Age | Commit message (Collapse) | Author |
|
Use "a" constraint for the shift operand of the __pcilg_mio_inuser() inline
assembly. The used "d" constraint allows the compiler to use any general
purpose register for the shift operand, including register zero.
If register zero is used this my result in incorrect code generation:
8f6: a7 0a ff f8 ahi %r0,-8
8fa: eb 32 00 00 00 0c srlg %r3,%r2,0 <----
If register zero is selected to contain the shift value, the srlg
instruction ignores the contents of the register and always shifts zero
bits. Therefore use the "a" constraint which does not permit to select
register zero.
Fixes: f058599e22d5 ("s390/pci: Fix s390_mmio_read/write with MIO")
Cc: stable@vger.kernel.org
Reported-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Reduce system call overhead time (round trip time for invoking a
non-existent system call) by 25%.
With the removal of set_fs() [1] lazy control register handling was removed
in order to keep kernel entry and exit simple. However this made system
calls slower.
With the conversion to generic entry [2] and numerous follow up changes
which simplified the entry code significantly, adding support for lazy asce
handling doesn't add much complexity to the entry code anymore.
In particular this means:
- On kernel entry the primary asce is not modified and contains the user
asce
- Kernel accesses which require secondary-space mode (for example futex
operations) are surrounded by enable_sacf_uaccess() and
disable_sacf_uaccess() calls. enable_sacf_uaccess() sets the primary asce
to kernel asce so that the sacf instruction can be used to switch to
secondary-space mode. The primary asce is changed back to user asce with
disable_sacf_uaccess().
The state of the control register which contains the primary asce is
reflected with a new TIF_ASCE_PRIMARY bit. This is required on context
switch so that the correct asce is restored for the scheduled in process.
In result address spaces are now setup like this:
CPU running in | %cr1 ASCE | %cr7 ASCE | %cr13 ASCE
-----------------------------|-----------|-----------|-----------
user space | user | user | kernel
kernel (no sacf) | user | user | kernel
kernel (during sacf uaccess) | kernel | user | kernel
kernel (kvm guest execution) | guest | user | kernel
In result cr1 control register content is not changed except for:
- futex system calls
- legacy s390 PCI system calls
- the kvm specific cmpxchg_user_key() uaccess helper
This leads to faster system call execution.
[1] 87d598634521 ("s390/mm: remove set_fs / rework address space handling")
[2] 56e62a737028 ("s390: convert to generic entry")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Vasily Gorbik:
- Add sorting of mcount locations at build time
- Rework uaccess functions with C exception handling to shorten inline
assembly size and enable full inlining. This yields near-optimal code
for small constant copies with a ~40kb kernel size increase
- Add support for a configurable STRICT_MM_TYPECHECKS which allows to
generate better code, but also allows to have type checking for debug
builds
- Optimize get_lowcore() for common callers with alternatives that
nearly revert to the pre-relocated lowcore code, while also slightly
reducing syscall entry and exit time
- Convert MACHINE_HAS_* checks for single facility tests into cpu_has_*
style macros that call test_facility(), and for features with
additional conditions, add a new ALT_TYPE_FEATURE alternative to
provide a static branch via alternative patching. Also, move machine
feature detection to the decompressor for early patching and add
debugging functionality to easily show which alternatives are patched
- Add exception table support to early boot / startup code to get rid
of the open coded exception handling
- Use asm_inline for all inline assemblies with EX_TABLE or ALTERNATIVE
to ensure correct inlining and unrolling decisions
- Remove 2k page table leftovers now that s390 has been switched to
always allocate 4k page tables
- Split kfence pool into 4k mappings in arch_kfence_init_pool() and
remove the architecture-specific kfence_split_mapping()
- Use READ_ONCE_NOCHECK() in regs_get_kernel_stack_nth() to silence
spurious KASAN warnings from opportunistic ftrace argument tracing
- Force __atomic_add_const() variants on s390 to always return void,
ensuring compile errors for improper usage
- Remove s390's ioremap_wt() and pgprot_writethrough() due to
mismatched semantics and lack of known users, relying on asm-generic
fallbacks
- Signal eventfd in vfio-ap to notify userspace when the guest AP
configuration changes, including during mdev removal
- Convert mdev_types from an array to a pointer in vfio-ccw and vfio-ap
drivers to avoid fake flex array confusion
- Cleanup trap code
- Remove references to the outdated linux390@de.ibm.com address
- Other various small fixes and improvements all over the code
* tag 's390-6.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (78 commits)
s390: Use inline qualifier for all EX_TABLE and ALTERNATIVE inline assemblies
s390/kfence: Split kfence pool into 4k mappings in arch_kfence_init_pool()
s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()
s390/boot: Ignore vmlinux.map
s390/sysctl: Remove "vm/allocate_pgste" sysctl
s390: Remove 2k vs 4k page table leftovers
s390/tlb: Use mm_has_pgste() instead of mm_alloc_pgste()
s390/lowcore: Use lghi instead llilh to clear register
s390/syscall: Merge __do_syscall() and do_syscall()
s390/spinlock: Implement SPINLOCK_LOCKVAL with inline assembly
s390/smp: Implement raw_smp_processor_id() with inline assembly
s390/current: Implement current with inline assembly
s390/lowcore: Use inline qualifier for get_lowcore() inline assembly
s390: Move s390 sysctls into their own file under arch/s390
s390/syscall: Simplify syscall_get_arguments()
s390/vfio-ap: Notify userspace that guest's AP config changed when mdev removed
s390: Remove ioremap_wt() and pgprot_writethrough()
s390/mm: Add configurable STRICT_MM_TYPECHECKS
s390/mm: Convert pgste_val() into function
s390/mm: Convert pgprot_val() into function
...
|
|
The s390 MMIO syscalls when using the classic PCI instructions do not
cause a page fault when follow_pfnmap_start() fails due to the page not
being present. Besides being a general deficiency this breaks vfio-pci's
mmap() handling once VFIO_PCI_MMAP gets enabled as this lazily maps on
first access. Fix this by following a failed follow_pfnmap_start() with
fixup_user_page() and retrying the follow_pfnmap_start(). Also fix
a VM_READ vs VM_WRITE mixup in the read syscall.
Link: https://lore.kernel.org/r/20250226-vfio_pci_mmap-v7-1-c5c0f1d26efd@linux.ibm.com
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com>
|
|
Use asm_inline for all inline assemblies which make use of the EX_TABLE or
ALTERNATIVE macros.
These macros expand to many lines and the compiler assumes the number of
lines within an inline assembly is the same as the number of instructions
within an inline assembly. This has an effect on inlining and loop
unrolling decisions.
In order to avoid incorrect assumptions use asm_inline, which tells the
compiler that an inline assembly has the smallest possible size.
In order to avoid confusion when asm_inline should be used or not, since a
couple of inline assemblies are quite large: the rule is to always use
asm_inline whenever the EX_TABLE or ALTERNATIVE macro is used. In specific
cases there may be reasons to not follow this guideline, but that should
be documented with the corresponding code.
Using the inline qualifier everywhere has only a small effect on the kernel
image size:
add/remove: 0/10 grow/shrink: 19/8 up/down: 1492/-1858 (-366)
The only location where this seems to matter is load_unaligned_zeropad()
from word-at-a-time.h where the compiler inlines more functions within the
dcache code, which is indeed code where performance matters.
Suggested-by: Juergen Christ <jchrist@linux.ibm.com>
Reviewed-by: Juergen Christ <jchrist@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Use flag output macros in inline asm to allow for better code generation if
the compiler has support for the flag output constraint.
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Tested-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Juergen Christ <jchrist@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Use the new API that can understand huge pfn mappings.
Link: https://lkml.kernel.org/r/20240826204353.2228736-12-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
... and centralize the VM_IO/VM_PFNMAP sanity check in there. We'll
now also perform these sanity checks for direct follow_pte()
invocations.
For generic_access_phys(), we might now check multiple times: nothing to
worry about, really.
Link: https://lkml.kernel.org/r/20240410155527.474777-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Sean Christopherson <seanjc@google.com> [KVM]
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fei Li <fei1.li@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Yonghua Huang <yonghua.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The zpci_get_max_write_size() helper is used to determine the maximum
size a PCI store or load can use at a given __iomem address.
For the PCI block store the following restrictions apply:
1. The dst + len must not cross a 4K boundary in the (pseudo-)MMIO space
2. len must not exceed ZPCI_MAX_WRITE_SIZE
3. len must be a multiple of 8 bytes
4. The src address must be double word (8 byte) aligned
5. The dst address must be double word (8 byte) aligned
Otherwise only a normal PCI store which takes its src value from
a register can be used. For these PCI store restriction 1 still applies.
Similarly 1 also applies to PCI loads.
It turns out zpci_max_write_size() instead implements stricter
conditions which prevents PCI block stores from being used where they
can and should be used. In particular instead of conditions 4 and 5 it
wrongly enforces both dst and src to be size aligned. This indirectly
covers condition 1 but also prevents many legal PCI block stores.
On top of the functional shortcomings the zpci_get_max_write_size() is
misnamed as it is used for both read and write size calculations. Rename
it to zpci_get_max_io_size() and implement the listed conditions
explicitly.
Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com>
Fixes: cd24834130ac ("s390/pci: base support")
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
[agordeev@linux.ibm.com replaced spaces with tabs]
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
|
|
__pcistg_mio_inuser()/__pcilg_mio_inuser()
For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.
Cc: <stable@vger.kernel.org>
Fixes: f058599e22d5 ("s390/pci: Fix s390_mmio_read/write with MIO")
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Follow arm64 and riscv and move the EX_TABLE define to asm-extable.h
which is a lot less generic than the current linkage.h.
Also make sure that all files which contain EX_TABLE usages actually
include the new header file. This should make sure that the files
always compile and there won't be any random compile breakage due to
other header file dependencies.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
We should not walk/touch page tables outside of VMA boundaries when
holding only the mmap sem in read mode. Evil user space can modify the
VMA layout just before this function runs and e.g., trigger races with
page table removal code since commit dd2283f2605e ("mm: mmap: zap pages
with read mmap_sem in munmap").
find_vma() does not check if the address is >= the VMA start address;
use vma_lookup() instead.
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Fixes: dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Currently, the follow_pfn function is exported for modules but
follow_pte is not. However, follow_pfn is very easy to misuse,
because it does not provide protections (so most of its callers
assume the page is writable!) and because it returns after having
already unlocked the page table lock.
Provide instead a simplified version of follow_pte that does
not have the pmdpp and range arguments. The older version
survives as follow_invalidate_pte() for use by fs/dax.c.
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Merge __follow_pte_pmd, follow_pte_pmd and follow_pte into a single
follow_pte function and just pass two additional NULL arguments for the
two previous follow_pte callers.
[sfr@canb.auug.org.au: merge fix for "s390/pci: remove races against pte updates"]
Link: https://lkml.kernel.org/r/20201111221254.7f6a3658@canb.auug.org.au
Link: https://lkml.kernel.org/r/20201029101432.47011-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove set_fs support from s390. With doing this rework address space
handling and simplify it. As a result address spaces are now setup
like this:
CPU running in | %cr1 ASCE | %cr7 ASCE | %cr13 ASCE
----------------------------|-----------|-----------|-----------
user space | user | user | kernel
kernel, normal execution | kernel | user | kernel
kernel, kvm guest execution | gmap | user | kernel
To achieve this the getcpu vdso syscall is removed in order to avoid
secondary address mode and a separate vdso address space in for user
space. The getcpu vdso syscall will be implemented differently with a
subsequent patch.
The kernel accesses user space always via secondary address space.
This happens in different ways:
- with mvcos in home space mode and directly read/write to secondary
address space
- with mvcs/mvcp in primary space mode and copy from primary space to
secondary space or vice versa
- with e.g. cs in secondary space mode and access secondary space
Switching translation modes happens with sacf before and after
instructions which access user space, like before.
Lazy handling of control register reloading is removed in the hope to
make everything simpler, but at the cost of making kernel entry and
exit a bit slower. That is: on kernel entry the primary asce is always
changed to contain the kernel asce, and on kernel exit the primary
asce is changed again so it contains the user asce.
In kernel mode there is only one exception to the primary asce: when
kvm guests are executed the primary asce contains the gmap asce (which
describes the guest address space). The primary asce is reset to
kernel asce whenever kvm guest execution is interrupted, so that this
doesn't has to be taken into account for any user space accesses.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Way back it was a reasonable assumptions that iomem mappings never
change the pfn range they point at. But this has changed:
- gpu drivers dynamically manage their memory nowadays, invalidating
ptes with unmap_mapping_range when buffers get moved
- contiguous dma allocations have moved from dedicated carvetouts to
cma regions. This means if we miss the unmap the pfn might contain
pagecache or anon memory (well anything allocated with GFP_MOVEABLE)
- even /dev/mem now invalidates mappings when the kernel requests that
iomem region when CONFIG_IO_STRICT_DEVMEM is set, see
commit 3234ac664a87 ("/dev/mem: Revoke mappings when a driver claims the
region")
Accessing pfns obtained from ptes without holding all the locks is
therefore no longer a good idea. Fix this.
Since zpci_memcpy_from|toio seems to not do anything nefarious with
locks we just need to open code get_pfn and follow_pfn and make sure
we drop the locks only after we're done. The write function also needs
the copy_from_user move, since we can't take userspace faults while
holding the mmap sem.
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: linux-mm@kvack.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-samsung-soc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
The existing comment was talking about reading in the write part
and vice versa. While we are here make it more clear why restricting
the syscalls to MIO capable devices is okay.
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.
The change is generated using coccinelle with the following rule:
// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .
@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The s390_mmio_read/write syscalls are currently broken when running with
MIO.
The new pcistb_mio/pcstg_mio/pcilg_mio instructions are executed
similiarly to normal load/store instructions and do address translation
in the current address space. That means inside the kernel they are
aware of mappings into kernel address space while outside the kernel
they use user space mappings (usually created through mmap'ing a PCI
device file).
Now when existing user space applications use the s390_pci_mmio_write
and s390_pci_mmio_read syscalls, they pass I/O addresses that are mapped
into user space so as to be usable with the new instructions without
needing a syscall. Accessing these addresses with the old instructions
as done currently leads to a kernel panic.
Also, for such a user space mapping there may not exist an equivalent
kernel space mapping which means we can't just use the new instructions
in kernel space.
Instead of replicating user mappings in the kernel which then might
collide with other mappings, we can conceptually execute the new
instructions as if executed by the user space application using the
secondary address space. This even allows us to directly store to the
user pointer without the need for copy_to/from_user().
Cc: stable@vger.kernel.org
Fixes: 71ba41c9b1d9 ("s390/pci: provide support for MIO instructions")
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Make sure that even in error situations we do not use copy_to_user
on uninitialized kernel memory.
Cc: stable@vger.kernel.org # 3.19+
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
Add the new __NR_s390_pci_mmio_write and __NR_s390_pci_mmio_read
system calls to allow user space applications to access device PCI I/O
memory pages on s390x platform.
[ Martin Schwidefsky: some code beautification ]
Signed-off-by: Alexey Ishchuk <aishchuk@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|