summaryrefslogtreecommitdiff
path: root/rust/kernel/io.rs
diff options
context:
space:
mode:
authorJiri Kosina <jkosina@suse.com>2025-03-26 13:42:07 +0100
committerJiri Kosina <jkosina@suse.com>2025-03-26 13:42:07 +0100
commitb3cc7428a32202936904b5b07cf9f135025bafd6 (patch)
treed4a1a6180ac5939fccd92acd6f8d7d1388575c4a /rust/kernel/io.rs
parentdb52926fb0be40e1d588a346df73f5ea3a34a4c6 (diff)
parent01601fdd40ecf4467c8ae4d215dbb7d2a0599a2c (diff)
Merge branch 'for-6.15/amd_sfh' into for-linus
From: Mario Limonciello <mario.limonciello@amd.com> Some platforms include a human presence detection (HPD) sensor. When enabled and a user is detected a wake event will be emitted from the sensor fusion hub that software can react to. Example use cases are "wake from suspend on approach" or to "lock when leaving". This is currently enabled by default on supported systems, but users can't control it. This essentially means that wake on approach is enabled which is a really surprising behavior to users that don't expect it. Instead of defaulting to enabled add a sysfs knob that users can use to enable the feature if desirable and set it to disabled by default.
Diffstat (limited to 'rust/kernel/io.rs')
-rw-r--r--rust/kernel/io.rs260
1 files changed, 260 insertions, 0 deletions
diff --git a/rust/kernel/io.rs b/rust/kernel/io.rs
new file mode 100644
index 0000000000000..d4a73e52e3ee6
--- /dev/null
+++ b/rust/kernel/io.rs
@@ -0,0 +1,260 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Memory-mapped IO.
+//!
+//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
+
+use crate::error::{code::EINVAL, Result};
+use crate::{bindings, build_assert};
+
+/// Raw representation of an MMIO region.
+///
+/// By itself, the existence of an instance of this structure does not provide any guarantees that
+/// the represented MMIO region does exist or is properly mapped.
+///
+/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
+/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
+/// any guarantees are given.
+pub struct IoRaw<const SIZE: usize = 0> {
+ addr: usize,
+ maxsize: usize,
+}
+
+impl<const SIZE: usize> IoRaw<SIZE> {
+ /// Returns a new `IoRaw` instance on success, an error otherwise.
+ pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
+ if maxsize < SIZE {
+ return Err(EINVAL);
+ }
+
+ Ok(Self { addr, maxsize })
+ }
+
+ /// Returns the base address of the MMIO region.
+ #[inline]
+ pub fn addr(&self) -> usize {
+ self.addr
+ }
+
+ /// Returns the maximum size of the MMIO region.
+ #[inline]
+ pub fn maxsize(&self) -> usize {
+ self.maxsize
+ }
+}
+
+/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
+///
+/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
+/// mapping, performing an additional region request etc.
+///
+/// # Invariant
+///
+/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
+/// `maxsize`.
+///
+/// # Examples
+///
+/// ```no_run
+/// # use kernel::{bindings, io::{Io, IoRaw}};
+/// # use core::ops::Deref;
+///
+/// // See also [`pci::Bar`] for a real example.
+/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
+///
+/// impl<const SIZE: usize> IoMem<SIZE> {
+/// /// # Safety
+/// ///
+/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
+/// /// virtual address space.
+/// unsafe fn new(paddr: usize) -> Result<Self>{
+/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
+/// // valid for `ioremap`.
+/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
+/// if addr.is_null() {
+/// return Err(ENOMEM);
+/// }
+///
+/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
+/// }
+/// }
+///
+/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
+/// fn drop(&mut self) {
+/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
+/// unsafe { bindings::iounmap(self.0.addr() as _); };
+/// }
+/// }
+///
+/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
+/// type Target = Io<SIZE>;
+///
+/// fn deref(&self) -> &Self::Target {
+/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
+/// unsafe { Io::from_raw(&self.0) }
+/// }
+/// }
+///
+///# fn no_run() -> Result<(), Error> {
+/// // SAFETY: Invalid usage for example purposes.
+/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
+/// iomem.writel(0x42, 0x0);
+/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
+/// assert!(iomem.try_writel(0x42, 0x4).is_err());
+/// # Ok(())
+/// # }
+/// ```
+#[repr(transparent)]
+pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
+
+macro_rules! define_read {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Read IO data from a given offset known at compile time.
+ ///
+ /// Bound checks are performed on compile time, hence if the offset is not known at compile
+ /// time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, offset: usize) -> $type_name {
+ let addr = self.io_addr_assert::<$type_name>(offset);
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(addr as _) }
+ }
+
+ /// Read IO data from a given offset.
+ ///
+ /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
+ /// out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
+ let addr = self.io_addr::<$type_name>(offset)?;
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ Ok(unsafe { bindings::$name(addr as _) })
+ }
+ };
+}
+
+macro_rules! define_write {
+ ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
+ /// Write IO data from a given offset known at compile time.
+ ///
+ /// Bound checks are performed on compile time, hence if the offset is not known at compile
+ /// time, the build will fail.
+ $(#[$attr])*
+ #[inline]
+ pub fn $name(&self, value: $type_name, offset: usize) {
+ let addr = self.io_addr_assert::<$type_name>(offset);
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(value, addr as _, ) }
+ }
+
+ /// Write IO data from a given offset.
+ ///
+ /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
+ /// out of bounds.
+ $(#[$attr])*
+ pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
+ let addr = self.io_addr::<$type_name>(offset)?;
+
+ // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
+ unsafe { bindings::$name(value, addr as _) }
+ Ok(())
+ }
+ };
+}
+
+impl<const SIZE: usize> Io<SIZE> {
+ /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
+ /// `maxsize`.
+ pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
+ // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
+ unsafe { &*core::ptr::from_ref(raw).cast() }
+ }
+
+ /// Returns the base address of this mapping.
+ #[inline]
+ pub fn addr(&self) -> usize {
+ self.0.addr()
+ }
+
+ /// Returns the maximum size of this mapping.
+ #[inline]
+ pub fn maxsize(&self) -> usize {
+ self.0.maxsize()
+ }
+
+ #[inline]
+ const fn offset_valid<U>(offset: usize, size: usize) -> bool {
+ let type_size = core::mem::size_of::<U>();
+ if let Some(end) = offset.checked_add(type_size) {
+ end <= size && offset % type_size == 0
+ } else {
+ false
+ }
+ }
+
+ #[inline]
+ fn io_addr<U>(&self, offset: usize) -> Result<usize> {
+ if !Self::offset_valid::<U>(offset, self.maxsize()) {
+ return Err(EINVAL);
+ }
+
+ // Probably no need to check, since the safety requirements of `Self::new` guarantee that
+ // this can't overflow.
+ self.addr().checked_add(offset).ok_or(EINVAL)
+ }
+
+ #[inline]
+ fn io_addr_assert<U>(&self, offset: usize) -> usize {
+ build_assert!(Self::offset_valid::<U>(offset, SIZE));
+
+ self.addr() + offset
+ }
+
+ define_read!(readb, try_readb, u8);
+ define_read!(readw, try_readw, u16);
+ define_read!(readl, try_readl, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq,
+ try_readq,
+ u64
+ );
+
+ define_read!(readb_relaxed, try_readb_relaxed, u8);
+ define_read!(readw_relaxed, try_readw_relaxed, u16);
+ define_read!(readl_relaxed, try_readl_relaxed, u32);
+ define_read!(
+ #[cfg(CONFIG_64BIT)]
+ readq_relaxed,
+ try_readq_relaxed,
+ u64
+ );
+
+ define_write!(writeb, try_writeb, u8);
+ define_write!(writew, try_writew, u16);
+ define_write!(writel, try_writel, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq,
+ try_writeq,
+ u64
+ );
+
+ define_write!(writeb_relaxed, try_writeb_relaxed, u8);
+ define_write!(writew_relaxed, try_writew_relaxed, u16);
+ define_write!(writel_relaxed, try_writel_relaxed, u32);
+ define_write!(
+ #[cfg(CONFIG_64BIT)]
+ writeq_relaxed,
+ try_writeq_relaxed,
+ u64
+ );
+}