summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/linux/gfp.h2
-rw-r--r--include/linux/kasan.h13
-rw-r--r--include/linux/local_lock.h2
-rw-r--r--include/linux/local_lock_internal.h7
-rw-r--r--include/linux/memcontrol.h12
-rw-r--r--include/linux/rtmutex.h10
-rw-r--r--include/linux/slab.h4
-rw-r--r--kernel/bpf/stream.c2
-rw-r--r--kernel/bpf/syscall.c2
-rw-r--r--kernel/locking/rtmutex_common.h9
-rw-r--r--mm/Kconfig1
-rw-r--r--mm/internal.h4
-rw-r--r--mm/kasan/common.c5
-rw-r--r--mm/page_alloc.c55
-rw-r--r--mm/slab.h7
-rw-r--r--mm/slab_common.c3
-rw-r--r--mm/slub.c526
17 files changed, 571 insertions, 93 deletions
diff --git a/include/linux/gfp.h b/include/linux/gfp.h
index 5ebf26fcdcfa..0ceb4e09306c 100644
--- a/include/linux/gfp.h
+++ b/include/linux/gfp.h
@@ -354,7 +354,7 @@ static inline struct page *alloc_page_vma_noprof(gfp_t gfp,
}
#define alloc_page_vma(...) alloc_hooks(alloc_page_vma_noprof(__VA_ARGS__))
-struct page *alloc_pages_nolock_noprof(int nid, unsigned int order);
+struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order);
#define alloc_pages_nolock(...) alloc_hooks(alloc_pages_nolock_noprof(__VA_ARGS__))
extern unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order);
diff --git a/include/linux/kasan.h b/include/linux/kasan.h
index 890011071f2b..acdc8cb0152e 100644
--- a/include/linux/kasan.h
+++ b/include/linux/kasan.h
@@ -200,7 +200,7 @@ static __always_inline bool kasan_slab_pre_free(struct kmem_cache *s,
}
bool __kasan_slab_free(struct kmem_cache *s, void *object, bool init,
- bool still_accessible);
+ bool still_accessible, bool no_quarantine);
/**
* kasan_slab_free - Poison, initialize, and quarantine a slab object.
* @object: Object to be freed.
@@ -226,11 +226,13 @@ bool __kasan_slab_free(struct kmem_cache *s, void *object, bool init,
* @Return true if KASAN took ownership of the object; false otherwise.
*/
static __always_inline bool kasan_slab_free(struct kmem_cache *s,
- void *object, bool init,
- bool still_accessible)
+ void *object, bool init,
+ bool still_accessible,
+ bool no_quarantine)
{
if (kasan_enabled())
- return __kasan_slab_free(s, object, init, still_accessible);
+ return __kasan_slab_free(s, object, init, still_accessible,
+ no_quarantine);
return false;
}
@@ -427,7 +429,8 @@ static inline bool kasan_slab_pre_free(struct kmem_cache *s, void *object)
}
static inline bool kasan_slab_free(struct kmem_cache *s, void *object,
- bool init, bool still_accessible)
+ bool init, bool still_accessible,
+ bool no_quarantine)
{
return false;
}
diff --git a/include/linux/local_lock.h b/include/linux/local_lock.h
index 2ba846419524..0d91d060e3e9 100644
--- a/include/linux/local_lock.h
+++ b/include/linux/local_lock.h
@@ -66,6 +66,8 @@
*/
#define local_trylock(lock) __local_trylock(this_cpu_ptr(lock))
+#define local_lock_is_locked(lock) __local_lock_is_locked(lock)
+
/**
* local_trylock_irqsave - Try to acquire a per CPU local lock, save and disable
* interrupts if acquired
diff --git a/include/linux/local_lock_internal.h b/include/linux/local_lock_internal.h
index 949de37700db..a4dc479157b5 100644
--- a/include/linux/local_lock_internal.h
+++ b/include/linux/local_lock_internal.h
@@ -165,6 +165,9 @@ do { \
!!tl; \
})
+/* preemption or migration must be disabled before calling __local_lock_is_locked */
+#define __local_lock_is_locked(lock) READ_ONCE(this_cpu_ptr(lock)->acquired)
+
#define __local_lock_release(lock) \
do { \
local_trylock_t *tl; \
@@ -285,4 +288,8 @@ do { \
__local_trylock(lock); \
})
+/* migration must be disabled before calling __local_lock_is_locked */
+#define __local_lock_is_locked(__lock) \
+ (rt_mutex_owner(&this_cpu_ptr(__lock)->lock) == current)
+
#endif /* CONFIG_PREEMPT_RT */
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 785173aa0739..82563236f35c 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -341,17 +341,25 @@ enum page_memcg_data_flags {
__NR_MEMCG_DATA_FLAGS = (1UL << 2),
};
+#define __OBJEXTS_ALLOC_FAIL MEMCG_DATA_OBJEXTS
#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
#else /* CONFIG_MEMCG */
+#define __OBJEXTS_ALLOC_FAIL (1UL << 0)
#define __FIRST_OBJEXT_FLAG (1UL << 0)
#endif /* CONFIG_MEMCG */
enum objext_flags {
- /* slabobj_ext vector failed to allocate */
- OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
+ /*
+ * Use bit 0 with zero other bits to signal that slabobj_ext vector
+ * failed to allocate. The same bit 0 with valid upper bits means
+ * MEMCG_DATA_OBJEXTS.
+ */
+ OBJEXTS_ALLOC_FAIL = __OBJEXTS_ALLOC_FAIL,
+ /* slabobj_ext vector allocated with kmalloc_nolock() */
+ OBJEXTS_NOSPIN_ALLOC = __FIRST_OBJEXT_FLAG,
/* the next bit after the last actual flag */
__NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
};
diff --git a/include/linux/rtmutex.h b/include/linux/rtmutex.h
index fa9f1021541e..ede4c6bf6f22 100644
--- a/include/linux/rtmutex.h
+++ b/include/linux/rtmutex.h
@@ -44,6 +44,16 @@ static inline bool rt_mutex_base_is_locked(struct rt_mutex_base *lock)
return READ_ONCE(lock->owner) != NULL;
}
+#ifdef CONFIG_RT_MUTEXES
+#define RT_MUTEX_HAS_WAITERS 1UL
+
+static inline struct task_struct *rt_mutex_owner(struct rt_mutex_base *lock)
+{
+ unsigned long owner = (unsigned long) READ_ONCE(lock->owner);
+
+ return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS);
+}
+#endif
extern void rt_mutex_base_init(struct rt_mutex_base *rtb);
/**
diff --git a/include/linux/slab.h b/include/linux/slab.h
index 680193356ac7..561597dd2164 100644
--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -501,6 +501,7 @@ void * __must_check krealloc_noprof(const void *objp, size_t new_size,
#define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__))
void kfree(const void *objp);
+void kfree_nolock(const void *objp);
void kfree_sensitive(const void *objp);
size_t __ksize(const void *objp);
@@ -957,6 +958,9 @@ static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t f
}
#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__))
+void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node);
+#define kmalloc_nolock(...) alloc_hooks(kmalloc_nolock_noprof(__VA_ARGS__))
+
#define kmem_buckets_alloc(_b, _size, _flags) \
alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
diff --git a/kernel/bpf/stream.c b/kernel/bpf/stream.c
index ab592db4a4bf..eb6c5a21c2ef 100644
--- a/kernel/bpf/stream.c
+++ b/kernel/bpf/stream.c
@@ -83,7 +83,7 @@ static struct bpf_stream_page *bpf_stream_page_replace(void)
struct bpf_stream_page *stream_page, *old_stream_page;
struct page *page;
- page = alloc_pages_nolock(NUMA_NO_NODE, 0);
+ page = alloc_pages_nolock(/* Don't account */ 0, NUMA_NO_NODE, 0);
if (!page)
return NULL;
stream_page = page_address(page);
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index 0fbfa8532c39..dbf86f8014de 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -581,7 +581,7 @@ static bool can_alloc_pages(void)
static struct page *__bpf_alloc_page(int nid)
{
if (!can_alloc_pages())
- return alloc_pages_nolock(nid, 0);
+ return alloc_pages_nolock(__GFP_ACCOUNT, nid, 0);
return alloc_pages_node(nid,
GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index 78dd3d8c6554..cf6ddd1b23a2 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -153,15 +153,6 @@ static inline struct rt_mutex_waiter *task_top_pi_waiter(struct task_struct *p)
pi_tree.entry);
}
-#define RT_MUTEX_HAS_WAITERS 1UL
-
-static inline struct task_struct *rt_mutex_owner(struct rt_mutex_base *lock)
-{
- unsigned long owner = (unsigned long) READ_ONCE(lock->owner);
-
- return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS);
-}
-
/*
* Constants for rt mutex functions which have a selectable deadlock
* detection.
diff --git a/mm/Kconfig b/mm/Kconfig
index e443fe8cd6cf..202e044f2b4d 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -194,6 +194,7 @@ menu "Slab allocator options"
config SLUB
def_bool y
+ select IRQ_WORK
config KVFREE_RCU_BATCHED
def_bool y
diff --git a/mm/internal.h b/mm/internal.h
index 45b725c3dc03..9904421cabc1 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -842,6 +842,10 @@ static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int ord
#define alloc_frozen_pages(...) \
alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
+struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order);
+#define alloc_frozen_pages_nolock(...) \
+ alloc_hooks(alloc_frozen_pages_nolock_noprof(__VA_ARGS__))
+
extern void zone_pcp_reset(struct zone *zone);
extern void zone_pcp_disable(struct zone *zone);
extern void zone_pcp_enable(struct zone *zone);
diff --git a/mm/kasan/common.c b/mm/kasan/common.c
index 9142964ab9c9..3264900b942f 100644
--- a/mm/kasan/common.c
+++ b/mm/kasan/common.c
@@ -252,7 +252,7 @@ bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
}
bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
- bool still_accessible)
+ bool still_accessible, bool no_quarantine)
{
if (!kasan_arch_is_ready() || is_kfence_address(object))
return false;
@@ -274,6 +274,9 @@ bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
poison_slab_object(cache, object, init);
+ if (no_quarantine)
+ return false;
+
/*
* If the object is put into quarantine, do not let slab put the object
* onto the freelist for now. The object's metadata is kept until the
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index d1d037f97c5f..5a40e2b7d148 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -7478,22 +7478,7 @@ static bool __free_unaccepted(struct page *page)
#endif /* CONFIG_UNACCEPTED_MEMORY */
-/**
- * alloc_pages_nolock - opportunistic reentrant allocation from any context
- * @nid: node to allocate from
- * @order: allocation order size
- *
- * Allocates pages of a given order from the given node. This is safe to
- * call from any context (from atomic, NMI, and also reentrant
- * allocator -> tracepoint -> alloc_pages_nolock_noprof).
- * Allocation is best effort and to be expected to fail easily so nobody should
- * rely on the success. Failures are not reported via warn_alloc().
- * See always fail conditions below.
- *
- * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
- * It means ENOMEM. There is no reason to call it again and expect !NULL.
- */
-struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
+struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
{
/*
* Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
@@ -7515,12 +7500,13 @@ struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
* specify it here to highlight that alloc_pages_nolock()
* doesn't want to deplete reserves.
*/
- gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
- | __GFP_ACCOUNT;
+ gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP
+ | gfp_flags;
unsigned int alloc_flags = ALLOC_TRYLOCK;
struct alloc_context ac = { };
struct page *page;
+ VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT);
/*
* In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
* unsafe in NMI. If spin_trylock() is called from hard IRQ the current
@@ -7555,15 +7541,38 @@ struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
- if (page)
- set_page_refcounted(page);
-
- if (memcg_kmem_online() && page &&
+ if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) &&
unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
- free_pages_nolock(page, order);
+ __free_frozen_pages(page, order, FPI_TRYLOCK);
page = NULL;
}
trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
kmsan_alloc_page(page, order, alloc_gfp);
return page;
}
+/**
+ * alloc_pages_nolock - opportunistic reentrant allocation from any context
+ * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed.
+ * @nid: node to allocate from
+ * @order: allocation order size
+ *
+ * Allocates pages of a given order from the given node. This is safe to
+ * call from any context (from atomic, NMI, and also reentrant
+ * allocator -> tracepoint -> alloc_pages_nolock_noprof).
+ * Allocation is best effort and to be expected to fail easily so nobody should
+ * rely on the success. Failures are not reported via warn_alloc().
+ * See always fail conditions below.
+ *
+ * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
+ * It means ENOMEM. There is no reason to call it again and expect !NULL.
+ */
+struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
+{
+ struct page *page;
+
+ page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order);
+ if (page)
+ set_page_refcounted(page);
+ return page;
+}
+EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof);
diff --git a/mm/slab.h b/mm/slab.h
index 2b78a717461c..d63cc9b5e313 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -57,6 +57,10 @@ struct slab {
struct {
union {
struct list_head slab_list;
+ struct { /* For deferred deactivate_slab() */
+ struct llist_node llnode;
+ void *flush_freelist;
+ };
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct {
struct slab *next;
@@ -234,6 +238,7 @@ struct kmem_cache_order_objects {
struct kmem_cache {
#ifndef CONFIG_SLUB_TINY
struct kmem_cache_cpu __percpu *cpu_slab;
+ struct lock_class_key lock_key;
#endif
struct slub_percpu_sheaves __percpu *cpu_sheaves;
/* Used for retrieving partial slabs, etc. */
@@ -665,6 +670,8 @@ void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
void __check_heap_object(const void *ptr, unsigned long n,
const struct slab *slab, bool to_user);
+void defer_free_barrier(void);
+
static inline bool slub_debug_orig_size(struct kmem_cache *s)
{
return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
diff --git a/mm/slab_common.c b/mm/slab_common.c
index b6601e0fe598..932d13ada36c 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -510,6 +510,9 @@ void kmem_cache_destroy(struct kmem_cache *s)
rcu_barrier();
}
+ /* Wait for deferred work from kmalloc/kfree_nolock() */
+ defer_free_barrier();
+
cpus_read_lock();
mutex_lock(&slab_mutex);
diff --git a/mm/slub.c b/mm/slub.c
index c2c6b350766e..a585d0ac45d4 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -44,7 +44,8 @@
#include <kunit/test.h>
#include <kunit/test-bug.h>
#include <linux/sort.h>
-
+#include <linux/irq_work.h>
+#include <linux/kprobes.h>
#include <linux/debugfs.h>
#include <trace/events/kmem.h>
@@ -426,7 +427,7 @@ struct kmem_cache_cpu {
#ifdef CONFIG_SLUB_CPU_PARTIAL
struct slab *partial; /* Partially allocated slabs */
#endif
- local_lock_t lock; /* Protects the fields above */
+ local_trylock_t lock; /* Protects the fields above */
#ifdef CONFIG_SLUB_STATS
unsigned int stat[NR_SLUB_STAT_ITEMS];
#endif
@@ -2056,7 +2057,7 @@ static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
* objects with no tag reference. Mark all references in this
* vector as empty to avoid warnings later on.
*/
- if (obj_exts & OBJEXTS_ALLOC_FAIL) {
+ if (obj_exts == OBJEXTS_ALLOC_FAIL) {
unsigned int i;
for (i = 0; i < objects; i++)
@@ -2089,6 +2090,7 @@ static inline void init_slab_obj_exts(struct slab *slab)
int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp_t gfp, bool new_slab)
{
+ bool allow_spin = gfpflags_allow_spinning(gfp);
unsigned int objects = objs_per_slab(s, slab);
unsigned long new_exts;
unsigned long old_exts;
@@ -2097,8 +2099,22 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
gfp &= ~OBJCGS_CLEAR_MASK;
/* Prevent recursive extension vector allocation */
gfp |= __GFP_NO_OBJ_EXT;
- vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
- slab_nid(slab));
+
+ /*
+ * Note that allow_spin may be false during early boot and its
+ * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
+ * architectures with cmpxchg16b, early obj_exts will be missing for
+ * very early allocations on those.
+ */
+ if (unlikely(!allow_spin)) {
+ size_t sz = objects * sizeof(struct slabobj_ext);
+
+ vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
+ slab_nid(slab));
+ } else {
+ vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
+ slab_nid(slab));
+ }
if (!vec) {
/* Mark vectors which failed to allocate */
mark_failed_objexts_alloc(slab);
@@ -2107,6 +2123,8 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
}
new_exts = (unsigned long)vec;
+ if (unlikely(!allow_spin))
+ new_exts |= OBJEXTS_NOSPIN_ALLOC;
#ifdef CONFIG_MEMCG
new_exts |= MEMCG_DATA_OBJEXTS;
#endif
@@ -2127,7 +2145,10 @@ int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
* objcg vector should be reused.
*/
mark_objexts_empty(vec);
- kfree(vec);
+ if (unlikely(!allow_spin))
+ kfree_nolock(vec);
+ else
+ kfree(vec);
return 0;
}
@@ -2151,7 +2172,10 @@ static inline void free_slab_obj_exts(struct slab *slab)
* the extension for obj_exts is expected to be NULL.
*/
mark_objexts_empty(obj_exts);
- kfree(obj_exts);
+ if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
+ kfree_nolock(obj_exts);
+ else
+ kfree(obj_exts);
slab->obj_exts = 0;
}
@@ -2485,7 +2509,7 @@ bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
}
/* KASAN might put x into memory quarantine, delaying its reuse. */
- return !kasan_slab_free(s, x, init, still_accessible);
+ return !kasan_slab_free(s, x, init, still_accessible, false);
}
static __fastpath_inline
@@ -2990,13 +3014,17 @@ static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
* Slab allocation and freeing
*/
static inline struct slab *alloc_slab_page(gfp_t flags, int node,
- struct kmem_cache_order_objects oo)
+ struct kmem_cache_order_objects oo,
+ bool allow_spin)
{
struct folio *folio;
struct slab *slab;
unsigned int order = oo_order(oo);
- if (node == NUMA_NO_NODE)
+ if (unlikely(!allow_spin))
+ folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
+ node, order);
+ else if (node == NUMA_NO_NODE)
folio = (struct folio *)alloc_frozen_pages(flags, order);
else
folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
@@ -3146,6 +3174,7 @@ static __always_inline void unaccount_slab(struct slab *slab, int order,
static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
+ bool allow_spin = gfpflags_allow_spinning(flags);
struct slab *slab;
struct kmem_cache_order_objects oo = s->oo;
gfp_t alloc_gfp;
@@ -3165,7 +3194,11 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
- slab = alloc_slab_page(alloc_gfp, node, oo);
+ /*
+ * __GFP_RECLAIM could be cleared on the first allocation attempt,
+ * so pass allow_spin flag directly.
+ */
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab)) {
oo = s->min;
alloc_gfp = flags;
@@ -3173,7 +3206,7 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
- slab = alloc_slab_page(alloc_gfp, node, oo);
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
if (unlikely(!slab))
return NULL;
stat(s, ORDER_FALLBACK);
@@ -3350,33 +3383,47 @@ static void *alloc_single_from_partial(struct kmem_cache *s,
return object;
}
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
+
/*
* Called only for kmem_cache_debug() caches to allocate from a freshly
* allocated slab. Allocate a single object instead of whole freelist
* and put the slab to the partial (or full) list.
*/
-static void *alloc_single_from_new_slab(struct kmem_cache *s,
- struct slab *slab, int orig_size)
+static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
+ int orig_size, gfp_t gfpflags)
{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
unsigned long flags;
void *object;
+ if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
+ /* Unlucky, discard newly allocated slab */
+ slab->frozen = 1;
+ defer_deactivate_slab(slab, NULL);
+ return NULL;
+ }
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
- if (!alloc_debug_processing(s, slab, object, orig_size))
+ if (!alloc_debug_processing(s, slab, object, orig_size)) {
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
* corruption in theory could cause that.
+ * Leak memory of allocated slab.
*/
+ if (!allow_spin)
+ spin_unlock_irqrestore(&n->list_lock, flags);
return NULL;
+ }
- spin_lock_irqsave(&n->list_lock, flags);
+ if (allow_spin)
+ spin_lock_irqsave(&n->list_lock, flags);
if (slab->inuse == slab->objects)
add_full(s, n, slab);
@@ -3417,7 +3464,10 @@ static struct slab *get_partial_node(struct kmem_cache *s,
if (!n || !n->nr_partial)
return NULL;
- spin_lock_irqsave(&n->list_lock, flags);
+ if (gfpflags_allow_spinning(pc->flags))
+ spin_lock_irqsave(&n->list_lock, flags);
+ else if (!spin_trylock_irqsave(&n->list_lock, flags))
+ return NULL;
list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
if (!pfmemalloc_match(slab, pc->flags))
continue;
@@ -3602,12 +3652,29 @@ static inline void note_cmpxchg_failure(const char *n,
static void init_kmem_cache_cpus(struct kmem_cache *s)
{
+#ifdef CONFIG_PREEMPT_RT
+ /*
+ * Register lockdep key for non-boot kmem caches to avoid
+ * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
+ */
+ bool finegrain_lockdep = !init_section_contains(s, 1);
+#else
+ /*
+ * Don't bother with different lockdep classes for each
+ * kmem_cache, since we only use local_trylock_irqsave().
+ */
+ bool finegrain_lockdep = false;
+#endif
int cpu;
struct kmem_cache_cpu *c;
+ if (finegrain_lockdep)
+ lockdep_register_key(&s->lock_key);
for_each_possible_cpu(cpu) {
c = per_cpu_ptr(s->cpu_slab, cpu);
- local_lock_init(&c->lock);
+ local_trylock_init(&c->lock);
+ if (finegrain_lockdep)
+ lockdep_set_class(&c->lock, &s->lock_key);
c->tid = init_tid(cpu);
}
}
@@ -3698,6 +3765,47 @@ static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
}
}
+/*
+ * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
+ * can be acquired without a deadlock before invoking the function.
+ *
+ * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
+ * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
+ * and kmalloc() is not used in an unsupported context.
+ *
+ * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
+ * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
+ * lockdep_assert() will catch a bug in case:
+ * #1
+ * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
+ * or
+ * #2
+ * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
+ *
+ * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
+ * disabled context. The lock will always be acquired and if needed it
+ * block and sleep until the lock is available.
+ * #1 is possible in !PREEMPT_RT only.
+ * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
+ * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
+ * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
+ *
+ * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
+ */
+#if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
+#define local_lock_cpu_slab(s, flags) \
+ local_lock_irqsave(&(s)->cpu_slab->lock, flags)
+#else
+#define local_lock_cpu_slab(s, flags) \
+ do { \
+ bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
+ lockdep_assert(__l); \
+ } while (0)
+#endif
+
+#define local_unlock_cpu_slab(s, flags) \
+ local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
+
#ifdef CONFIG_SLUB_CPU_PARTIAL
static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
{
@@ -3782,7 +3890,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
unsigned long flags;
int slabs = 0;
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
oldslab = this_cpu_read(s->cpu_slab->partial);
@@ -3807,7 +3915,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
this_cpu_write(s->cpu_slab->partial, slab);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
if (slab_to_put) {
__put_partials(s, slab_to_put);
@@ -4322,6 +4430,7 @@ static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
void *freelist;
struct slab *slab;
unsigned long flags;
@@ -4347,9 +4456,21 @@ reread_slab:
if (unlikely(!node_match(slab, node))) {
/*
* same as above but node_match() being false already
- * implies node != NUMA_NO_NODE
+ * implies node != NUMA_NO_NODE.
+ *
+ * We don't strictly honor pfmemalloc and NUMA preferences
+ * when !allow_spin because:
+ *
+ * 1. Most kmalloc() users allocate objects on the local node,
+ * so kmalloc_nolock() tries not to interfere with them by
+ * deactivating the cpu slab.
+ *
+ * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
+ * unnecessary slab allocations even when n->partial list
+ * is not empty.
*/
- if (!node_isset(node, slab_nodes)) {
+ if (!node_isset(node, slab_nodes) ||
+ !allow_spin) {
node = NUMA_NO_NODE;
} else {
stat(s, ALLOC_NODE_MISMATCH);
@@ -4362,13 +4483,14 @@ reread_slab:
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
- if (unlikely(!pfmemalloc_match(slab, gfpflags)))
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
goto deactivate_slab;
/* must check again c->slab in case we got preempted and it changed */
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
+
if (unlikely(slab != c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
@@ -4380,7 +4502,7 @@ reread_slab:
if (!freelist) {
c->slab = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
@@ -4399,34 +4521,34 @@ load_freelist:
VM_BUG_ON(!c->slab->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
return freelist;
deactivate_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (slab != c->slab) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
freelist = c->freelist;
c->slab = NULL;
c->freelist = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
deactivate_slab(s, slab, freelist);
new_slab:
#ifdef CONFIG_SLUB_CPU_PARTIAL
while (slub_percpu_partial(c)) {
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
goto reread_slab;
}
if (unlikely(!slub_percpu_partial(c))) {
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
/* we were preempted and partial list got empty */
goto new_objects;
}
@@ -4435,7 +4557,8 @@ new_slab:
slub_set_percpu_partial(c, slab);
if (likely(node_match(slab, node) &&
- pfmemalloc_match(slab, gfpflags))) {
+ pfmemalloc_match(slab, gfpflags)) ||
+ !allow_spin) {
c->slab = slab;
freelist = get_freelist(s, slab);
VM_BUG_ON(!freelist);
@@ -4443,7 +4566,7 @@ new_slab:
goto load_freelist;
}
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
slab->next = NULL;
__put_partials(s, slab);
@@ -4465,8 +4588,13 @@ new_objects:
* allocating new page from other nodes
*/
if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
- && try_thisnode))
- pc.flags = GFP_NOWAIT | __GFP_THISNODE;
+ && try_thisnode)) {
+ if (unlikely(!allow_spin))
+ /* Do not upgrade gfp to NOWAIT from more restrictive mode */
+ pc.flags = gfpflags | __GFP_THISNODE;
+ else
+ pc.flags = GFP_NOWAIT | __GFP_THISNODE;
+ }
pc.orig_size = orig_size;
slab = get_partial(s, node, &pc);
@@ -4510,7 +4638,7 @@ new_objects:
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
- freelist = alloc_single_from_new_slab(s, slab, orig_size);
+ freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
if (unlikely(!freelist))
goto new_objects;
@@ -4533,7 +4661,7 @@ new_objects:
inc_slabs_node(s, slab_nid(slab), slab->objects);
- if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
@@ -4544,7 +4672,7 @@ new_objects:
retry_load_slab:
- local_lock_irqsave(&s->cpu_slab->lock, flags);
+ local_lock_cpu_slab(s, flags);
if (unlikely(c->slab)) {
void *flush_freelist = c->freelist;
struct slab *flush_slab = c->slab;
@@ -4553,9 +4681,14 @@ retry_load_slab:
c->freelist = NULL;
c->tid = next_tid(c->tid);
- local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+ local_unlock_cpu_slab(s, flags);
- deactivate_slab(s, flush_slab, flush_freelist);
+ if (unlikely(!allow_spin)) {
+ /* Reentrant slub cannot take locks, defer */
+ defer_deactivate_slab(flush_slab, flush_freelist);
+ } else {
+ deactivate_slab(s, flush_slab, flush_freelist);
+ }
stat(s, CPUSLAB_FLUSH);
@@ -4565,6 +4698,19 @@ retry_load_slab:
goto load_freelist;
}
+/*
+ * We disallow kprobes in ___slab_alloc() to prevent reentrance
+ *
+ * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
+ * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
+ * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
+ * manipulating c->freelist without lock.
+ *
+ * This does not prevent kprobe in functions called from ___slab_alloc() such as
+ * local_lock_irqsave() itself, and that is fine, we only need to protect the
+ * c->freelist manipulation in ___slab_alloc() itself.
+ */
+NOKPROBE_SYMBOL(___slab_alloc);
/*
* A wrapper for ___slab_alloc() for contexts where preemption is not yet
@@ -4584,8 +4730,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
*/
c = slub_get_cpu_ptr(s->cpu_slab);
#endif
-
+ if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
+ if (local_lock_is_locked(&s->cpu_slab->lock)) {
+ /*
+ * EBUSY is an internal signal to kmalloc_nolock() to
+ * retry a different bucket. It's not propagated
+ * to the caller.
+ */
+ p = ERR_PTR(-EBUSY);
+ goto out;
+ }
+ }
p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
+out:
#ifdef CONFIG_PREEMPT_COUNT
slub_put_cpu_ptr(s->cpu_slab);
#endif
@@ -4709,7 +4866,7 @@ static void *__slab_alloc_node(struct kmem_cache *s,
return NULL;
}
- object = alloc_single_from_new_slab(s, slab, orig_size);
+ object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
return object;
}
@@ -4788,8 +4945,9 @@ bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
if (p[i] && init && (!kasan_init ||
!kasan_has_integrated_init()))
memset(p[i], 0, zero_size);
- kmemleak_alloc_recursive(p[i], s->object_size, 1,
- s->flags, init_flags);
+ if (gfpflags_allow_spinning(flags))
+ kmemleak_alloc_recursive(p[i], s->object_size, 1,
+ s->flags, init_flags);
kmsan_slab_alloc(s, p[i], init_flags);
alloc_tagging_slab_alloc_hook(s, p[i], flags);
}
@@ -5456,6 +5614,96 @@ void *__kmalloc_noprof(size_t size, gfp_t flags)
}
EXPORT_SYMBOL(__kmalloc_noprof);
+/**
+ * kmalloc_nolock - Allocate an object of given size from any context.
+ * @size: size to allocate
+ * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
+ * allowed.
+ * @node: node number of the target node.
+ *
+ * Return: pointer to the new object or NULL in case of error.
+ * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
+ * There is no reason to call it again and expect !NULL.
+ */
+void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
+{
+ gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
+ struct kmem_cache *s;
+ bool can_retry = true;
+ void *ret = ERR_PTR(-EBUSY);
+
+ VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
+ __GFP_NO_OBJ_EXT));
+
+ if (unlikely(!size))
+ return ZERO_SIZE_PTR;
+
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
+ /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
+ return NULL;
+retry:
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
+ return NULL;
+ s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
+
+ if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
+ /*
+ * kmalloc_nolock() is not supported on architectures that
+ * don't implement cmpxchg16b, but debug caches don't use
+ * per-cpu slab and per-cpu partial slabs. They rely on
+ * kmem_cache_node->list_lock, so kmalloc_nolock() can
+ * attempt to allocate from debug caches by
+ * spin_trylock_irqsave(&n->list_lock, ...)
+ */
+ return NULL;
+
+ /*
+ * Do not call slab_alloc_node(), since trylock mode isn't
+ * compatible with slab_pre_alloc_hook/should_failslab and
+ * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
+ * and slab_post_alloc_hook() directly.
+ *
+ * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
+ * in irq saved region. It assumes that the same cpu will not
+ * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
+ * Therefore use in_nmi() to check whether particular bucket is in
+ * irq protected section.
+ *
+ * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
+ * this cpu was interrupted somewhere inside ___slab_alloc() after
+ * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
+ * In this case fast path with __update_cpu_freelist_fast() is not safe.
+ */
+#ifndef CONFIG_SLUB_TINY
+ if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
+#endif
+ ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
+
+ if (PTR_ERR(ret) == -EBUSY) {
+ if (can_retry) {
+ /* pick the next kmalloc bucket */
+ size = s->object_size + 1;
+ /*
+ * Another alternative is to
+ * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
+ * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
+ * to retry from bucket of the same size.
+ */
+ can_retry = false;
+ goto retry;
+ }
+ ret = NULL;
+ }
+
+ maybe_wipe_obj_freeptr(s, ret);
+ slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
+ slab_want_init_on_alloc(alloc_gfp, s), size);
+
+ ret = kasan_kmalloc(s, ret, size, alloc_gfp);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
+
void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
int node, unsigned long caller)
{
@@ -6117,6 +6365,93 @@ flush_remote:
}
}
+struct defer_free {
+ struct llist_head objects;
+ struct llist_head slabs;
+ struct irq_work work;
+};
+
+static void free_deferred_objects(struct irq_work *work);
+
+static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
+ .objects = LLIST_HEAD_INIT(objects),
+ .slabs = LLIST_HEAD_INIT(slabs),
+ .work = IRQ_WORK_INIT(free_deferred_objects),
+};
+
+/*
+ * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
+ * to take sleeping spin_locks from __slab_free() and deactivate_slab().
+ * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
+ */
+static void free_deferred_objects(struct irq_work *work)
+{
+ struct defer_free *df = container_of(work, struct defer_free, work);
+ struct llist_head *objs = &df->objects;
+ struct llist_head *slabs = &df->slabs;
+ struct llist_node *llnode, *pos, *t;
+
+ if (llist_empty(objs) && llist_empty(slabs))
+ return;
+
+ llnode = llist_del_all(objs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct kmem_cache *s;
+ struct slab *slab;
+ void *x = pos;
+
+ slab = virt_to_slab(x);
+ s = slab->slab_cache;
+
+ /*
+ * We used freepointer in 'x' to link 'x' into df->objects.
+ * Clear it to NULL to avoid false positive detection
+ * of "Freepointer corruption".
+ */
+ *(void **)x = NULL;
+
+ /* Point 'x' back to the beginning of allocated object */
+ x -= s->offset;
+ __slab_free(s, slab, x, x, 1, _THIS_IP_);
+ }
+
+ llnode = llist_del_all(slabs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct slab *slab = container_of(pos, struct slab, llnode);
+
+#ifdef CONFIG_SLUB_TINY
+ discard_slab(slab->slab_cache, slab);
+#else
+ deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
+#endif
+ }
+}
+
+static void defer_free(struct kmem_cache *s, void *head)
+{
+ struct defer_free *df = this_cpu_ptr(&defer_free_objects);
+
+ if (llist_add(head + s->offset, &df->objects))
+ irq_work_queue(&df->work);
+}
+
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
+{
+ struct defer_free *df = this_cpu_ptr(&defer_free_objects);
+
+ slab->flush_freelist = flush_freelist;
+ if (llist_add(&slab->llnode, &df->slabs))
+ irq_work_queue(&df->work);
+}
+
+void defer_free_barrier(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
+}
+
#ifndef CONFIG_SLUB_TINY
/*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that
@@ -6137,6 +6472,8 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
+ /* cnt == 0 signals that it's called from kfree_nolock() */
+ bool allow_spin = cnt;
struct kmem_cache_cpu *c;
unsigned long tid;
void **freelist;
@@ -6155,10 +6492,29 @@ redo:
barrier();
if (unlikely(slab != c->slab)) {
- __slab_free(s, slab, head, tail, cnt, addr);
+ if (unlikely(!allow_spin)) {
+ /*
+ * __slab_free() can locklessly cmpxchg16 into a slab,
+ * but then it might need to take spin_lock or local_lock
+ * in put_cpu_partial() for further processing.
+ * Avoid the complexity and simply add to a deferred list.
+ */
+ defer_free(s, head);
+ } else {
+ __slab_free(s, slab, head, tail, cnt, addr);
+ }
return;
}
+ if (unlikely(!allow_spin)) {
+ if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
+ local_lock_is_locked(&s->cpu_slab->lock)) {
+ defer_free(s, head);
+ return;
+ }
+ cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
+ }
+
if (USE_LOCKLESS_FAST_PATH()) {
freelist = READ_ONCE(c->freelist);
@@ -6169,11 +6525,13 @@ redo:
goto redo;
}
} else {
+ __maybe_unused unsigned long flags = 0;
+
/* Update the free list under the local lock */
- local_lock(&s->cpu_slab->lock);
+ local_lock_cpu_slab(s, flags);
c = this_cpu_ptr(s->cpu_slab);
if (unlikely(slab != c->slab)) {
- local_unlock(&s->cpu_slab->lock);
+ local_unlock_cpu_slab(s, flags);
goto redo;
}
tid = c->tid;
@@ -6183,7 +6541,7 @@ redo:
c->freelist = head;
c->tid = next_tid(tid);
- local_unlock(&s->cpu_slab->lock);
+ local_unlock_cpu_slab(s, flags);
}
stat_add(s, FREE_FASTPATH, cnt);
}
@@ -6414,6 +6772,71 @@ void kfree(const void *object)
}
EXPORT_SYMBOL(kfree);
+/*
+ * Can be called while holding raw_spinlock_t or from IRQ and NMI,
+ * but ONLY for objects allocated by kmalloc_nolock().
+ * Debug checks (like kmemleak and kfence) were skipped on allocation,
+ * hence
+ * obj = kmalloc(); kfree_nolock(obj);
+ * will miss kmemleak/kfence book keeping and will cause false positives.
+ * large_kmalloc is not supported either.
+ */
+void kfree_nolock(const void *object)
+{
+ struct folio *folio;
+ struct slab *slab;
+ struct kmem_cache *s;
+ void *x = (void *)object;
+
+ if (unlikely(ZERO_OR_NULL_PTR(object)))
+ return;
+
+ folio = virt_to_folio(object);
+ if (unlikely(!folio_test_slab(folio))) {
+ WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
+ return;
+ }
+
+ slab = folio_slab(folio);
+ s = slab->slab_cache;
+
+ memcg_slab_free_hook(s, slab, &x, 1);
+ alloc_tagging_slab_free_hook(s, slab, &x, 1);
+ /*
+ * Unlike slab_free() do NOT call the following:
+ * kmemleak_free_recursive(x, s->flags);
+ * debug_check_no_locks_freed(x, s->object_size);
+ * debug_check_no_obj_freed(x, s->object_size);
+ * __kcsan_check_access(x, s->object_size, ..);
+ * kfence_free(x);
+ * since they take spinlocks or not safe from any context.
+ */
+ kmsan_slab_free(s, x);
+ /*
+ * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
+ * which will call raw_spin_lock_irqsave() which is technically
+ * unsafe from NMI, but take chance and report kernel bug.
+ * The sequence of
+ * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
+ * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
+ * is double buggy and deserves to deadlock.
+ */
+ if (kasan_slab_pre_free(s, x))
+ return;
+ /*
+ * memcg, kasan_slab_pre_free are done for 'x'.
+ * The only thing left is kasan_poison without quarantine,
+ * since kasan quarantine takes locks and not supported from NMI.
+ */
+ kasan_slab_free(s, x, false, false, /* skip quarantine */true);
+#ifndef CONFIG_SLUB_TINY
+ do_slab_free(s, slab, x, x, 0, _RET_IP_);
+#else
+ defer_free(s, x);
+#endif
+}
+EXPORT_SYMBOL_GPL(kfree_nolock);
+
static __always_inline __realloc_size(2) void *
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
{
@@ -7236,6 +7659,9 @@ void __kmem_cache_release(struct kmem_cache *s)
if (s->cpu_sheaves)
pcs_destroy(s);
#ifndef CONFIG_SLUB_TINY
+#ifdef CONFIG_PREEMPT_RT
+ lockdep_unregister_key(&s->lock_key);
+#endif
free_percpu(s->cpu_slab);
#endif
free_kmem_cache_nodes(s);