Age | Commit message (Collapse) | Author |
|
Continue disentangling the crypto library functions from the generic
crypto infrastructure by moving the mips ChaCha and Poly1305 library
functions into a new directory arch/mips/lib/crypto/ that does not
depend on CRYPTO. This mirrors the distinction between crypto/ and
lib/crypto/.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since crypto/chacha.c now registers chacha20-$(ARCH), xchacha20-$(ARCH),
and xchacha12-$(ARCH) skcipher algorithms that use the architecture's
ChaCha and HChaCha library functions, individual architectures no longer
need to do the same. Therefore, remove the redundant skcipher
algorithms and leave just the library functions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Following the example of the crc32 and crc32c code, make the crypto
subsystem register both generic and architecture-optimized chacha20,
xchacha20, and xchacha12 skcipher algorithms, all implemented on top of
the appropriate library functions. This eliminates the need for every
architecture to implement the same skcipher glue code.
To register the architecture-optimized skciphers only when
architecture-optimized code is actually being used, add a function
chacha_is_arch_optimized() and make each arch implement it. Change each
architecture's ChaCha module_init function to arch_initcall so that the
CPU feature detection is guaranteed to run before
chacha_is_arch_optimized() gets called by crypto/chacha.c. In the case
of s390, remove the CPU feature based module autoloading, which is no
longer needed since the module just gets pulled in via function linkage.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
All implementations of chacha_init_arch() just call
chacha_init_generic(), so it is pointless. Just delete it, and replace
chacha_init() with what was previously chacha_init_generic().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For glue code that's used by Zinc, the actual Crypto API functions might
not necessarily exist, and don't need to exist either. Before this
patch, there are valid build configurations that lead to a unbuildable
kernel. This fixes it to conditionalize those symbols on the existence
of the proper config entry.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This integrates the accelerated MIPS 32r2 implementation of ChaCha
into both the API and library interfaces of the kernel crypto stack.
The significance of this is that, in addition to becoming available
as an accelerated library implementation, it can also be used by
existing crypto API code such as Adiantum (for block encryption on
ultra low performance cores) or IPsec using chacha20poly1305. These
are use cases that have already opted into using the abstract crypto
API. In order to support Adiantum, the core assembler routine has
been adapted to take the round count as a function argument rather
than hardcoding it to 20.
Co-developed-by: René van Dorst <opensource@vdorst.com>
Signed-off-by: René van Dorst <opensource@vdorst.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|