summaryrefslogtreecommitdiff
path: root/arch/powerpc/include/asm/vdso_datapage.h
AgeCommit message (Collapse)Author
2025-02-21powerpc/vdso: Switch to generic storage implementationThomas Weißschuh
The generic storage implementation provides the same features as the custom one. However it can be shared between architectures, making maintenance easier. Co-developed-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Link: https://lore.kernel.org/all/20250204-vdso-store-rng-v3-14-13a4669dfc8c@linutronix.de
2024-11-23Merge tag 'powerpc-6.13-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: - Rework kfence support for the HPT MMU to work on systems with >= 16TB of RAM. - Remove the powerpc "maple" platform, used by the "Yellow Dog Powerstation". - Add support for DYNAMIC_FTRACE_WITH_CALL_OPS, DYNAMIC_FTRACE_WITH_DIRECT_CALLS & BPF Trampolines. - Add support for running KVM nested guests on Power11. - Other small features, cleanups and fixes. Thanks to Amit Machhiwal, Arnd Bergmann, Christophe Leroy, Costa Shulyupin, David Hunter, David Wang, Disha Goel, Gautam Menghani, Geert Uytterhoeven, Hari Bathini, Julia Lawall, Kajol Jain, Keith Packard, Lukas Bulwahn, Madhavan Srinivasan, Markus Elfring, Michal Suchanek, Ming Lei, Mukesh Kumar Chaurasiya, Nathan Chancellor, Naveen N Rao, Nicholas Piggin, Nysal Jan K.A, Paulo Miguel Almeida, Pavithra Prakash, Ritesh Harjani (IBM), Rob Herring (Arm), Sachin P Bappalige, Shen Lichuan, Simon Horman, Sourabh Jain, Thomas Weißschuh, Thorsten Blum, Thorsten Leemhuis, Venkat Rao Bagalkote, Zhang Zekun, and zhang jiao. * tag 'powerpc-6.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (89 commits) EDAC/powerpc: Remove PPC_MAPLE drivers powerpc/perf: Add per-task/process monitoring to vpa_pmu driver powerpc/kvm: Add vpa latency counters to kvm_vcpu_arch docs: ABI: sysfs-bus-event_source-devices-vpa-pmu: Document sysfs event format entries for vpa_pmu powerpc/perf: Add perf interface to expose vpa counters MAINTAINERS: powerpc: Mark Maddy as "M" powerpc/Makefile: Allow overriding CPP powerpc-km82xx.c: replace of_node_put() with __free ps3: Correct some typos in comments powerpc/kexec: Fix return of uninitialized variable macintosh: Use common error handling code in via_pmu_led_init() powerpc/powermac: Use of_property_match_string() in pmac_has_backlight_type() powerpc: remove dead config options for MPC85xx platform support powerpc/xive: Use cpumask_intersects() selftests/powerpc: Remove the path after initialization. powerpc/xmon: symbol lookup length fixed powerpc/ep8248e: Use %pa to format resource_size_t powerpc/ps3: Reorganize kerneldoc parameter names KVM: PPC: Book3S HV: Fix kmv -> kvm typo powerpc/sstep: make emulate_vsx_load and emulate_vsx_store static ...
2024-11-02powerpc: Split systemcfg struct definitions out from vdsoThomas Weißschuh
The systemcfg data has nothing to do anymore with the vdso. Split it into a dedicated header file. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-27-b64f0842d512@linutronix.de
2024-11-02powerpc: Split systemcfg data out of vdso data pageThomas Weißschuh
The systemcfg data only has minimal overlap with the vdso data. Splitting the two avoids mapping the implementation-defined vdso data into /proc/ppc64/systemcfg. It is also a preparation for the standardization of vdso data storage. The only field actually used by both systemcfg and vdso is tb_ticks_per_sec and it is only changed once during time_init(). Initialize it in both structures there. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-26-b64f0842d512@linutronix.de
2024-11-02powerpc/vdso: Remove offset comment from 32bit vdso_arch_dataThomas Weißschuh
This offset was copy-pasted from the systemcfg structure. It has no meaning for the 32bit VDSO. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-21-b64f0842d512@linutronix.de
2024-10-16powerpc/vdso: Add a page for non-time dataChristophe Leroy
The page containing VDSO time data is swapped with the one containing TIME namespace data when a process uses a non-root time namespace. For other data like powerpc specific data and RNG data, it means tracking whether time namespace is the root one or not to know which page to use. Simplify the logic behind by moving time data out of first data page so that the first data page which contains everything else always remains the first page. Time data is in the second or third page depending on selected time namespace. While we are playing with get_datapage macro, directly take into account the data offset inside the macro instead of adding that offset afterwards. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://patch.msgid.link/0557d3ec898c1d0ea2fc59fa8757618e524c5d94.1727858295.git.christophe.leroy@csgroup.eu
2024-09-13powerpc/vdso: Wire up getrandom() vDSO implementation on VDSO32Christophe Leroy
To be consistent with other VDSO functions, the function is called __kernel_getrandom() __arch_chacha20_blocks_nostack() fonction is implemented basically with 32 bits operations. It performs 4 QUARTERROUND operations in parallele. There are enough registers to avoid using the stack: On input: r3: output bytes r4: 32-byte key input r5: 8-byte counter input/output r6: number of 64-byte blocks to write to output During operation: stack: pointer to counter (r5) and non-volatile registers (r14-131) r0: counter of blocks (initialised with r6) r4: Value '4' after key has been read, used for indexing r5-r12: key r14-r15: block counter r16-r31: chacha state At the end: r0, r6-r12: Zeroised r5, r14-r31: Restored Performance on powerpc 885 (using kernel selftest): ~# ./vdso_test_getrandom bench-single vdso: 25000000 times in 62.938002291 seconds libc: 25000000 times in 535.581916866 seconds syscall: 25000000 times in 531.525042806 seconds Performance on powerpc 8321 (using kernel selftest): ~# ./vdso_test_getrandom bench-single vdso: 25000000 times in 16.899318858 seconds libc: 25000000 times in 131.050596522 seconds syscall: 25000000 times in 129.794790389 seconds This first patch adds support for VDSO32. As selftests cannot easily be generated only for VDSO32, and because the following patch brings support for VDSO64 anyway, this patch opts out all code in __arch_chacha20_blocks_nostack() so that vdso_test_chacha will not fail to compile and will not crash on PPC64/PPC64LE, allthough the selftest itself will fail. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2024-09-13powerpc/vdso: Fix VDSO data access when running in a non-root time namespaceChristophe Leroy
When running in a non-root time namespace, the global VDSO data page is replaced by a dedicated namespace data page and the global data page is mapped next to it. Detailed explanations can be found at commit 660fd04f9317 ("lib/vdso: Prepare for time namespace support"). When it happens, __kernel_get_syscall_map and __kernel_get_tbfreq and __kernel_sync_dicache don't work anymore because they read 0 instead of the data they need. To address that, clock_mode has to be read. When it is set to VDSO_CLOCKMODE_TIMENS, it means it is a dedicated namespace data page and the global data is located on the following page. Add a macro called get_realdatapage which reads clock_mode and add PAGE_SIZE to the pointer provided by get_datapage macro when clock_mode is equal to VDSO_CLOCKMODE_TIMENS. Use this new macro instead of get_datapage macro except for time functions as they handle it internally. Fixes: 74205b3fc2ef ("powerpc/vdso: Add support for time namespaces") Reported-by: Jason A. Donenfeld <Jason@zx2c4.com> Closes: https://lore.kernel.org/all/ZtnYqZI-nrsNslwy@zx2c4.com/ Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2021-04-14powerpc/vdso: Add support for time namespacesChristophe Leroy
This patch adds the necessary glue to provide time namespaces. Things are mainly copied from ARM64. __arch_get_timens_vdso_data() calculates timens vdso data position based on the vdso data position, knowing it is the next page in vvar. This avoids having to redo the mflr/bcl/mflr/mtlr dance to locate the page relative to running code position. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # vDSO parts Acked-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/1a15495f80ec19a87b16cf874dbf7c3fa5ec40fe.1617209142.git.christophe.leroy@csgroup.eu
2020-12-04powerpc/vdso: Remove unused \tmp param in __get_datapage()Christophe Leroy
The \tmp param is not used anymore, remove it. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/4b13f897dcccce8ae03c031a4598cf26b32e2f1c.1601197618.git.christophe.leroy@csgroup.eu
2020-12-04powerpc/vdso: Simplify __get_datapage()Christophe Leroy
The VDSO datapage and the text pages are always located immediately next to each other, so it can be hardcoded without an indirection through __kernel_datapage_offset Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/b08f5ef99d64cfc38f79b7ad5310d9b4d2479eeb.1601197618.git.christophe.leroy@csgroup.eu
2020-12-04powerpc/vdso: Rename syscall_map_32/64 to simplify vdso_setup_syscall_map()Christophe Leroy
Today vdso_data structure has: - syscall_map_32[] and syscall_map_64[] on PPC64 - syscall_map_32[] on PPC32 On PPC32, syscall_map_32[] is populated using sys_call_table[]. On PPC64, syscall_map_64[] is populated using sys_call_table[] and syscal_map_32[] is populated using compat_sys_call_table[]. To simplify vdso_setup_syscall_map(), - On PPC32 rename syscall_map_32[] into syscall_map[], - On PPC64 rename syscall_map_64[] into syscall_map[], - On PPC64 rename syscall_map_32[] into compat_syscall_map[]. That way, syscall_map[] gets populated using sys_call_table[] and compat_syscall_map[] gets population using compat_sys_call_table[]. Also define an empty compat_syscall_map[] on PPC32 to avoid ifdefs. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/472734be0d9991eee320a06824219a5b2663736b.1601197618.git.christophe.leroy@csgroup.eu
2020-12-04powerpc/vdso: Switch VDSO to generic C implementation.Christophe Leroy
With the C VDSO, the performance is slightly lower, but it is worth it as it will ease maintenance and evolution, and also brings clocks that are not supported with the ASM VDSO. On an 8xx at 132 MHz, vdsotest with the ASM VDSO: gettimeofday: vdso: 828 nsec/call clock-getres-realtime-coarse: vdso: 391 nsec/call clock-gettime-realtime-coarse: vdso: 614 nsec/call clock-getres-realtime: vdso: 460 nsec/call clock-gettime-realtime: vdso: 876 nsec/call clock-getres-monotonic-coarse: vdso: 399 nsec/call clock-gettime-monotonic-coarse: vdso: 691 nsec/call clock-getres-monotonic: vdso: 460 nsec/call clock-gettime-monotonic: vdso: 1026 nsec/call On an 8xx at 132 MHz, vdsotest with the C VDSO: gettimeofday: vdso: 955 nsec/call clock-getres-realtime-coarse: vdso: 545 nsec/call clock-gettime-realtime-coarse: vdso: 592 nsec/call clock-getres-realtime: vdso: 545 nsec/call clock-gettime-realtime: vdso: 941 nsec/call clock-getres-monotonic-coarse: vdso: 545 nsec/call clock-gettime-monotonic-coarse: vdso: 591 nsec/call clock-getres-monotonic: vdso: 545 nsec/call clock-gettime-monotonic: vdso: 940 nsec/call It is even better for gettime with monotonic clocks. Unsupported clocks with ASM VDSO: clock-gettime-boottime: vdso: 3851 nsec/call clock-gettime-tai: vdso: 3852 nsec/call clock-gettime-monotonic-raw: vdso: 3396 nsec/call Same clocks with C VDSO: clock-gettime-tai: vdso: 941 nsec/call clock-gettime-monotonic-raw: vdso: 1001 nsec/call clock-gettime-monotonic-coarse: vdso: 591 nsec/call On an 8321E at 333 MHz, vdsotest with the ASM VDSO: gettimeofday: vdso: 220 nsec/call clock-getres-realtime-coarse: vdso: 102 nsec/call clock-gettime-realtime-coarse: vdso: 178 nsec/call clock-getres-realtime: vdso: 129 nsec/call clock-gettime-realtime: vdso: 235 nsec/call clock-getres-monotonic-coarse: vdso: 105 nsec/call clock-gettime-monotonic-coarse: vdso: 208 nsec/call clock-getres-monotonic: vdso: 129 nsec/call clock-gettime-monotonic: vdso: 274 nsec/call On an 8321E at 333 MHz, vdsotest with the C VDSO: gettimeofday: vdso: 272 nsec/call clock-getres-realtime-coarse: vdso: 160 nsec/call clock-gettime-realtime-coarse: vdso: 184 nsec/call clock-getres-realtime: vdso: 166 nsec/call clock-gettime-realtime: vdso: 281 nsec/call clock-getres-monotonic-coarse: vdso: 160 nsec/call clock-gettime-monotonic-coarse: vdso: 184 nsec/call clock-getres-monotonic: vdso: 169 nsec/call clock-gettime-monotonic: vdso: 275 nsec/call On a Power9 Nimbus DD2.2 at 3.8GHz, with the ASM VDSO: clock-gettime-monotonic: vdso: 35 nsec/call clock-getres-monotonic: vdso: 16 nsec/call clock-gettime-monotonic-coarse: vdso: 18 nsec/call clock-getres-monotonic-coarse: vdso: 522 nsec/call clock-gettime-monotonic-raw: vdso: 598 nsec/call clock-getres-monotonic-raw: vdso: 520 nsec/call clock-gettime-realtime: vdso: 34 nsec/call clock-getres-realtime: vdso: 16 nsec/call clock-gettime-realtime-coarse: vdso: 18 nsec/call clock-getres-realtime-coarse: vdso: 517 nsec/call getcpu: vdso: 8 nsec/call gettimeofday: vdso: 25 nsec/call And with the C VDSO: clock-gettime-monotonic: vdso: 37 nsec/call clock-getres-monotonic: vdso: 20 nsec/call clock-gettime-monotonic-coarse: vdso: 21 nsec/call clock-getres-monotonic-coarse: vdso: 19 nsec/call clock-gettime-monotonic-raw: vdso: 38 nsec/call clock-getres-monotonic-raw: vdso: 20 nsec/call clock-gettime-realtime: vdso: 37 nsec/call clock-getres-realtime: vdso: 20 nsec/call clock-gettime-realtime-coarse: vdso: 20 nsec/call clock-getres-realtime-coarse: vdso: 19 nsec/call getcpu: vdso: 8 nsec/call gettimeofday: vdso: 28 nsec/call Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-8-mpe@ellerman.id.au
2020-01-23powerpc/vdso32: Don't read cache line size from the datapage on PPC32.Christophe Leroy
On PPC32, the cache lines have a fixed size known at build time. Don't read it from the datapage. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/dfa7b35e27e01964fcda84bf1ed8b2b31cf93826.1575273217.git.christophe.leroy@c-s.fr
2020-01-23powerpc/vdso32: inline __get_datapage()Christophe Leroy
__get_datapage() is only a few instructions to retrieve the address of the page where the kernel stores data to the VDSO. By inlining this function into its users, a bl/blr pair and a mflr/mtlr pair is avoided, plus a few reg moves. The improvement is noticeable (about 55 nsec/call on an 8xx) vdsotest before the patch: gettimeofday: vdso: 731 nsec/call clock-gettime-realtime-coarse: vdso: 668 nsec/call clock-gettime-monotonic-coarse: vdso: 745 nsec/call vdsotest after the patch: gettimeofday: vdso: 677 nsec/call clock-gettime-realtime-coarse: vdso: 613 nsec/call clock-gettime-monotonic-coarse: vdso: 690 nsec/call Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/c39ef7f3dfa25356b01e211d539671f279086c09.1575273217.git.christophe.leroy@c-s.fr
2019-12-05powerpc: Fix vDSO clock_getres()Vincenzo Frascino
clock_getres in the vDSO library has to preserve the same behaviour of posix_get_hrtimer_res(). In particular, posix_get_hrtimer_res() does: sec = 0; ns = hrtimer_resolution; and hrtimer_resolution depends on the enablement of the high resolution timers that can happen either at compile or at run time. Fix the powerpc vdso implementation of clock_getres keeping a copy of hrtimer_resolution in vdso data and using that directly. Fixes: a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel") Cc: stable@vger.kernel.org Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Acked-by: Shuah Khan <skhan@linuxfoundation.org> [chleroy: changed CLOCK_REALTIME_RES to CLOCK_HRTIMER_RES] Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/a55eca3a5e85233838c2349783bcb5164dae1d09.1575273217.git.christophe.leroy@c-s.fr
2019-11-15y2038: vdso: powerpc: avoid timespec referencesArnd Bergmann
As a preparation to stop using 'struct timespec' in the kernel, change the powerpc vdso implementation: - split up the vdso data definition to have equivalent members for seconds and nanoseconds instead of an xtime structure - use timespec64 as an intermediate for the xtime update - change the asm-offsets definition to be based the appropriate fixed-length types This is only a temporary fix for changing the types, in order to actually support a 64-bit safe vdso32 version of clock_gettime(), the entire powerpc vdso should be replaced with the generic lib/vdso/ implementation. If that happens first, this patch becomes obsolete. Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-18powerpc/vdso64: Fix CLOCK_MONOTONIC inconsistencies across Y2038Michael Ellerman
Jakub Drnec reported: Setting the realtime clock can sometimes make the monotonic clock go back by over a hundred years. Decreasing the realtime clock across the y2k38 threshold is one reliable way to reproduce. Allegedly this can also happen just by running ntpd, I have not managed to reproduce that other than booting with rtc at >2038 and then running ntp. When this happens, anything with timers (e.g. openjdk) breaks rather badly. And included a test case (slightly edited for brevity): #define _POSIX_C_SOURCE 199309L #include <stdio.h> #include <time.h> #include <stdlib.h> #include <unistd.h> long get_time(void) { struct timespec tp; clock_gettime(CLOCK_MONOTONIC, &tp); return tp.tv_sec + tp.tv_nsec / 1000000000; } int main(void) { long last = get_time(); while(1) { long now = get_time(); if (now < last) { printf("clock went backwards by %ld seconds!\n", last - now); } last = now; sleep(1); } return 0; } Which when run concurrently with: # date -s 2040-1-1 # date -s 2037-1-1 Will detect the clock going backward. The root cause is that wtom_clock_sec in struct vdso_data is only a 32-bit signed value, even though we set its value to be equal to tk->wall_to_monotonic.tv_sec which is 64-bits. Because the monotonic clock starts at zero when the system boots the wall_to_montonic.tv_sec offset is negative for current and future dates. Currently on a freshly booted system the offset will be in the vicinity of negative 1.5 billion seconds. However if the wall clock is set past the Y2038 boundary, the offset from wall to monotonic becomes less than negative 2^31, and no longer fits in 32-bits. When that value is assigned to wtom_clock_sec it is truncated and becomes positive, causing the VDSO assembly code to calculate CLOCK_MONOTONIC incorrectly. That causes CLOCK_MONOTONIC to jump ahead by ~4 billion seconds which it is not meant to do. Worse, if the time is then set back before the Y2038 boundary CLOCK_MONOTONIC will jump backward. We can fix it simply by storing the full 64-bit offset in the vdso_data, and using that in the VDSO assembly code. We also shuffle some of the fields in vdso_data to avoid creating a hole. The original commit that added the CLOCK_MONOTONIC support to the VDSO did actually use a 64-bit value for wtom_clock_sec, see commit a7f290dad32e ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel") (Nov 2005). However just 3 days later it was converted to 32-bits in commit 0c37ec2aa88b ("[PATCH] powerpc: vdso fixes (take #2)"), and the bug has existed since then AFAICS. Fixes: 0c37ec2aa88b ("[PATCH] powerpc: vdso fixes (take #2)") Cc: stable@vger.kernel.org # v2.6.15+ Link: http://lkml.kernel.org/r/HaC.ZfES.62bwlnvAvMP.1STMMj@seznam.cz Reported-by: Jakub Drnec <jaydee@email.cz> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-11-26powerpc: Standardise on NR_syscalls rather than __NR_syscalls.Rashmica Gupta
Most architectures use NR_syscalls as the #define for the number of syscalls. We use __NR_syscalls, and then define NR_syscalls as __NR_syscalls. __NR_syscalls is not used outside arch code, whereas NR_syscalls is. So as NR_syscalls must be defined and __NR_syscalls does not, replace __NR_syscalls with NR_syscalls. Signed-off-by: Rashmica Gupta <rashmicy@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2011-03-31Fix common misspellingsLucas De Marchi
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2010-11-29powerpc: Removing undead ifdef __KERNEL__Christian Dietrich
The __KERNEL__ ifdef isn't necessary at this point, because it is checked in an outer ifdef level already and has no effect here. Signed-off-by: Christian Dietrich <qy03fugy@stud.informatik.uni-erlangen.de> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-07-09powerpc: Rework VDSO gettimeofday to prevent time going backwardsPaul Mackerras
Currently it is possible for userspace to see the result of gettimeofday() going backwards by 1 microsecond, assuming that userspace is using the gettimeofday() in the VDSO. The VDSO gettimeofday() algorithm computes the time in "xsecs", which are units of 2^-20 seconds, or approximately 0.954 microseconds, using the algorithm now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec and then converts the time in xsecs to seconds and microseconds. The kernel updates the tb_orig_stamp and stamp_xsec values every tick in update_vsyscall(). If the length of the tick is not an integer number of xsecs, then some precision is lost in converting the current time to xsecs. For example, with CONFIG_HZ=1000, the tick is 1ms long, which is 1048.576 xsecs. That means that stamp_xsec will advance by either 1048 or 1049 on each tick. With the right conditions, it is possible for userspace to get (timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is slightly late in updating the vdso_datapage, and then for stamp_xsec to advance by 1048 when the kernel does update it, and for userspace to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to integer truncation. The result is that time appears to go backwards by 1 microsecond. To fix this we change the VDSO gettimeofday to use a new field in the VDSO datapage which stores the nanoseconds part of the time as a fractional number of seconds in a 0.32 binary fraction format. (Or put another way, as a 32-bit number in units of 0.23283 ns.) This is convenient because we can use the mulhwu instruction to convert it to either microseconds or nanoseconds. Since it turns out that computing the time of day using this new field is simpler than either using stamp_xsec (as gettimeofday does) or stamp_xtime.tv_nsec (as clock_gettime does), this converts both gettimeofday and clock_gettime to use the new field. The existing __do_get_tspec function is converted to use the new field and take a parameter in r7 that indicates the desired resolution, 1,000,000 for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec function is then unused and is deleted. The new algorithm is now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs + (stamp_xtime_seconds << 32) + stamp_sec_fraction with 'now' in units of 2^-32 seconds. That is then converted to seconds and either microseconds or nanoseconds with seconds = now >> 32 partseconds = ((now & 0xffffffff) * resolution) >> 32 The 32-bit VDSO code also makes a further simplification: it ignores the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary fraction. Doing so gets rid of 4 multiply instructions. Assuming a timebase frequency of 1GHz or less and an update interval of no more than 10ms, the upper 32 bits of tb_to_xs will be at least 4503599, so the error from ignoring the low 32 bits will be at most 2.2ns, which is more than an order of magnitude less than the time taken to do gettimeofday or clock_gettime on our fastest processors, so there is no possibility of seeing inconsistent values due to this. This also moves update_gtod() down next to its only caller, and makes update_vsyscall use the time passed in via the wall_time argument rather than accessing xtime directly. At present, wall_time always points to xtime, but that could change in future. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-11-06powerpc: Improve resolution of VDSO clock_gettimePaul Mackerras
Currently the clock_gettime implementation in the VDSO produces a result with microsecond resolution for the cases that are handled without a system call, i.e. CLOCK_REALTIME and CLOCK_MONOTONIC. The nanoseconds field of the result is obtained by computing a microseconds value and multiplying by 1000. This changes the code in the VDSO to do the computation for clock_gettime with nanosecond resolution. That means that the resolution of the result will ultimately depend on the timebase frequency. Because the timestamp in the VDSO datapage (stamp_xsec, the real time corresponding to the timebase count in tb_orig_stamp) is in units of 2^-20 seconds, it doesn't have sufficient resolution for computing a result with nanosecond resolution. Therefore this adds a copy of xtime to the VDSO datapage and updates it in update_gtod() along with the other time-related fields. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-04powerpc: Move include files to arch/powerpc/include/asmStephen Rothwell
from include/asm-powerpc. This is the result of a mkdir arch/powerpc/include/asm git mv include/asm-powerpc/* arch/powerpc/include/asm Followed by a few documentation/comment fixups and a couple of places where <asm-powepc/...> was being used explicitly. Of the latter only one was outside the arch code and it is a driver only built for powerpc. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Mackerras <paulus@samba.org>