Age | Commit message (Collapse) | Author |
|
The nds32 architecture, also known as AndeStar V3, is a custom 32-bit
RISC target designed by Andes Technologies. Support was added to the
kernel in 2016 as the replacement RISC-V based V5 processors were
already announced, and maintained by (current or former) Andes
employees.
As explained by Alan Kao, new customers are now all using RISC-V,
and all known nds32 users are already on longterm stable kernels
provided by Andes, with no development work going into mainline
support any more.
While the port is still in a reasonably good shape, it only gets
worse over time without active maintainers, so it seems best
to remove it before it becomes unusable. As always, if it turns
out that there are mainline users after all, and they volunteer
to maintain the port in the future, the removal can be reverted.
Link: https://lore.kernel.org/linux-mm/YhdWNLUhk+x9RAzU@yamatobi.andestech.com/
Link: https://lore.kernel.org/lkml/20220302065213.82702-1-alankao@andestech.com/
Link: https://www.andestech.com/en/products-solutions/andestar-architecture/
Signed-off-by: Alan Kao <alankao@andestech.com>
[arnd: rewrite changelog to provide more background]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
There are no remaining callers of set_fs(), so CONFIG_SET_FS
can be removed globally, along with the thread_info field and
any references to it.
This turns access_ok() into a cheaper check against TASK_SIZE_MAX.
As CONFIG_SET_FS is now gone, drop all remaining references to
set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel().
Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes
Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic]
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Add helpers to wrap the get_fs/set_fs magic for undoing any damange done
by set_fs(KERNEL_DS). There is no real functional benefit, but this
documents the intent of these calls better, and will allow stubbing the
functions out easily for kernels builds that do not allow address space
overrides in the future.
[hch@lst.de: drop two incorrect hunks, fix a commit log typo]
Link: http://lkml.kernel.org/r/20200714105505.935079-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Link: http://lkml.kernel.org/r/20200710135706.537715-6-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If the kernel config 'CONFIG_ALIGNMENT_TRAP' and the file
'/proc/sys/nds32/unaligned_access/enable' are set, the kernel
unaligned access handler does not handle correctly when the
value of immediate field is negative. This commit fixes the
unaligned access handler in kernel.
Signed-off-by: Nickhu <nickhu@andestech.com>
Reviewed-by: Greentime Hu <greentime@andestech.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
|
|
Change the name of the file '/proc/sys/nds32/unaligned_acess'
to '/proc/sys/nds32/unaligned_access'
Signed-off-by: Nickhu <nickhu@andestech.com>
Reviewed-by: Greentime Hu <greentime@andestech.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
|
|
This patch includes the exception/interrupt entries, pt_reg structure and
related accessors.
/* Unaligned accessing handling*/
Andes processors cannot load/store information which is not naturally
aligned on the bus, i.e., loading a 4 byte data whose start address must
be divisible by 4. If unaligned data accessing is happened, data
unaligned exception will be triggered and user will get SIGSEGV or
kernel oops according to the unaligned address. In order to make user be
able to load/store data from an unaligned address, software load/store
emulation is implemented in arch/nds32/mm/alignment.c to address data
unaligned exception.
Unaligned accessing handling is disabled by default because it is not a
normal case. User can enable this feature by following steps.
A. Compile time:
1. Enable kernel config CONFIG_ALIGNMENT_TRAP
B. Run time:
1. Enter /proc/sys/nds32/unaligned_acess folder
2. Write 1 to file enable_mode to enable unaligned accessing
handling. User can disable it by writing 0 to this file.
3. Write 1 to file debug to show which unaligned address is under
processing. User can disable it by writing 0 to this file.
However, unaligned accessing handler cannot work if this unaligned
address is not accessible such as protection violation. On this
condition, the default behaviors for addressing data unaligned exception
still happen
Signed-off-by: Vincent Chen <vincentc@andestech.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|