diff options
Diffstat (limited to 'lib')
| -rw-r--r-- | lib/crypto/tests/hash-test-template.h | 683 | 
1 files changed, 683 insertions, 0 deletions
| diff --git a/lib/crypto/tests/hash-test-template.h b/lib/crypto/tests/hash-test-template.h new file mode 100644 index 000000000000..ffee1741a1b3 --- /dev/null +++ b/lib/crypto/tests/hash-test-template.h @@ -0,0 +1,683 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Test cases for hash functions, including a benchmark.  This is included by + * KUnit test suites that want to use it.  See sha512_kunit.c for an example. + * + * Copyright 2025 Google LLC + */ +#include <kunit/test.h> +#include <linux/hrtimer.h> +#include <linux/timekeeping.h> +#include <linux/vmalloc.h> +#include <linux/workqueue.h> + +/* test_buf is a guarded buffer, i.e. &test_buf[TEST_BUF_LEN] is not mapped. */ +#define TEST_BUF_LEN 16384 +static u8 *test_buf; + +static u8 *orig_test_buf; + +static u64 random_seed; + +/* + * This is a simple linear congruential generator.  It is used only for testing, + * which does not require cryptographically secure random numbers.  A hard-coded + * algorithm is used instead of <linux/prandom.h> so that it matches the + * algorithm used by the test vector generation script.  This allows the input + * data in random test vectors to be concisely stored as just the seed. + */ +static u32 rand32(void) +{ +	random_seed = (random_seed * 25214903917 + 11) & ((1ULL << 48) - 1); +	return random_seed >> 16; +} + +static void rand_bytes(u8 *out, size_t len) +{ +	for (size_t i = 0; i < len; i++) +		out[i] = rand32(); +} + +static void rand_bytes_seeded_from_len(u8 *out, size_t len) +{ +	random_seed = len; +	rand_bytes(out, len); +} + +static bool rand_bool(void) +{ +	return rand32() % 2; +} + +/* Generate a random length, preferring small lengths. */ +static size_t rand_length(size_t max_len) +{ +	size_t len; + +	switch (rand32() % 3) { +	case 0: +		len = rand32() % 128; +		break; +	case 1: +		len = rand32() % 3072; +		break; +	default: +		len = rand32(); +		break; +	} +	return len % (max_len + 1); +} + +static size_t rand_offset(size_t max_offset) +{ +	return min(rand32() % 128, max_offset); +} + +static int hash_suite_init(struct kunit_suite *suite) +{ +	/* +	 * Allocate the test buffer using vmalloc() with a page-aligned length +	 * so that it is immediately followed by a guard page.  This allows +	 * buffer overreads to be detected, even in assembly code. +	 */ +	size_t alloc_len = round_up(TEST_BUF_LEN, PAGE_SIZE); + +	orig_test_buf = vmalloc(alloc_len); +	if (!orig_test_buf) +		return -ENOMEM; + +	test_buf = orig_test_buf + alloc_len - TEST_BUF_LEN; +	return 0; +} + +static void hash_suite_exit(struct kunit_suite *suite) +{ +	vfree(orig_test_buf); +	orig_test_buf = NULL; +	test_buf = NULL; +} + +/* + * Test the hash function against a list of test vectors. + * + * Note that it's only necessary to run each test vector in one way (e.g., + * one-shot instead of incremental), since consistency between different ways of + * using the APIs is verified by other test cases. + */ +static void test_hash_test_vectors(struct kunit *test) +{ +	for (size_t i = 0; i < ARRAY_SIZE(hash_testvecs); i++) { +		size_t data_len = hash_testvecs[i].data_len; +		u8 actual_hash[HASH_SIZE]; + +		KUNIT_ASSERT_LE(test, data_len, TEST_BUF_LEN); +		rand_bytes_seeded_from_len(test_buf, data_len); + +		HASH(test_buf, data_len, actual_hash); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, actual_hash, hash_testvecs[i].digest, HASH_SIZE, +			"Wrong result with test vector %zu; data_len=%zu", i, +			data_len); +	} +} + +/* + * Test that the hash function produces correct results for *every* length up to + * 4096 bytes.  To do this, generate seeded random data, then calculate a hash + * value for each length 0..4096, then hash the hash values.  Verify just the + * final hash value, which should match only when all hash values were correct. + */ +static void test_hash_all_lens_up_to_4096(struct kunit *test) +{ +	struct HASH_CTX ctx; +	u8 hash[HASH_SIZE]; + +	static_assert(TEST_BUF_LEN >= 4096); +	rand_bytes_seeded_from_len(test_buf, 4096); +	HASH_INIT(&ctx); +	for (size_t len = 0; len <= 4096; len++) { +		HASH(test_buf, len, hash); +		HASH_UPDATE(&ctx, hash, HASH_SIZE); +	} +	HASH_FINAL(&ctx, hash); +	KUNIT_ASSERT_MEMEQ(test, hash, hash_testvec_consolidated, HASH_SIZE); +} + +/* + * Test that the hash function produces the same result with a one-shot + * computation as it does with an incremental computation. + */ +static void test_hash_incremental_updates(struct kunit *test) +{ +	for (int i = 0; i < 1000; i++) { +		size_t total_len, offset; +		struct HASH_CTX ctx; +		u8 hash1[HASH_SIZE]; +		u8 hash2[HASH_SIZE]; +		size_t num_parts = 0; +		size_t remaining_len, cur_offset; + +		total_len = rand_length(TEST_BUF_LEN); +		offset = rand_offset(TEST_BUF_LEN - total_len); +		rand_bytes(&test_buf[offset], total_len); + +		/* Compute the hash value in one shot. */ +		HASH(&test_buf[offset], total_len, hash1); + +		/* +		 * Compute the hash value incrementally, using a randomly +		 * selected sequence of update lengths that sum to total_len. +		 */ +		HASH_INIT(&ctx); +		remaining_len = total_len; +		cur_offset = offset; +		while (rand_bool()) { +			size_t part_len = rand_length(remaining_len); + +			HASH_UPDATE(&ctx, &test_buf[cur_offset], part_len); +			num_parts++; +			cur_offset += part_len; +			remaining_len -= part_len; +		} +		if (remaining_len != 0 || rand_bool()) { +			HASH_UPDATE(&ctx, &test_buf[cur_offset], remaining_len); +			num_parts++; +		} +		HASH_FINAL(&ctx, hash2); + +		/* Verify that the two hash values are the same. */ +		KUNIT_ASSERT_MEMEQ_MSG( +			test, hash1, hash2, HASH_SIZE, +			"Incremental test failed with total_len=%zu num_parts=%zu offset=%zu", +			total_len, num_parts, offset); +	} +} + +/* + * Test that the hash function does not overrun any buffers.  Uses a guard page + * to catch buffer overruns even if they occur in assembly code. + */ +static void test_hash_buffer_overruns(struct kunit *test) +{ +	const size_t max_tested_len = TEST_BUF_LEN - sizeof(struct HASH_CTX); +	void *const buf_end = &test_buf[TEST_BUF_LEN]; +	struct HASH_CTX *guarded_ctx = buf_end - sizeof(*guarded_ctx); + +	rand_bytes(test_buf, TEST_BUF_LEN); + +	for (int i = 0; i < 100; i++) { +		size_t len = rand_length(max_tested_len); +		struct HASH_CTX ctx; +		u8 hash[HASH_SIZE]; + +		/* Check for overruns of the data buffer. */ +		HASH(buf_end - len, len, hash); +		HASH_INIT(&ctx); +		HASH_UPDATE(&ctx, buf_end - len, len); +		HASH_FINAL(&ctx, hash); + +		/* Check for overruns of the hash value buffer. */ +		HASH(test_buf, len, buf_end - HASH_SIZE); +		HASH_INIT(&ctx); +		HASH_UPDATE(&ctx, test_buf, len); +		HASH_FINAL(&ctx, buf_end - HASH_SIZE); + +		/* Check for overuns of the hash context. */ +		HASH_INIT(guarded_ctx); +		HASH_UPDATE(guarded_ctx, test_buf, len); +		HASH_FINAL(guarded_ctx, hash); +	} +} + +/* + * Test that the caller is permitted to alias the output digest and source data + * buffer, and also modify the source data buffer after it has been used. + */ +static void test_hash_overlaps(struct kunit *test) +{ +	const size_t max_tested_len = TEST_BUF_LEN - HASH_SIZE; +	struct HASH_CTX ctx; +	u8 hash[HASH_SIZE]; + +	rand_bytes(test_buf, TEST_BUF_LEN); + +	for (int i = 0; i < 100; i++) { +		size_t len = rand_length(max_tested_len); +		size_t offset = HASH_SIZE + rand_offset(max_tested_len - len); +		bool left_end = rand_bool(); +		u8 *ovl_hash = left_end ? &test_buf[offset] : +					  &test_buf[offset + len - HASH_SIZE]; + +		HASH(&test_buf[offset], len, hash); +		HASH(&test_buf[offset], len, ovl_hash); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, hash, ovl_hash, HASH_SIZE, +			"Overlap test 1 failed with len=%zu offset=%zu left_end=%d", +			len, offset, left_end); + +		/* Repeat the above test, but this time use init+update+final */ +		HASH(&test_buf[offset], len, hash); +		HASH_INIT(&ctx); +		HASH_UPDATE(&ctx, &test_buf[offset], len); +		HASH_FINAL(&ctx, ovl_hash); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, hash, ovl_hash, HASH_SIZE, +			"Overlap test 2 failed with len=%zu offset=%zu left_end=%d", +			len, offset, left_end); + +		/* Test modifying the source data after it was used. */ +		HASH(&test_buf[offset], len, hash); +		HASH_INIT(&ctx); +		HASH_UPDATE(&ctx, &test_buf[offset], len); +		rand_bytes(&test_buf[offset], len); +		HASH_FINAL(&ctx, ovl_hash); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, hash, ovl_hash, HASH_SIZE, +			"Overlap test 3 failed with len=%zu offset=%zu left_end=%d", +			len, offset, left_end); +	} +} + +/* + * Test that if the same data is hashed at different alignments in memory, the + * results are the same. + */ +static void test_hash_alignment_consistency(struct kunit *test) +{ +	u8 hash1[128 + HASH_SIZE]; +	u8 hash2[128 + HASH_SIZE]; + +	for (int i = 0; i < 100; i++) { +		size_t len = rand_length(TEST_BUF_LEN); +		size_t data_offs1 = rand_offset(TEST_BUF_LEN - len); +		size_t data_offs2 = rand_offset(TEST_BUF_LEN - len); +		size_t hash_offs1 = rand_offset(128); +		size_t hash_offs2 = rand_offset(128); + +		rand_bytes(&test_buf[data_offs1], len); +		HASH(&test_buf[data_offs1], len, &hash1[hash_offs1]); +		memmove(&test_buf[data_offs2], &test_buf[data_offs1], len); +		HASH(&test_buf[data_offs2], len, &hash2[hash_offs2]); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, &hash1[hash_offs1], &hash2[hash_offs2], HASH_SIZE, +			"Alignment consistency test failed with len=%zu data_offs=(%zu,%zu) hash_offs=(%zu,%zu)", +			len, data_offs1, data_offs2, hash_offs1, hash_offs2); +	} +} + +/* Test that HASH_FINAL zeroizes the context. */ +static void test_hash_ctx_zeroization(struct kunit *test) +{ +	static const u8 zeroes[sizeof(struct HASH_CTX)]; +	struct HASH_CTX ctx; + +	rand_bytes(test_buf, 128); +	HASH_INIT(&ctx); +	HASH_UPDATE(&ctx, test_buf, 128); +	HASH_FINAL(&ctx, test_buf); +	KUNIT_ASSERT_MEMEQ_MSG(test, &ctx, zeroes, sizeof(ctx), +			       "Hash context was not zeroized by finalization"); +} + +#define IRQ_TEST_HRTIMER_INTERVAL us_to_ktime(5) + +struct hash_irq_test_state { +	bool (*func)(void *test_specific_state); +	void *test_specific_state; +	bool task_func_reported_failure; +	bool hardirq_func_reported_failure; +	bool softirq_func_reported_failure; +	unsigned long hardirq_func_calls; +	unsigned long softirq_func_calls; +	struct hrtimer timer; +	struct work_struct bh_work; +}; + +static enum hrtimer_restart hash_irq_test_timer_func(struct hrtimer *timer) +{ +	struct hash_irq_test_state *state = +		container_of(timer, typeof(*state), timer); + +	WARN_ON_ONCE(!in_hardirq()); +	state->hardirq_func_calls++; + +	if (!state->func(state->test_specific_state)) +		state->hardirq_func_reported_failure = true; + +	hrtimer_forward_now(&state->timer, IRQ_TEST_HRTIMER_INTERVAL); +	queue_work(system_bh_wq, &state->bh_work); +	return HRTIMER_RESTART; +} + +static void hash_irq_test_bh_work_func(struct work_struct *work) +{ +	struct hash_irq_test_state *state = +		container_of(work, typeof(*state), bh_work); + +	WARN_ON_ONCE(!in_serving_softirq()); +	state->softirq_func_calls++; + +	if (!state->func(state->test_specific_state)) +		state->softirq_func_reported_failure = true; +} + +/* + * Helper function which repeatedly runs the given @func in task, softirq, and + * hardirq context concurrently, and reports a failure to KUnit if any + * invocation of @func in any context returns false.  @func is passed + * @test_specific_state as its argument.  At most 3 invocations of @func will + * run concurrently: one in each of task, softirq, and hardirq context. + * + * The main purpose of this interrupt context testing is to validate fallback + * code paths that run in contexts where the normal code path cannot be used, + * typically due to the FPU or vector registers already being in-use in kernel + * mode.  These code paths aren't covered when the test code is executed only by + * the KUnit test runner thread in task context.  The reason for the concurrency + * is because merely using hardirq context is not sufficient to reach a fallback + * code path on some architectures; the hardirq actually has to occur while the + * FPU or vector unit was already in-use in kernel mode. + * + * Another purpose of this testing is to detect issues with the architecture's + * irq_fpu_usable() and kernel_fpu_begin/end() or equivalent functions, + * especially in softirq context when the softirq may have interrupted a task + * already using kernel-mode FPU or vector (if the arch didn't prevent that). + * Crypto functions are often executed in softirqs, so this is important. + */ +static void run_irq_test(struct kunit *test, bool (*func)(void *), +			 int max_iterations, void *test_specific_state) +{ +	struct hash_irq_test_state state = { +		.func = func, +		.test_specific_state = test_specific_state, +	}; +	unsigned long end_jiffies; + +	/* +	 * Set up a hrtimer (the way we access hardirq context) and a work +	 * struct for the BH workqueue (the way we access softirq context). +	 */ +	hrtimer_setup_on_stack(&state.timer, hash_irq_test_timer_func, +			       CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); +	INIT_WORK(&state.bh_work, hash_irq_test_bh_work_func); + +	/* Run for up to max_iterations or 1 second, whichever comes first. */ +	end_jiffies = jiffies + HZ; +	hrtimer_start(&state.timer, IRQ_TEST_HRTIMER_INTERVAL, +		      HRTIMER_MODE_REL_HARD); +	for (int i = 0; i < max_iterations && !time_after(jiffies, end_jiffies); +	     i++) { +		if (!func(test_specific_state)) +			state.task_func_reported_failure = true; +	} + +	/* Cancel the timer and work. */ +	hrtimer_cancel(&state.timer); +	flush_work(&state.bh_work); + +	/* Sanity check: the timer and BH functions should have been run. */ +	KUNIT_EXPECT_GT_MSG(test, state.hardirq_func_calls, 0, +			    "Timer function was not called"); +	KUNIT_EXPECT_GT_MSG(test, state.softirq_func_calls, 0, +			    "BH work function was not called"); + +	/* Check for incorrect hash values reported from any context. */ +	KUNIT_EXPECT_FALSE_MSG( +		test, state.task_func_reported_failure, +		"Incorrect hash values reported from task context"); +	KUNIT_EXPECT_FALSE_MSG( +		test, state.hardirq_func_reported_failure, +		"Incorrect hash values reported from hardirq context"); +	KUNIT_EXPECT_FALSE_MSG( +		test, state.softirq_func_reported_failure, +		"Incorrect hash values reported from softirq context"); +} + +#define IRQ_TEST_DATA_LEN 256 +#define IRQ_TEST_NUM_BUFFERS 3 /* matches max concurrency level */ + +struct hash_irq_test1_state { +	u8 expected_hashes[IRQ_TEST_NUM_BUFFERS][HASH_SIZE]; +	atomic_t seqno; +}; + +/* + * Compute the hash of one of the test messages and verify that it matches the + * expected hash from @state->expected_hashes.  To increase the chance of + * detecting problems, cycle through multiple messages. + */ +static bool hash_irq_test1_func(void *state_) +{ +	struct hash_irq_test1_state *state = state_; +	u32 i = (u32)atomic_inc_return(&state->seqno) % IRQ_TEST_NUM_BUFFERS; +	u8 actual_hash[HASH_SIZE]; + +	HASH(&test_buf[i * IRQ_TEST_DATA_LEN], IRQ_TEST_DATA_LEN, actual_hash); +	return memcmp(actual_hash, state->expected_hashes[i], HASH_SIZE) == 0; +} + +/* + * Test that if hashes are computed in task, softirq, and hardirq context + * concurrently, then all results are as expected. + */ +static void test_hash_interrupt_context_1(struct kunit *test) +{ +	struct hash_irq_test1_state state = {}; + +	/* Prepare some test messages and compute the expected hash of each. */ +	rand_bytes(test_buf, IRQ_TEST_NUM_BUFFERS * IRQ_TEST_DATA_LEN); +	for (int i = 0; i < IRQ_TEST_NUM_BUFFERS; i++) +		HASH(&test_buf[i * IRQ_TEST_DATA_LEN], IRQ_TEST_DATA_LEN, +		     state.expected_hashes[i]); + +	run_irq_test(test, hash_irq_test1_func, 100000, &state); +} + +struct hash_irq_test2_hash_ctx { +	struct HASH_CTX hash_ctx; +	atomic_t in_use; +	int offset; +	int step; +}; + +struct hash_irq_test2_state { +	struct hash_irq_test2_hash_ctx ctxs[IRQ_TEST_NUM_BUFFERS]; +	u8 expected_hash[HASH_SIZE]; +	u16 update_lens[32]; +	int num_steps; +}; + +static bool hash_irq_test2_func(void *state_) +{ +	struct hash_irq_test2_state *state = state_; +	struct hash_irq_test2_hash_ctx *ctx; +	bool ret = true; + +	for (ctx = &state->ctxs[0]; ctx < &state->ctxs[ARRAY_SIZE(state->ctxs)]; +	     ctx++) { +		if (atomic_cmpxchg(&ctx->in_use, 0, 1) == 0) +			break; +	} +	if (WARN_ON_ONCE(ctx == &state->ctxs[ARRAY_SIZE(state->ctxs)])) { +		/* +		 * This should never happen, as the number of contexts is equal +		 * to the maximum concurrency level of run_irq_test(). +		 */ +		return false; +	} + +	if (ctx->step == 0) { +		/* Init step */ +		HASH_INIT(&ctx->hash_ctx); +		ctx->offset = 0; +		ctx->step++; +	} else if (ctx->step < state->num_steps - 1) { +		/* Update step */ +		HASH_UPDATE(&ctx->hash_ctx, &test_buf[ctx->offset], +			    state->update_lens[ctx->step - 1]); +		ctx->offset += state->update_lens[ctx->step - 1]; +		ctx->step++; +	} else { +		/* Final step */ +		u8 actual_hash[HASH_SIZE]; + +		if (WARN_ON_ONCE(ctx->offset != TEST_BUF_LEN)) +			ret = false; +		HASH_FINAL(&ctx->hash_ctx, actual_hash); +		if (memcmp(actual_hash, state->expected_hash, HASH_SIZE) != 0) +			ret = false; +		ctx->step = 0; +	} +	atomic_set_release(&ctx->in_use, 0); +	return ret; +} + +/* + * Test that if hashes are computed in task, softirq, and hardirq context + * concurrently, *including doing different parts of the same incremental + * computation in different contexts*, then all results are as expected. + * Besides detecting bugs similar to those that test_hash_interrupt_context_1 + * can detect, this test case can also detect bugs where hash function + * implementations don't correctly handle these mixed incremental computations. + */ +static void test_hash_interrupt_context_2(struct kunit *test) +{ +	struct hash_irq_test2_state *state; +	int remaining = TEST_BUF_LEN; + +	state = kunit_kzalloc(test, sizeof(*state), GFP_KERNEL); +	KUNIT_ASSERT_NOT_NULL(test, state); + +	rand_bytes(test_buf, TEST_BUF_LEN); +	HASH(test_buf, TEST_BUF_LEN, state->expected_hash); + +	/* +	 * Generate a list of update lengths to use.  Ensure that it contains +	 * multiple entries but is limited to a maximum length. +	 */ +	static_assert(TEST_BUF_LEN / 4096 > 1); +	for (state->num_steps = 0; +	     state->num_steps < ARRAY_SIZE(state->update_lens) - 1 && remaining; +	     state->num_steps++) { +		state->update_lens[state->num_steps] = +			rand_length(min(remaining, 4096)); +		remaining -= state->update_lens[state->num_steps]; +	} +	if (remaining) +		state->update_lens[state->num_steps++] = remaining; +	state->num_steps += 2; /* for init and final */ + +	run_irq_test(test, hash_irq_test2_func, 250000, state); +} + +#define UNKEYED_HASH_KUNIT_CASES                     \ +	KUNIT_CASE(test_hash_test_vectors),          \ +	KUNIT_CASE(test_hash_all_lens_up_to_4096),   \ +	KUNIT_CASE(test_hash_incremental_updates),   \ +	KUNIT_CASE(test_hash_buffer_overruns),       \ +	KUNIT_CASE(test_hash_overlaps),              \ +	KUNIT_CASE(test_hash_alignment_consistency), \ +	KUNIT_CASE(test_hash_ctx_zeroization),       \ +	KUNIT_CASE(test_hash_interrupt_context_1),   \ +	KUNIT_CASE(test_hash_interrupt_context_2) +/* benchmark_hash is omitted so that the suites can put it last. */ + +#ifdef HMAC +/* + * Test the corresponding HMAC variant. + * + * This test case is fairly short, since HMAC is just a simple C wrapper around + * the underlying unkeyed hash function, which is already well-tested by the + * other test cases.  It's not useful to test things like data alignment or + * interrupt context again for HMAC, nor to have a long list of test vectors. + * + * Thus, just do a single consolidated test, which covers all data lengths up to + * 4096 bytes and all key lengths up to 292 bytes.  For each data length, select + * a key length, generate the inputs from a seed, and compute the HMAC value. + * Concatenate all these HMAC values together, and compute the HMAC of that. + * Verify that value.  If this fails, then the HMAC implementation is wrong. + * This won't show which specific input failed, but that should be fine.  Any + * failure would likely be non-input-specific or also show in the unkeyed tests. + */ +static void test_hmac(struct kunit *test) +{ +	static const u8 zeroes[sizeof(struct HMAC_CTX)]; +	u8 *raw_key; +	struct HMAC_KEY key; +	struct HMAC_CTX ctx; +	u8 mac[HASH_SIZE]; +	u8 mac2[HASH_SIZE]; + +	static_assert(TEST_BUF_LEN >= 4096 + 293); +	rand_bytes_seeded_from_len(test_buf, 4096); +	raw_key = &test_buf[4096]; + +	rand_bytes_seeded_from_len(raw_key, 32); +	HMAC_PREPAREKEY(&key, raw_key, 32); +	HMAC_INIT(&ctx, &key); +	for (size_t data_len = 0; data_len <= 4096; data_len++) { +		/* +		 * Cycle through key lengths as well.  Somewhat arbitrarily go +		 * up to 293, which is somewhat larger than the largest hash +		 * block size (which is the size at which the key starts being +		 * hashed down to one block); going higher would not be useful. +		 * To reduce correlation with data_len, use a prime number here. +		 */ +		size_t key_len = data_len % 293; + +		HMAC_UPDATE(&ctx, test_buf, data_len); + +		rand_bytes_seeded_from_len(raw_key, key_len); +		HMAC_USINGRAWKEY(raw_key, key_len, test_buf, data_len, mac); +		HMAC_UPDATE(&ctx, mac, HASH_SIZE); + +		/* Verify that HMAC() is consistent with HMAC_USINGRAWKEY(). */ +		HMAC_PREPAREKEY(&key, raw_key, key_len); +		HMAC(&key, test_buf, data_len, mac2); +		KUNIT_ASSERT_MEMEQ_MSG( +			test, mac, mac2, HASH_SIZE, +			"HMAC gave different results with raw and prepared keys"); +	} +	HMAC_FINAL(&ctx, mac); +	KUNIT_EXPECT_MEMEQ_MSG(test, mac, hmac_testvec_consolidated, HASH_SIZE, +			       "HMAC gave wrong result"); +	KUNIT_EXPECT_MEMEQ_MSG(test, &ctx, zeroes, sizeof(ctx), +			       "HMAC context was not zeroized by finalization"); +} +#define HASH_KUNIT_CASES UNKEYED_HASH_KUNIT_CASES, KUNIT_CASE(test_hmac) +#else +#define HASH_KUNIT_CASES UNKEYED_HASH_KUNIT_CASES +#endif + +/* Benchmark the hash function on various data lengths. */ +static void benchmark_hash(struct kunit *test) +{ +	static const size_t lens_to_test[] = { +		1,   16,  64,	127,  128,  200,   256, +		511, 512, 1024, 3173, 4096, 16384, +	}; +	u8 hash[HASH_SIZE]; + +	if (!IS_ENABLED(CONFIG_CRYPTO_LIB_BENCHMARK)) +		kunit_skip(test, "not enabled"); + +	/* Warm-up */ +	for (size_t i = 0; i < 10000000; i += TEST_BUF_LEN) +		HASH(test_buf, TEST_BUF_LEN, hash); + +	for (size_t i = 0; i < ARRAY_SIZE(lens_to_test); i++) { +		size_t len = lens_to_test[i]; +		/* The '+ 128' tries to account for per-message overhead. */ +		size_t num_iters = 10000000 / (len + 128); +		u64 t; + +		KUNIT_ASSERT_LE(test, len, TEST_BUF_LEN); +		preempt_disable(); +		t = ktime_get_ns(); +		for (size_t j = 0; j < num_iters; j++) +			HASH(test_buf, len, hash); +		t = ktime_get_ns() - t; +		preempt_enable(); +		kunit_info(test, "len=%zu: %llu MB/s", len, +			   div64_u64((u64)len * num_iters * 1000, t ?: 1)); +	} +} | 
