit is set and prompt the user to update the microcode. Also sanitize the value to what the code is handling, so that the overflow events continue to be handled for the number of counters that are known to be sane. Going forward, the following microcode patch levels are recommended for Zen 4 processors in order to avoid such issues with reserved bits: Family=0x19 Model=0x11 Stepping=0x01: Patch=0x0a10113e Family=0x19 Model=0x11 Stepping=0x02: Patch=0x0a10123e Family=0x19 Model=0xa0 Stepping=0x01: Patch=0x0aa00116 Family=0x19 Model=0xa0 Stepping=0x02: Patch=0x0aa00212 Commit f2eb058afc57 ("linux-firmware: Update AMD cpu microcode") from the linux-firmware tree has binaries that meet the minimum required patch levels. [ sandipan: - add message to prompt users to update microcode - rework commit message and call out required microcode levels ] Fixes: 7685665c390d ("perf/x86/amd/core: Add PerfMonV2 overflow handling") Reported-by: Jirka Hladky <jhladky@redhat.com> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/all/3540f985652f41041e54ee82aa53e7dbd55739ae.1694696888.git.sandipan.das@amd.com/
2023-09-22perf/x86/amd/core: Fix overflow reset on hotplugSandipan Das
Kernels older than v5.19 do not support PerfMonV2 and the PMI handler does not clear the overflow bits of the PerfCntrGlobalStatus register. Because of this, loading a recent kernel using kexec from an older kernel can result in inconsistent register states on Zen 4 systems. The PMI handler of the new kernel gets confused and shows a warning when an overflow occurs because some of the overflow bits are set even if the corresponding counters are inactive. These are remnants from overflows that were handled by the older kernel. During CPU hotplug, the PerfCntrGlobalCtl and PerfCntrGlobalStatus registers should always be cleared for PerfMonV2-capable processors. However, a condition used for NB event constaints applicable only to older processors currently prevents this from happening. Move the reset sequence to an appropriate place and also clear the LBR Freeze bit. Fixes: 21d59e3e2c40 ("perf/x86/amd/core: Detect PerfMonV2 support") Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/882a87511af40792ba69bb0e9026f19a2e71e8a3.1694696888.git.sandipan.das@amd.com
2023-05-08perf/ibs: Fix interface via core pmu eventsRavi Bangoria
Although, IBS pmus can be invoked via their own interface, indirect IBS invocation via core pmu events is also supported with fixed set of events: cpu-cycles:p, r076:p (same as cpu-cycles:p) and r0C1:p (micro-ops) for user convenience. This indirect IBS invocation is broken since commit 66d258c5b048 ("perf/core: Optimize perf_init_event()"), which added RAW pmu under 'pmu_idr' list and thus if event_init() fails with RAW pmu, it started returning error instead of trying other pmus. Forward precise events from core pmu to IBS by overwriting 'type' and 'config' in the kernel copy of perf_event_attr. Overwriting will cause perf_init_event() to retry with updated 'type' and 'config', which will automatically forward event to IBS pmu. Without patch: $ sudo ./perf record -C 0 -e r076:p -- sleep 1 Error: The r076:p event is not supported. With patch: $ sudo ./perf record -C 0 -e r076:p -- sleep 1 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.341 MB perf.data (37 samples) ] Fixes: 66d258c5b048 ("perf/core: Optimize perf_init_event()") Reported-by: Stephane Eranian <eranian@google.com> Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230504110003.2548-3-ravi.bangoria@amd.com
2023-03-21perf/x86/amd/core: Always clear status for idxBreno Leitao
The variable 'status' (which contains the unhandled overflow bits) is not being properly masked in some cases, displaying the following warning: WARNING: CPU: 156 PID: 475601 at arch/x86/events/amd/core.c:972 amd_pmu_v2_handle_irq+0x216/0x270 This seems to be happening because the loop is being continued before the status bit being unset, in case x86_perf_event_set_period() returns 0. This is also causing an inconsistency because the "handled" counter is incremented, but the status bit is not cleaned. Move the bit cleaning together above, together when the "handled" counter is incremented. Fixes: 7685665c390d ("perf/x86/amd/core: Add PerfMonV2 overflow handling") Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Sandipan Das <sandipan.das@amd.com> Link: https://lore.kernel.org/r/20230321113338.1669660-1-leitao@debian.org
2023-01-18perf/core: Add perf_sample_save_brstack() helperNamhyung Kim
When we saves the branch stack to the perf sample data, we needs to update the sample flags and the dynamic size. To make sure this is done consistently, add the perf_sample_save_brstack() helper and convert all call sites. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20230118060559.615653-5-namhyung@kernel.org
2022-12-27perf/x86/amd: fix potential integer overflow on shift of a intColin Ian King
The left shift of int 32 bit integer constant 1 is evaluated using 32 bit arithmetic and then passed as a 64 bit function argument. In the case where i is 32 or more this can lead to an overflow. Avoid this by shifting using the BIT_ULL macro instead. Fixes: 471af006a747 ("perf/x86/amd: Constrain Large Increment per Cycle events") Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ian Rogers <irogers@google.com> Acked-by: Kim Phillips <kim.phillips@amd.com> Link: https://lore.kernel.org/r/20221202135149.1797974-1-colin.i.king@gmail.com
2022-11-16perf/x86/amd: Fix crash due to race between amd_pmu_enable_all, perf NMI and ↵Ravi Bangoria
throttling amd_pmu_enable_all() does: if (!test_bit(idx, cpuc->active_mask)) continue; amd_pmu_enable_event(cpuc->events[idx]); A perf NMI of another event can come between these two steps. Perf NMI handler internally disables and enables _all_ events, including the one which nmi-intercepted amd_pmu_enable_all() was in process of enabling. If that unintentionally enabled event has very low sampling period and causes immediate successive NMI, causing the event to be throttled, cpuc->events[idx] and cpuc->active_mask gets cleared by x86_pmu_stop(). This will result in amd_pmu_enable_event() getting called with event=NULL when amd_pmu_enable_all() resumes after handling the NMIs. This causes a kernel crash: BUG: kernel NULL pointer dereference, address: 0000000000000198 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page [...] Call Trace: <TASK> amd_pmu_enable_all+0x68/0xb0 ctx_resched+0xd9/0x150 event_function+0xb8/0x130 ? hrtimer_start_range_ns+0x141/0x4a0 ? perf_duration_warn+0x30/0x30 remote_function+0x4d/0x60 __flush_smp_call_function_queue+0xc4/0x500 flush_smp_call_function_queue+0x11d/0x1b0 do_idle+0x18f/0x2d0 cpu_startup_entry+0x19/0x20 start_secondary+0x121/0x160 secondary_startup_64_no_verify+0xe5/0xeb </TASK> amd_pmu_disable_all()/amd_pmu_enable_all() calls inside perf NMI handler were recently added as part of BRS enablement but I'm not sure whether we really need them. We can just disable BRS in the beginning and enable it back while returning from NMI. This will solve the issue by not enabling those events whose active_masks are set but are not yet enabled in hw pmu. Fixes: ada543459cab ("perf/x86/amd: Add AMD Fam19h Branch Sampling support") Reported-by: Linux Kernel Functional Testing <lkft@linaro.org> Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221114044029.373-1-ravi.bangoria@amd.com
2022-09-07perf/x86: Change x86_pmu::limit_period signaturePeter Zijlstra
In preparation for making it a static_call, change the signature. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220829101321.573713839@infradead.org
2022-09-06perf: Use sample_flags for branch stackKan Liang
Use the new sample_flags to indicate whether the branch stack is filled by the PMU driver. Remove the br_stack from the perf_sample_data_init() to minimize the number of cache lines touched. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220901130959.1285717-4-kan.liang@linux.intel.com
2022-08-27perf/x86/amd/lbr: Add LbrExtV2 hardware branch filter supportSandipan Das
If AMD Last Branch Record Extension Version 2 (LbrExtV2) is detected, convert the requested branch filter (PERF_SAMPLE_BRANCH_* flags) to the corresponding hardware filter value and stash it in the event data when a branch stack is requested. The hardware filter value is also saved in per-CPU areas for use during event scheduling. Hardware filtering is provided by the LBR Branch Select register. It has bits which when set, suppress recording of the following types of branches: * CPL = 0 (Kernel only) * CPL > 0 (Userspace only) * Conditional Branches * Near Relative Calls * Near Indirect Calls * Near Returns * Near Indirect Jumps (excluding Near Indirect Calls and Near Returns) * Near Relative Jumps (excluding Near Relative Calls) * Far Branches Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/9336af5c9785b8e14c62220fc0e6cfb10ab97de3.1660211399.git.sandipan.das@amd.com
2022-08-27perf/x86/amd/lbr: Add LbrExtV2 branch record supportSandipan Das
If AMD Last Branch Record Extension Version 2 (LbrExtV2) is detected, enable it alongside LBR Freeze on PMI when an event requests branch stack i.e. PERF_SAMPLE_BRANCH_STACK. Each branch record is represented by a pair of registers, LBR From and LBR To. The freeze feature prevents any updates to these registers once a PMC overflows. The contents remain unchanged until the freeze bit is cleared by the PMI handler. The branch records are read and copied to sample data before unfreezing. However, only valid entries are copied. There is no additional register to denote which of the register pairs represent the top of the stack (TOS) since internal register renaming always ensures that the first pair (i.e. index 0) is the one representing the most recent branch and so on. The LBR registers are per-thread resources and are cleared explicitly whenever a new task is scheduled in. There are no special implications on the contents of these registers when transitioning to deep C-states. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/d3b8500a3627a0d4d0259b005891ee248f248d91.1660211399.git.sandipan.das@amd.com
2022-08-27perf/x86/amd/lbr: Detect LbrExtV2 supportSandipan Das
AMD Last Branch Record Extension Version 2 (LbrExtV2) is driven by Core PMC overflows. It records recently taken branches up to the moment when the PMC overflow occurs. Detect the feature during PMU initialization and set the branch stack depth using CPUID leaf 0x80000022 EBX. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/fc6e45378ada258f1bab79b0de6e05c393a8f1dd.1660211399.git.sandipan.das@amd.com
2022-08-27perf/x86/amd/core: Add generic branch record interfacesSandipan Das
AMD processors that are capable of recording branches support either Branch Sampling (BRS) or Last Branch Record (LBR). In preparation for adding Last Branch Record Extension Version 2 (LbrExtV2) support, introduce new static calls which act as gateways to call into the feature-dependent functions based on what is available on the processor. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/b75dbc32663cb395f0d701167e952c6a6b0445a3.1660211399.git.sandipan.das@amd.com
2022-08-27perf/x86/amd/core: Refactor branch attributesSandipan Das
AMD processors that are capable of recording branches support either Branch Sampling (BRS) or Last Branch Record (LBR). In preparation for adding Last Branch Record Extension Version 2 (LbrExtV2) support, reuse the "branches" capability to advertise information about both BRS and LBR but make the "branch-brs" event exclusive to Family 19h processors that support BRS. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/ba4a4cde6db79b1c65c49834027bbdb8a915546b.1660211399.git.sandipan.das@amd.com
2022-08-27perf/x86/amd/brs: Move feature-specific functionsSandipan Das
Move some of the Branch Sampling (BRS) specific functions out of the Core events sources and into the BRS sources in preparation for adding other mechanisms to record branches. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/b60283b57179475d18ee242d117c335c16733693.1660211399.git.sandipan.das@amd.com
2022-05-19perf/x86/amd/core: Fix reloading events for SVMSandipan Das
Commit 1018faa6cf23 ("perf/x86/kvm: Fix Host-Only/Guest-Only counting with SVM disabled") addresses an issue in which the Host-Only bit in the counter control registers needs to be masked off when SVM is not enabled. The events need to be reloaded whenever SVM is enabled or disabled for a CPU and this requires the PERF_CTL registers to be reprogrammed using {enable,disable}_all(). However, PerfMonV2 variants of these functions do not reprogram the PERF_CTL registers. Hence, the legacy enable_all() function should also be called. Fixes: 9622e67e3980 ("perf/x86/amd/core: Add PerfMonV2 counter control") Reported-by: Like Xu <likexu@tencent.com> Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220518084327.464005-1-sandipan.das@amd.com
2022-05-18perf/x86/amd: Fix AMD BRS period adjustmentPeter Zijlstra
There's two problems with the current amd_brs_adjust_period() code: - it isn't in fact AMD specific and wil always adjust the period; - it adjusts the period, while it should only adjust the event count, resulting in repoting a short period. Fix this by using x86_pmu.limit_period, this makes it specific to the AMD BRS case and ensures only the event count is adjusted while the reported period is unmodified. Fixes: ba2fe7500845 ("perf/x86/amd: Add AMD branch sampling period adjustment") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2022-05-12perf/x86/amd: Remove unused variable 'hwc'Zucheng Zheng
'hwc' is never used in amd_pmu_enable_all(), so remove it. Signed-off-by: Zucheng Zheng <zhengzucheng@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220421111031.174698-1-zhengzucheng@huawei.com
2022-05-04perf/x86/amd/core: Add PerfMonV2 overflow handlingSandipan Das
If AMD Performance Monitoring Version 2 (PerfMonV2) is supported, use a new scheme to process Core PMC overflows in the NMI handler using the new global control and status registers. This will be bypassed on unsupported hardware (x86_pmu.version < 2). In x86_pmu_handle_irq(), overflows are detected by testing the contents of the PERF_CTR register for each active PMC in a loop. The new scheme instead inspects the overflow bits of the global status register. The Performance Counter Global Status (PerfCntrGlobalStatus) register has overflow (PerfCntrOvfl) bits for each PMC. This is, however, a read-only MSR. To acknowledge that overflows have been processed, the NMI handler must clear the bits by writing to the PerfCntrGlobalStatusClr register. In x86_pmu_handle_irq(), PMCs counting the same event that are started and stopped at the same time record slightly different counts due to delays in between reads from the PERF_CTR registers. This is fixed by stopping and starting the PMCs at the same before and with a single write to the Performance Counter Global Control (PerfCntrGlobalCtl) upon entering and before exiting the NMI handler. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/f20b7e4da0b0a83bdbe05857f354146623bc63ab.1650515382.git.sandipan.das@amd.com
2022-05-04perf/x86/amd/core: Add PerfMonV2 counter controlSandipan Das
If AMD Performance Monitoring Version 2 (PerfMonV2) is supported, use a new scheme to manage the Core PMCs using the new global control and status registers. This will be bypassed on unsupported hardware (x86_pmu.version < 2). Currently, all PMCs have dedicated control (PERF_CTL) and counter (PERF_CTR) registers. For a given PMC, the enable (En) bit of its PERF_CTL register is used to start or stop counting. The Performance Counter Global Control (PerfCntrGlobalCtl) register has enable (PerfCntrEn) bits for each PMC. For a PMC to start counting, both PERF_CTL and PerfCntrGlobalCtl enable bits must be set. If either of those are cleared, the PMC stops counting. In x86_pmu_{en,dis}able_all(), the PERF_CTL registers of all active PMCs are written to in a loop. Ideally, PMCs counting the same event that were started and stopped at the same time should record the same counts. Due to delays in between writes to the PERF_CTL registers across loop iterations, the PMCs cannot be enabled or disabled at the same instant and hence, record slightly different counts. This is fixed by enabling or disabling all active PMCs at the same time with a single write to the PerfCntrGlobalCtl register. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/dfe8e934074aaabc6ba748dfaccd0a77c974bb82.1650515382.git.sandipan.das@amd.com
2022-05-04perf/x86/amd/core: Detect available countersSandipan Das
If AMD Performance Monitoring Version 2 (PerfMonV2) is supported, use CPUID leaf 0x80000022 EBX to detect the number of Core PMCs. This offers more flexibility if the counts change in later processor families. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/68a6d9688df189267db26530378870edd34f7b06.1650515382.git.sandipan.das@amd.com
2022-05-04perf/x86/amd/core: Detect PerfMonV2 supportSandipan Das
AMD Performance Monitoring Version 2 (PerfMonV2) introduces some new Core PMU features such as detection of the number of available PMCs and managing PMCs using global registers namely, PerfCntrGlobalCtl and PerfCntrGlobalStatus. Clearing PerfCntrGlobalCtl and PerfCntrGlobalStatus ensures that all PMCs are inactive and have no pending overflows when CPUs are onlined or offlined. The PMU version (x86_pmu.version) now indicates PerfMonV2 support and will be used to bypass the new features on unsupported processors. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/dc8672ecbddff394e088ca8abf94b089b8ecc2e7.1650515382.git.sandipan.das@amd.com
2022-04-05perf/x86/amd: Add idle hooks for branch samplingStephane Eranian
On AMD Fam19h Zen3, the branch sampling (BRS) feature must be disabled before entering low power and re-enabled (if was active) when returning from low power. Otherwise, the NMI interrupt may be held up for too long and cause problems. Stopping BRS will cause the NMI to be delivered if it was held up. Define a perf_amd_brs_lopwr_cb() callback to stop/restart BRS. The callback is protected by a jump label which is enabled only when AMD BRS is detected. In all other cases, the callback is never called. Signed-off-by: Stephane Eranian <eranian@google.com> [peterz: static_call() and build fixes] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220322221517.2510440-10-eranian@google.com
2022-04-05perf/x86/amd: Add branch-brs helper event for Fam19h BRSStephane Eranian
Add a pseudo event called branch-brs to help use the FAM Fam19h Branch Sampling feature (BRS). BRS samples taken branches, so it is best used when sampling on a retired taken branch event (0xc4) which is what BRS captures. Instead of trying to remember the event code or actual event name, users can simply do: $ perf record -b -e cpu/branch-brs/ -c 1000037 ..... Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220322221517.2510440-5-eranian@google.com
2022-04-05perf/x86/amd: Add AMD Fam19h Branch Sampling supportStephane Eranian
Add support for the AMD Fam19h 16-deep branch sampling feature as described in the AMD PPR Fam19h Model 01h Revision B1. This is a model specific extension. It is not an architected AMD feature. The Branch Sampling (BRS) operates with a 16-deep saturating buffer in MSR registers. There is no branch type filtering. All control flow changes are captured. BRS relies on specific programming of the core PMU of Fam19h. In particular, the following requirements must be met: - the sampling period be greater than 16 (BRS depth) - the sampling period must use a fixed and not frequency mode BRS interacts with the NMI interrupt as well. Because enabling BRS is expensive, it is only activated after P event occurrences, where P is the desired sampling period. At P occurrences of the event, the counter overflows, the CPU catches the interrupt, activates BRS for 16 branches until it saturates, and then delivers the NMI to the kernel. Between the overflow and the time BRS activates more branches may be executed skewing the period. All along, the sampling event keeps counting. The skid may be attenuated by reducing the sampling period by 16 (subsequent patch). BRS is integrated into perf_events seamlessly via the same PERF_RECORD_BRANCH_STACK sample format. BRS generates perf_branch_entry records in the sampling buffer. No prediction information is supported. The branches are stored in reverse order of execution. The most recent branch is the first entry in each record. No modification to the perf tool is necessary. BRS can be used with any sampling event. However, it is recommended to use the RETIRED_BRANCH_INSTRUCTIONS event because it matches what the BRS captures. $ perf record -b -c 1000037 -e cpu/event=0xc2,name=ret_br_instructions/ test $ perf report -D 56531696056126 0x193c000 [0x1a8]: PERF_RECORD_SAMPLE(IP, 0x2): 18122/18230: 0x401d24 period: 1000037 addr: 0 ... branch stack: nr:16 ..... 0: 0000000000401d24 -> 0000000000401d5a 0 cycles 0 ..... 1: 0000000000401d5c -> 0000000000401d24 0 cycles 0 ..... 2: 0000000000401d22 -> 0000000000401d5c 0 cycles 0 ..... 3: 0000000000401d5e -> 0000000000401d22 0 cycles 0 ..... 4: 0000000000401d20 -> 0000000000401d5e 0 cycles 0 ..... 5: 0000000000401d3e -> 0000000000401d20 0 cycles 0 ..... 6: 0000000000401d42 -> 0000000000401d3e 0 cycles 0 ..... 7: 0000000000401d3c -> 0000000000401d42 0 cycles 0 ..... 8: 0000000000401d44 -> 0000000000401d3c 0 cycles 0 ..... 9: 0000000000401d3a -> 0000000000401d44 0 cycles 0 ..... 10: 0000000000401d46 -> 0000000000401d3a 0 cycles 0 ..... 11: 0000000000401d38 -> 0000000000401d46 0 cycles 0 ..... 12: 0000000000401d48 -> 0000000000401d38 0 cycles 0 ..... 13: 0000000000401d36 -> 0000000000401d48 0 cycles 0 ..... 14: 0000000000401d4a -> 0000000000401d36 0 cycles 0 ..... 15: 0000000000401d34 -> 0000000000401d4a 0 cycles 0 ... thread: test:18230 ...... dso: test Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220322221517.2510440-4-eranian@google.com
2021-03-18x86: Fix various typos in commentsIngo Molnar
Fix ~144 single-word typos in arch/x86/ code comments. Doing this in a single commit should reduce the churn. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: linux-kernel@vger.kernel.org
2020-11-19x86/CPU/AMD: Remove amd_get_nb_id()Yazen Ghannam
The Last Level Cache ID is returned by amd_get_nb_id(). In practice, this value is the same as the AMD NodeId for callers of this function. The NodeId is saved in struct cpuinfo_x86.cpu_die_id. Replace calls to amd_get_nb_id() with the logical CPU's cpu_die_id and remove the function. Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201109210659.754018-3-Yazen.Ghannam@amd.com
2020-02-11perf/x86/amd: Add missing L2 misses event spec to AMD Family 17h's event mapKim Phillips
Commit 3fe3331bb285 ("perf/x86/amd: Add event map for AMD Family 17h"), claimed L2 misses were unsupported, due to them not being found in its referenced documentation, whose link has now moved [1]. That old documentation listed PMCx064 unit mask bit 3 as: "LsRdBlkC: LS Read Block C S L X Change to X Miss." and bit 0 as: "IcFillMiss: IC Fill Miss" We now have new public documentation [2] with improved descriptions, that clearly indicate what events those unit mask bits represent: Bit 3 now clearly states: "LsRdBlkC: Data Cache Req Miss in L2 (all types)" and bit 0 is: "IcFillMiss: Instruction Cache Req Miss in L2." So we can now add support for L2 misses in perf's genericised events as PMCx064 with both the above unit masks. [1] The commit's original documentation reference, "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors", originally available here: https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf is now available here: https://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf [2] "Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors", available here: https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf Fixes: 3fe3331bb285 ("perf/x86/amd: Add event map for AMD Family 17h") Reported-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Babu Moger <babu.moger@amd.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20200121171232.28839-1-kim.phillips@amd.com
2020-01-17perf/x86/amd: Add support for Large Increment per Cycle EventsKim Phillips
Description of hardware operation --------------------------------- The core AMD PMU has a 4-bit wide per-cycle increment for each performance monitor counter. That works for most events, but now with AMD Family 17h and above processors, some events can occur more than 15 times in a cycle. Those events are called "Large Increment per Cycle" events. In order to count these events, two adjacent h/w PMCs get their count signals merged to form 8 bits per cycle total. In addition, the PERF_CTR count registers are merged to be able to count up to 64 bits. Normally, events like instructions retired, get programmed on a single counter like so: PERF_CTL0 (MSR 0xc0010200) 0x000000000053ff0c # event 0x0c, umask 0xff PERF_CTR0 (MSR 0xc0010201) 0x0000800000000001 # r/w 48-bit count The next counter at MSRs 0xc0010202-3 remains unused, or can be used independently to count something else. When counting Large Increment per Cycle events, such as FLOPs, however, we now have to reserve the next counter and program the PERF_CTL (config) register with the Merge event (0xFFF), like so: PERF_CTL0 (msr 0xc0010200) 0x000000000053ff03 # FLOPs event, umask 0xff PERF_CTR0 (msr 0xc0010201) 0x0000800000000001 # rd 64-bit cnt, wr lo 48b PERF_CTL1 (msr 0xc0010202) 0x0000000f004000ff # Merge event, enable bit PERF_CTR1 (msr 0xc0010203) 0x0000000000000000 # wr hi 16-bits count The count is widened from the normal 48-bits to 64 bits by having the second counter carry the higher 16 bits of the count in its lower 16 bits of its counter register. The odd counter, e.g., PERF_CTL1, is programmed with the enabled Merge event before the even counter, PERF_CTL0. The Large Increment feature is available starting with Family 17h. For more details, search any Family 17h PPR for the "Large Increment per Cycle Events" section, e.g., section 2.1.15.3 on p. 173 in this version: https://www.amd.com/system/files/TechDocs/56176_ppr_Family_17h_Model_71h_B0_pub_Rev_3.06.zip Description of software operation --------------------------------- The following steps are taken in order to support reserving and enabling the extra counter for Large Increment per Cycle events: 1. In the main x86 scheduler, we reduce the number of available counters by the number of Large Increment per Cycle events being scheduled, tracked by a new cpuc variable 'n_pair' and a new amd_put_event_constraints_f17h(). This improves the counter scheduler success rate. 2. In perf_assign_events(), if a counter is assigned to a Large Increment event, we increment the current counter variable, so the counter used for the Merge event is removed from assignment consideration by upcoming event assignments. 3. In find_counter(), if a counter has been found for the Large Increment event, we set the next counter as used, to prevent other events from using it. 4. We perform steps 2 & 3 also in the x86 scheduler fastpath, i.e., we add Merge event accounting to the existing used_mask logic. 5. Finally, we add on the programming of Merge event to the neighbouring PMC counters in the counter enable/disable{_all} code paths. Currently, software does not support a single PMU with mixed 48- and 64-bit counting, so Large increment event counts are limited to 48 bits. In set_period, we zero-out the upper 16 bits of the count, so the hardware doesn't copy them to the even counter's higher bits. Simple invocation example showing counting 8 FLOPs per 256-bit/%ymm vaddps instruction executed in a loop 100 million times: perf stat -e cpu/fp_ret_sse_avx_ops.all/,cpu/instructions/ <workload> Performance counter stats for '<workload>': 800,000,000 cpu/fp_ret_sse_avx_ops.all/u 300,042,101 cpu/instructions/u Prior to this patch, the reported SSE/AVX FLOPs retired count would be wrong. [peterz: lots of renames and edits to the code] Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2020-01-17perf/x86/amd: Constrain Large Increment per Cycle eventsKim Phillips
AMD Family 17h processors and above gain support for Large Increment per Cycle events. Unfortunately there is no CPUID or equivalent bit that indicates whether the feature exists or not, so we continue to determine eligibility based on a CPU family number comparison. For Large Increment per Cycle events, we add a f17h-and-compatibles get_event_constraints_f17h() that returns an even counter bitmask: Large Increment per Cycle events can only be placed on PMCs 0, 2, and 4 out of the currently available 0-5. The only currently public event that requires this feature to report valid counts is PMCx003 "Retired SSE/AVX Operations". Note that the CPU family logic in amd_core_pmu_init() is changed so as to be able to selectively add initialization for features available in ranges of backward-compatible CPU families. This Large Increment per Cycle feature is expected to be retained in future families. A side-effect of assigning a new get_constraints function for f17h disables calling the old (prior to f15h) amd_get_event_constraints implementation left enabled by commit e40ed1542dd7 ("perf/x86: Add perf support for AMD family-17h processors"), which is no longer necessary since those North Bridge event codes are obsoleted. Also fix a spelling mistake whilst in the area (calulating -> calculating). Fixes: e40ed1542dd7 ("perf/x86: Add perf support for AMD family-17h processors") Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191114183720.19887-2-kim.phillips@amd.com
2019-11-11perf/x86/amd: Remove set but not used variable 'active'Zheng Yongjun
'-Wunused-but-set-variable' triggers this warning: arch/x86/events/amd/core.c: In function amd_pmu_handle_irq: arch/x86/events/amd/core.c:656:6: warning: variable active set but not used [-Wunused-but-set-variable] GCC is right, 'active' is not used anymore. This variable was introduced earlier this year and then removed in: df4d29732fdad perf/x86/amd: Change/fix NMI latency mitigation to use a timestamp [ mingo: Improved the changelog, fixed build warning caused by this fix, improved surrounding code. ] Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com> Cc: <acme@kernel.org> Cc: <alexander.shishkin@linux.intel.com> Cc: <mark.rutland@arm.com> Cc: <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191110094453.113001-1-zhengyongjun3@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org>