summaryrefslogtreecommitdiff
path: root/rust/kernel/types.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/types.rs')
-rw-r--r--rust/kernel/types.rs232
1 files changed, 138 insertions, 94 deletions
diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs
index bd189d646adb..ec6457bb3084 100644
--- a/rust/kernel/types.rs
+++ b/rust/kernel/types.rs
@@ -3,11 +3,10 @@
//! Kernel types.
use crate::init::{self, PinInit};
-use alloc::boxed::Box;
use core::{
cell::UnsafeCell,
marker::{PhantomData, PhantomPinned},
- mem::MaybeUninit,
+ mem::{ManuallyDrop, MaybeUninit},
ops::{Deref, DerefMut},
ptr::NonNull,
};
@@ -26,8 +25,11 @@ pub trait ForeignOwnable: Sized {
/// Converts a Rust-owned object to a foreign-owned one.
///
- /// The foreign representation is a pointer to void.
- fn into_foreign(self) -> *const core::ffi::c_void;
+ /// The foreign representation is a pointer to void. There are no guarantees for this pointer.
+ /// For example, it might be invalid, dangling or pointing to uninitialized memory. Using it in
+ /// any way except for [`ForeignOwnable::from_foreign`], [`ForeignOwnable::borrow`],
+ /// [`ForeignOwnable::try_from_foreign`] can result in undefined behavior.
+ fn into_foreign(self) -> *const crate::ffi::c_void;
/// Borrows a foreign-owned object.
///
@@ -35,7 +37,7 @@ pub trait ForeignOwnable: Sized {
///
/// `ptr` must have been returned by a previous call to [`ForeignOwnable::into_foreign`] for
/// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
- unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> Self::Borrowed<'a>;
+ unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Self::Borrowed<'a>;
/// Converts a foreign-owned object back to a Rust-owned one.
///
@@ -45,7 +47,7 @@ pub trait ForeignOwnable: Sized {
/// which a previous matching [`ForeignOwnable::from_foreign`] hasn't been called yet.
/// Additionally, all instances (if any) of values returned by [`ForeignOwnable::borrow`] for
/// this object must have been dropped.
- unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self;
+ unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self;
/// Tries to convert a foreign-owned object back to a Rust-owned one.
///
@@ -56,7 +58,7 @@ pub trait ForeignOwnable: Sized {
///
/// `ptr` must either be null or satisfy the safety requirements for
/// [`ForeignOwnable::from_foreign`].
- unsafe fn try_from_foreign(ptr: *const core::ffi::c_void) -> Option<Self> {
+ unsafe fn try_from_foreign(ptr: *const crate::ffi::c_void) -> Option<Self> {
if ptr.is_null() {
None
} else {
@@ -67,38 +69,16 @@ pub trait ForeignOwnable: Sized {
}
}
-impl<T: 'static> ForeignOwnable for Box<T> {
- type Borrowed<'a> = &'a T;
-
- fn into_foreign(self) -> *const core::ffi::c_void {
- Box::into_raw(self) as _
- }
-
- unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> &'a T {
- // SAFETY: The safety requirements for this function ensure that the object is still alive,
- // so it is safe to dereference the raw pointer.
- // The safety requirements of `from_foreign` also ensure that the object remains alive for
- // the lifetime of the returned value.
- unsafe { &*ptr.cast() }
- }
-
- unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
- // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
- // call to `Self::into_foreign`.
- unsafe { Box::from_raw(ptr as _) }
- }
-}
-
impl ForeignOwnable for () {
type Borrowed<'a> = ();
- fn into_foreign(self) -> *const core::ffi::c_void {
+ fn into_foreign(self) -> *const crate::ffi::c_void {
core::ptr::NonNull::dangling().as_ptr()
}
- unsafe fn borrow<'a>(_: *const core::ffi::c_void) -> Self::Borrowed<'a> {}
+ unsafe fn borrow<'a>(_: *const crate::ffi::c_void) -> Self::Borrowed<'a> {}
- unsafe fn from_foreign(_: *const core::ffi::c_void) -> Self {}
+ unsafe fn from_foreign(_: *const crate::ffi::c_void) -> Self {}
}
/// Runs a cleanup function/closure when dropped.
@@ -155,7 +135,7 @@ impl ForeignOwnable for () {
/// # use kernel::types::ScopeGuard;
/// fn example3(arg: bool) -> Result {
/// let mut vec =
-/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
+/// ScopeGuard::new_with_data(KVec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
///
/// vec.push(10u8, GFP_KERNEL)?;
/// if arg {
@@ -195,7 +175,7 @@ impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
impl ScopeGuard<(), fn(())> {
/// Creates a new guarded object with the given cleanup function.
pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
- ScopeGuard::new_with_data((), move |_| cleanup())
+ ScopeGuard::new_with_data((), move |()| cleanup())
}
}
@@ -226,7 +206,58 @@ impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
/// Stores an opaque value.
///
-/// This is meant to be used with FFI objects that are never interpreted by Rust code.
+/// `Opaque<T>` is meant to be used with FFI objects that are never interpreted by Rust code.
+///
+/// It is used to wrap structs from the C side, like for example `Opaque<bindings::mutex>`.
+/// It gets rid of all the usual assumptions that Rust has for a value:
+///
+/// * The value is allowed to be uninitialized (for example have invalid bit patterns: `3` for a
+/// [`bool`]).
+/// * The value is allowed to be mutated, when a `&Opaque<T>` exists on the Rust side.
+/// * No uniqueness for mutable references: it is fine to have multiple `&mut Opaque<T>` point to
+/// the same value.
+/// * The value is not allowed to be shared with other threads (i.e. it is `!Sync`).
+///
+/// This has to be used for all values that the C side has access to, because it can't be ensured
+/// that the C side is adhering to the usual constraints that Rust needs.
+///
+/// Using `Opaque<T>` allows to continue to use references on the Rust side even for values shared
+/// with C.
+///
+/// # Examples
+///
+/// ```
+/// # #![expect(unreachable_pub, clippy::disallowed_names)]
+/// use kernel::types::Opaque;
+/// # // Emulate a C struct binding which is from C, maybe uninitialized or not, only the C side
+/// # // knows.
+/// # mod bindings {
+/// # pub struct Foo {
+/// # pub val: u8,
+/// # }
+/// # }
+///
+/// // `foo.val` is assumed to be handled on the C side, so we use `Opaque` to wrap it.
+/// pub struct Foo {
+/// foo: Opaque<bindings::Foo>,
+/// }
+///
+/// impl Foo {
+/// pub fn get_val(&self) -> u8 {
+/// let ptr = Opaque::get(&self.foo);
+///
+/// // SAFETY: `Self` is valid from C side.
+/// unsafe { (*ptr).val }
+/// }
+/// }
+///
+/// // Create an instance of `Foo` with the `Opaque` wrapper.
+/// let foo = Foo {
+/// foo: Opaque::new(bindings::Foo { val: 0xdb }),
+/// };
+///
+/// assert_eq!(foo.get_val(), 0xdb);
+/// ```
#[repr(transparent)]
pub struct Opaque<T> {
value: UnsafeCell<MaybeUninit<T>>,
@@ -269,6 +300,22 @@ impl<T> Opaque<T> {
}
}
+ /// Creates a fallible pin-initializer from the given initializer closure.
+ ///
+ /// The returned initializer calls the given closure with the pointer to the inner `T` of this
+ /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
+ ///
+ /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
+ /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
+ /// to verify at that point that the inner value is valid.
+ pub fn try_ffi_init<E>(
+ init_func: impl FnOnce(*mut T) -> Result<(), E>,
+ ) -> impl PinInit<Self, E> {
+ // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
+ // initialize the `T`.
+ unsafe { init::pin_init_from_closure::<_, E>(move |slot| init_func(Self::raw_get(slot))) }
+ }
+
/// Returns a raw pointer to the opaque data.
pub const fn get(&self) -> *mut T {
UnsafeCell::get(&self.value).cast::<T>()
@@ -366,6 +413,37 @@ impl<T: AlwaysRefCounted> ARef<T> {
_p: PhantomData,
}
}
+
+ /// Consumes the `ARef`, returning a raw pointer.
+ ///
+ /// This function does not change the refcount. After calling this function, the caller is
+ /// responsible for the refcount previously managed by the `ARef`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use core::ptr::NonNull;
+ /// use kernel::types::{ARef, AlwaysRefCounted};
+ ///
+ /// struct Empty {}
+ ///
+ /// # // SAFETY: TODO.
+ /// unsafe impl AlwaysRefCounted for Empty {
+ /// fn inc_ref(&self) {}
+ /// unsafe fn dec_ref(_obj: NonNull<Self>) {}
+ /// }
+ ///
+ /// let mut data = Empty {};
+ /// let ptr = NonNull::<Empty>::new(&mut data as *mut _).unwrap();
+ /// # // SAFETY: TODO.
+ /// let data_ref: ARef<Empty> = unsafe { ARef::from_raw(ptr) };
+ /// let raw_ptr: NonNull<Empty> = ARef::into_raw(data_ref);
+ ///
+ /// assert_eq!(ptr, raw_ptr);
+ /// ```
+ pub fn into_raw(me: Self) -> NonNull<T> {
+ ManuallyDrop::new(me).ptr
+ }
}
impl<T: AlwaysRefCounted> Clone for ARef<T> {
@@ -402,6 +480,15 @@ impl<T: AlwaysRefCounted> Drop for ARef<T> {
}
/// A sum type that always holds either a value of type `L` or `R`.
+///
+/// # Examples
+///
+/// ```
+/// use kernel::types::Either;
+///
+/// let left_value: Either<i32, &str> = Either::Left(7);
+/// let right_value: Either<i32, &str> = Either::Right("right value");
+/// ```
pub enum Either<L, R> {
/// Constructs an instance of [`Either`] containing a value of type `L`.
Left(L),
@@ -410,66 +497,23 @@ pub enum Either<L, R> {
Right(R),
}
-/// Types for which any bit pattern is valid.
-///
-/// Not all types are valid for all values. For example, a `bool` must be either zero or one, so
-/// reading arbitrary bytes into something that contains a `bool` is not okay.
-///
-/// It's okay for the type to have padding, as initializing those bytes has no effect.
+/// Zero-sized type to mark types not [`Send`].
///
-/// # Safety
+/// Add this type as a field to your struct if your type should not be sent to a different task.
+/// Since [`Send`] is an auto trait, adding a single field that is `!Send` will ensure that the
+/// whole type is `!Send`.
///
-/// All bit-patterns must be valid for this type. This type must not have interior mutability.
-pub unsafe trait FromBytes {}
-
-// SAFETY: All bit patterns are acceptable values of the types below.
-unsafe impl FromBytes for u8 {}
-unsafe impl FromBytes for u16 {}
-unsafe impl FromBytes for u32 {}
-unsafe impl FromBytes for u64 {}
-unsafe impl FromBytes for usize {}
-unsafe impl FromBytes for i8 {}
-unsafe impl FromBytes for i16 {}
-unsafe impl FromBytes for i32 {}
-unsafe impl FromBytes for i64 {}
-unsafe impl FromBytes for isize {}
-// SAFETY: If all bit patterns are acceptable for individual values in an array, then all bit
-// patterns are also acceptable for arrays of that type.
-unsafe impl<T: FromBytes> FromBytes for [T] {}
-unsafe impl<T: FromBytes, const N: usize> FromBytes for [T; N] {}
-
-/// Types that can be viewed as an immutable slice of initialized bytes.
-///
-/// If a struct implements this trait, then it is okay to copy it byte-for-byte to userspace. This
-/// means that it should not have any padding, as padding bytes are uninitialized. Reading
-/// uninitialized memory is not just undefined behavior, it may even lead to leaking sensitive
-/// information on the stack to userspace.
-///
-/// The struct should also not hold kernel pointers, as kernel pointer addresses are also considered
-/// sensitive. However, leaking kernel pointers is not considered undefined behavior by Rust, so
-/// this is a correctness requirement, but not a safety requirement.
+/// If a type is `!Send` it is impossible to give control over an instance of the type to another
+/// task. This is useful to include in types that store or reference task-local information. A file
+/// descriptor is an example of such task-local information.
///
-/// # Safety
+/// This type also makes the type `!Sync`, which prevents immutable access to the value from
+/// several threads in parallel.
+pub type NotThreadSafe = PhantomData<*mut ()>;
+
+/// Used to construct instances of type [`NotThreadSafe`] similar to how `PhantomData` is
+/// constructed.
///
-/// Values of this type may not contain any uninitialized bytes. This type must not have interior
-/// mutability.
-pub unsafe trait AsBytes {}
-
-// SAFETY: Instances of the following types have no uninitialized portions.
-unsafe impl AsBytes for u8 {}
-unsafe impl AsBytes for u16 {}
-unsafe impl AsBytes for u32 {}
-unsafe impl AsBytes for u64 {}
-unsafe impl AsBytes for usize {}
-unsafe impl AsBytes for i8 {}
-unsafe impl AsBytes for i16 {}
-unsafe impl AsBytes for i32 {}
-unsafe impl AsBytes for i64 {}
-unsafe impl AsBytes for isize {}
-unsafe impl AsBytes for bool {}
-unsafe impl AsBytes for char {}
-unsafe impl AsBytes for str {}
-// SAFETY: If individual values in an array have no uninitialized portions, then the array itself
-// does not have any uninitialized portions either.
-unsafe impl<T: AsBytes> AsBytes for [T] {}
-unsafe impl<T: AsBytes, const N: usize> AsBytes for [T; N] {}
+/// [`NotThreadSafe`]: type@NotThreadSafe
+#[allow(non_upper_case_globals)]
+pub const NotThreadSafe: NotThreadSafe = PhantomData;