diff options
author | Kevin Brodsky <kevin.brodsky@arm.com> | 2025-06-19 17:00:41 +0100 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2025-07-17 18:37:04 +0200 |
commit | 778f4e1730205e75b7c96272a95b308f7d29f0c8 (patch) | |
tree | 2d2c89c64a48b271a11551b9b23f5562d9af924a | |
parent | 2e0cb0c74d96348fd7406cbc38b9a7355a706a84 (diff) |
arm64: poe: Handle spurious Overlay faults
[ Upstream commit 22f3a4f6085951eff28bd1e44d3f388c1d9a5f44 ]
We do not currently issue an ISB after updating POR_EL0 when
context-switching it, for instance. The rationale is that if the old
value of POR_EL0 is more restrictive and causes a fault during
uaccess, the access will be retried [1]. In other words, we are
trading an ISB on every context-switching for the (unlikely)
possibility of a spurious fault. We may also miss faults if the new
value of POR_EL0 is more restrictive, but that's considered
acceptable.
However, as things stand, a spurious Overlay fault results in
uaccess failing right away since it causes fault_from_pkey() to
return true. If an Overlay fault is reported, we therefore need to
double check POR_EL0 against vma_pkey(vma) - this is what
arch_vma_access_permitted() already does.
As it turns out, we already perform that explicit check if no
Overlay fault is reported, and we need to keep that check (see
comment added in fault_from_pkey()). Net result: the Overlay ISS2
bit isn't of much help to decide whether a pkey fault occurred.
Remove the check for the Overlay bit from fault_from_pkey() and
add a comment to try and explain the situation. While at it, also
add a comment to permission_overlay_switch() in case anyone gets
surprised by the lack of ISB.
[1] https://lore.kernel.org/linux-arm-kernel/ZtYNGBrcE-j35fpw@arm.com/
Fixes: 160a8e13de6c ("arm64: context switch POR_EL0 register")
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Link: https://lore.kernel.org/r/20250619160042.2499290-2-kevin.brodsky@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
-rw-r--r-- | arch/arm64/kernel/process.c | 5 | ||||
-rw-r--r-- | arch/arm64/mm/fault.c | 30 |
2 files changed, 26 insertions, 9 deletions
diff --git a/arch/arm64/kernel/process.c b/arch/arm64/kernel/process.c index 2bbcbb11d844..2edf88c1c695 100644 --- a/arch/arm64/kernel/process.c +++ b/arch/arm64/kernel/process.c @@ -544,6 +544,11 @@ static void permission_overlay_switch(struct task_struct *next) current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); if (current->thread.por_el0 != next->thread.por_el0) { write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); + /* + * No ISB required as we can tolerate spurious Overlay faults - + * the fault handler will check again based on the new value + * of POR_EL0. + */ } } diff --git a/arch/arm64/mm/fault.c b/arch/arm64/mm/fault.c index 8b281cf308b3..850307b49bab 100644 --- a/arch/arm64/mm/fault.c +++ b/arch/arm64/mm/fault.c @@ -487,17 +487,29 @@ static void do_bad_area(unsigned long far, unsigned long esr, } } -static bool fault_from_pkey(unsigned long esr, struct vm_area_struct *vma, - unsigned int mm_flags) +static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags) { - unsigned long iss2 = ESR_ELx_ISS2(esr); - if (!system_supports_poe()) return false; - if (esr_fsc_is_permission_fault(esr) && (iss2 & ESR_ELx_Overlay)) - return true; - + /* + * We do not check whether an Overlay fault has occurred because we + * cannot make a decision based solely on its value: + * + * - If Overlay is set, a fault did occur due to POE, but it may be + * spurious in those cases where we update POR_EL0 without ISB (e.g. + * on context-switch). We would then need to manually check POR_EL0 + * against vma_pkey(vma), which is exactly what + * arch_vma_access_permitted() does. + * + * - If Overlay is not set, we may still need to report a pkey fault. + * This is the case if an access was made within a mapping but with no + * page mapped, and POR_EL0 forbids the access (according to + * vma_pkey()). Such access will result in a SIGSEGV regardless + * because core code checks arch_vma_access_permitted(), but in order + * to report the correct error code - SEGV_PKUERR - we must handle + * that case here. + */ return !arch_vma_access_permitted(vma, mm_flags & FAULT_FLAG_WRITE, mm_flags & FAULT_FLAG_INSTRUCTION, @@ -595,7 +607,7 @@ static int __kprobes do_page_fault(unsigned long far, unsigned long esr, goto bad_area; } - if (fault_from_pkey(esr, vma, mm_flags)) { + if (fault_from_pkey(vma, mm_flags)) { pkey = vma_pkey(vma); vma_end_read(vma); fault = 0; @@ -639,7 +651,7 @@ retry: goto bad_area; } - if (fault_from_pkey(esr, vma, mm_flags)) { + if (fault_from_pkey(vma, mm_flags)) { pkey = vma_pkey(vma); mmap_read_unlock(mm); fault = 0; |