diff options
Diffstat (limited to 'drivers/power/supply/intel_dc_ti_battery.c')
-rw-r--r-- | drivers/power/supply/intel_dc_ti_battery.c | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/drivers/power/supply/intel_dc_ti_battery.c b/drivers/power/supply/intel_dc_ti_battery.c new file mode 100644 index 000000000000..56b0c92e9d28 --- /dev/null +++ b/drivers/power/supply/intel_dc_ti_battery.c @@ -0,0 +1,389 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Battery driver for the coulomb-counter of the Intel Dollar Cove TI PMIC + * + * Note the Intel Dollar Cove TI PMIC coulomb-counter is not a full-featured + * autonomous fuel-gauge. It is intended to work together with an always on + * micro-controller monitoring it. + * + * Since Linux does not monitor coulomb-counter changes while the device + * is off or suspended, voltage based capacity estimation from + * the adc-battery-helper code is used. + * + * Copyright (C) 2024 Hans de Goede <hansg@kernel.org> + * + * Register definitions and calibration code was taken from + * kernel/drivers/platform/x86/dc_ti_cc.c from the Acer A1-840 Android kernel + * which has the following copyright header: + * + * Copyright (C) 2014 Intel Corporation + * Author: Ramakrishna Pallala <ramakrishna.pallala@intel.com> + * + * dc_ti_cc.c is part of the Acer A1-840 Android kernel source-code archive + * named: "App. Guide_Acer_20151221_A_A.zip" + * which is distributed by Acer from the Acer A1-840 support page: + * https://www.acer.com/us-en/support/product-support/A1-840/downloads + */ + +#include <linux/acpi.h> +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/cleanup.h> +#include <linux/err.h> +#include <linux/gpio/consumer.h> +#include <linux/iio/consumer.h> +#include <linux/mfd/intel_soc_pmic.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/power_supply.h> +#include <linux/property.h> +#include <linux/regmap.h> +#include <linux/timekeeping.h> + +#include "adc-battery-helper.h" + +#define DC_TI_PMIC_VERSION_REG 0x00 +#define PMIC_VERSION_A0 0xC0 +#define PMIC_VERSION_A1 0xC1 + +#define DC_TI_CC_CNTL_REG 0x60 +#define CC_CNTL_CC_CTR_EN BIT(0) +#define CC_CNTL_CC_CLR_EN BIT(1) +#define CC_CNTL_CC_CAL_EN BIT(2) +#define CC_CNTL_CC_OFFSET_EN BIT(3) +#define CC_CNTL_SMPL_INTVL GENMASK(5, 4) +#define CC_CNTL_SMPL_INTVL_15MS FIELD_PREP(CC_CNTL_SMPL_INTVL, 0) +#define CC_CNTL_SMPL_INTVL_62MS FIELD_PREP(CC_CNTL_SMPL_INTVL, 1) +#define CC_CNTL_SMPL_INTVL_125MS FIELD_PREP(CC_CNTL_SMPL_INTVL, 2) +#define CC_CNTL_SMPL_INTVL_250MS FIELD_PREP(CC_CNTL_SMPL_INTVL, 3) + +#define DC_TI_SMPL_CTR0_REG 0x69 +#define DC_TI_SMPL_CTR1_REG 0x68 +#define DC_TI_SMPL_CTR2_REG 0x67 + +#define DC_TI_CC_OFFSET_HI_REG 0x61 +#define CC_OFFSET_HI_MASK 0x3F +#define DC_TI_CC_OFFSET_LO_REG 0x62 + +#define DC_TI_SW_OFFSET_REG 0x6C + +#define DC_TI_CC_ACC3_REG 0x63 +#define DC_TI_CC_ACC2_REG 0x64 +#define DC_TI_CC_ACC1_REG 0x65 +#define DC_TI_CC_ACC0_REG 0x66 + +#define DC_TI_CC_INTG1_REG 0x6A +#define DC_TI_CC_INTG1_MASK 0x3F +#define DC_TI_CC_INTG0_REG 0x6B + +#define DC_TI_EEPROM_ACCESS_CONTROL 0x88 +#define EEPROM_UNLOCK 0xDA +#define EEPROM_LOCK 0x00 + +#define DC_TI_EEPROM_CC_GAIN_REG 0xF4 +#define CC_TRIM_REVISION GENMASK(3, 0) +#define CC_GAIN_CORRECTION GENMASK(7, 4) + +#define PMIC_VERSION_A0_TRIM_REV 3 +#define PMIC_VERSION_A1_MIN_TRIM_REV 1 + +#define DC_TI_EEPROM_CC_OFFSET_REG 0xFD + +#define DC_TI_EEPROM_CTRL 0xFE +#define EEPROM_BANK0_SEL 0x01 +#define EEPROM_BANK1_SEL 0x02 + +#define SMPL_INTVL_US 15000 +#define SMPL_INTVL_MS (SMPL_INTVL_US / USEC_PER_MSEC) +#define CALIBRATION_TIME_US (10 * SMPL_INTVL_US) +#define SLEEP_SLACK_US 2500 + +/* CC gain correction is in 0.0025 increments */ +#define CC_GAIN_STEP 25 +#define CC_GAIN_DIV 10000 + +/* CC offset is in 0.5 units per 250ms (default sample interval) */ +#define CC_OFFSET_DIV 2 +#define CC_OFFSET_SMPL_INTVL_MS 250 + +/* CC accumulator scale is 366.2 ųCoulumb / unit */ +#define CC_ACC_TO_UA(acc, smpl_ctr) \ + ((acc) * (3662 * MSEC_PER_SEC / 10) / ((smpl_ctr) * SMPL_INTVL_MS)) + +#define DEV_NAME "chtdc_ti_battery" + +struct dc_ti_battery_chip { + /* Must be the first member see adc-battery-helper documentation */ + struct adc_battery_helper helper; + struct device *dev; + struct regmap *regmap; + struct iio_channel *vbat_channel; + struct power_supply *psy; + int cc_gain; + int cc_offset; +}; + +static int dc_ti_battery_get_voltage_and_current_now(struct power_supply *psy, int *volt, int *curr) +{ + struct dc_ti_battery_chip *chip = power_supply_get_drvdata(psy); + s64 cnt_start_usec, now_usec, sleep_usec; + unsigned int reg_val; + s32 acc, smpl_ctr; + int ret; + + /* + * Enable coulomb-counter before reading Vbat from ADC, so that the CC + * samples are from the same time period as the Vbat reading. + */ + ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG, + CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN | CC_CNTL_CC_CTR_EN); + if (ret) + goto out_err; + + cnt_start_usec = ktime_get_ns() / NSEC_PER_USEC; + + /* Read Vbat, convert IIO mV to power-supply ųV */ + ret = iio_read_channel_processed_scale(chip->vbat_channel, volt, 1000); + if (ret < 0) + goto out_err; + + /* Sleep at least 3 sample-times + slack to get 3+ CC samples */ + now_usec = ktime_get_ns() / NSEC_PER_USEC; + sleep_usec = 3 * SMPL_INTVL_US + SLEEP_SLACK_US - (now_usec - cnt_start_usec); + if (sleep_usec > 0 && sleep_usec < 1000000) + usleep_range(sleep_usec, sleep_usec + SLEEP_SLACK_US); + + /* + * The PMIC latches the coulomb- and sample-counters upon reading the + * CC_ACC0 register. Reading multiple registers at once is not supported. + * + * Step 1: Read CC_ACC0 - CC_ACC3 + */ + ret = regmap_read(chip->regmap, DC_TI_CC_ACC0_REG, ®_val); + if (ret) + goto out_err; + + acc = reg_val; + + ret = regmap_read(chip->regmap, DC_TI_CC_ACC1_REG, ®_val); + if (ret) + goto out_err; + + acc |= reg_val << 8; + + ret = regmap_read(chip->regmap, DC_TI_CC_ACC2_REG, ®_val); + if (ret) + goto out_err; + + acc |= reg_val << 16; + + ret = regmap_read(chip->regmap, DC_TI_CC_ACC3_REG, ®_val); + if (ret) + goto out_err; + + acc |= reg_val << 24; + + /* Step 2: Read SMPL_CTR0 - SMPL_CTR2 */ + ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR0_REG, ®_val); + if (ret) + goto out_err; + + smpl_ctr = reg_val; + + ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR1_REG, ®_val); + if (ret) + goto out_err; + + smpl_ctr |= reg_val << 8; + + ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR2_REG, ®_val); + if (ret) + goto out_err; + + smpl_ctr |= reg_val << 16; + + /* Disable the coulumb-counter again */ + ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG, + CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN); + if (ret) + goto out_err; + + /* Apply calibration */ + acc -= chip->cc_offset * smpl_ctr * SMPL_INTVL_MS / + (CC_OFFSET_SMPL_INTVL_MS * CC_OFFSET_DIV); + acc = acc * (CC_GAIN_DIV - chip->cc_gain * CC_GAIN_STEP) / CC_GAIN_DIV; + *curr = CC_ACC_TO_UA(acc, smpl_ctr); + + return 0; + +out_err: + dev_err(chip->dev, "IO-error %d communicating with PMIC\n", ret); + return ret; +} + +static const struct power_supply_desc dc_ti_battery_psy_desc = { + .name = "intel_dc_ti_battery", + .type = POWER_SUPPLY_TYPE_BATTERY, + .get_property = adc_battery_helper_get_property, + .external_power_changed = adc_battery_helper_external_power_changed, + .properties = adc_battery_helper_properties, + .num_properties = ADC_HELPER_NUM_PROPERTIES, +}; + +static int dc_ti_battery_hw_init(struct dc_ti_battery_chip *chip) +{ + u8 pmic_version, cc_trim_rev; + unsigned int reg_val; + int ret; + + /* Set sample rate to 15 ms and calibrate the coulomb-counter */ + ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG, + CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN | + CC_CNTL_CC_CAL_EN | CC_CNTL_CC_CTR_EN); + if (ret) + goto out; + + fsleep(CALIBRATION_TIME_US); + + /* Disable coulomb-counter it is only used while getting the current */ + ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG, + CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN); + if (ret) + goto out; + + ret = regmap_read(chip->regmap, DC_TI_PMIC_VERSION_REG, ®_val); + if (ret) + goto out; + + pmic_version = reg_val; + + /* + * As per the PMIC vendor (TI), the calibration offset and gain err + * values are stored in EEPROM Bank 0 and Bank 1 of the PMIC. + * We need to read the stored offset and gain margins and need + * to apply the corrections to the raw coulomb counter value. + */ + + /* Unlock the EEPROM Access */ + ret = regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_UNLOCK); + if (ret) + goto out; + + /* Select Bank 1 to read CC GAIN Err correction */ + ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK1_SEL); + if (ret) + goto out; + + ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_GAIN_REG, ®_val); + if (ret) + goto out; + + cc_trim_rev = FIELD_GET(CC_TRIM_REVISION, reg_val); + + dev_dbg(chip->dev, "pmic-ver 0x%02x trim-rev %d\n", pmic_version, cc_trim_rev); + + if (!(pmic_version == PMIC_VERSION_A0 && cc_trim_rev == PMIC_VERSION_A0_TRIM_REV) && + !(pmic_version == PMIC_VERSION_A1 && cc_trim_rev >= PMIC_VERSION_A1_MIN_TRIM_REV)) { + dev_dbg(chip->dev, "unsupported trim-revision, using uncalibrated CC values\n"); + goto out_relock; + } + + chip->cc_gain = 1 - (int)FIELD_GET(CC_GAIN_CORRECTION, reg_val); + + /* Select Bank 0 to read CC OFFSET Correction */ + ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK0_SEL); + if (ret) + goto out_relock; + + ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_OFFSET_REG, ®_val); + if (ret) + goto out_relock; + + chip->cc_offset = (s8)reg_val; + + dev_dbg(chip->dev, "cc-offset %d cc-gain %d\n", chip->cc_offset, chip->cc_gain); + +out_relock: + /* Re-lock the EEPROM Access */ + regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_LOCK); +out: + if (ret) + dev_err(chip->dev, "IO-error %d initializing PMIC\n", ret); + + return ret; +} + +static int dc_ti_battery_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent); + struct power_supply_config psy_cfg = {}; + struct fwnode_reference_args args; + struct gpio_desc *charge_finished; + struct dc_ti_battery_chip *chip; + int ret; + + /* On most devices with a Dollar Cove TI the battery is handled by ACPI */ + if (!acpi_quirk_skip_acpi_ac_and_battery()) + return -ENODEV; + + /* ACPI glue code adds a "monitored-battery" fwnode, wait for this */ + ret = fwnode_property_get_reference_args(dev_fwnode(dev), "monitored-battery", + NULL, 0, 0, &args); + if (ret) { + dev_dbg(dev, "fwnode_property_get_ref() ret %d\n", ret); + return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for monitored-battery fwnode\n"); + } + + fwnode_handle_put(args.fwnode); + + chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->dev = dev; + chip->regmap = pmic->regmap; + + chip->vbat_channel = devm_iio_channel_get(dev, "VBAT"); + if (IS_ERR(chip->vbat_channel)) { + dev_dbg(dev, "devm_iio_channel_get() ret %ld\n", PTR_ERR(chip->vbat_channel)); + return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for VBAT IIO channel\n"); + } + + charge_finished = devm_gpiod_get_optional(dev, "charged", GPIOD_IN); + if (IS_ERR(charge_finished)) + return dev_err_probe(dev, PTR_ERR(charge_finished), "Getting charged GPIO\n"); + + ret = dc_ti_battery_hw_init(chip); + if (ret) + return ret; + + platform_set_drvdata(pdev, chip); + + psy_cfg.drv_data = chip; + chip->psy = devm_power_supply_register(dev, &dc_ti_battery_psy_desc, &psy_cfg); + if (IS_ERR(chip->psy)) + return PTR_ERR(chip->psy); + + return adc_battery_helper_init(&chip->helper, chip->psy, + dc_ti_battery_get_voltage_and_current_now, + charge_finished); +} + +static DEFINE_RUNTIME_DEV_PM_OPS(dc_ti_battery_pm_ops, adc_battery_helper_suspend, + adc_battery_helper_resume, NULL); + +static struct platform_driver dc_ti_battery_driver = { + .driver = { + .name = DEV_NAME, + .pm = pm_sleep_ptr(&dc_ti_battery_pm_ops), + }, + .probe = dc_ti_battery_probe, +}; +module_platform_driver(dc_ti_battery_driver); + +MODULE_ALIAS("platform:" DEV_NAME); +MODULE_AUTHOR("Hans de Goede <hansg@kernel.org>"); +MODULE_DESCRIPTION("Intel Dollar Cove (TI) battery driver"); +MODULE_LICENSE("GPL"); |