diff options
author | Al Viro <viro@zeniv.linux.org.uk> | 2025-08-26 17:27:47 -0400 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2025-08-28 16:22:59 +0200 |
commit | 6ca3f8a9c442243918bb1f1f2f375b4dd68b6e4a (patch) | |
tree | dd9e108f120263581e6759282743c3ab1a242df1 | |
parent | 7b8b503c06274ef3c6c1a107743f1ec0d0a53ef8 (diff) |
alloc_fdtable(): change calling conventions.
[ Upstream commit 1d3b4bec3ce55e0c46cdce7d0402dbd6b4af3a3d ]
First of all, tell it how many slots do we want, not which slot
is wanted. It makes one caller (dup_fd()) more straightforward
and doesn't harm another (expand_fdtable()).
Furthermore, make it return ERR_PTR() on failure rather than
returning NULL. Simplifies the callers.
Simplify the size calculation, while we are at it - note that we
always have slots_wanted greater than BITS_PER_LONG. What the
rules boil down to is
* use the smallest power of two large enough to give us
that many slots
* on 32bit skip 64 and 128 - the minimal capacity we want
there is 256 slots (i.e. 1Kb fd array).
* on 64bit don't skip anything, the minimal capacity is
128 - and we'll never be asked for 64 or less. 128 slots means
1Kb fd array, again.
* on 128bit, if that ever happens, don't skip anything -
we'll never be asked for 128 or less, so the fd array allocation
will be at least 2Kb.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
-rw-r--r-- | fs/file.c | 68 |
1 files changed, 28 insertions, 40 deletions
diff --git a/fs/file.c b/fs/file.c index c44c70af33ad..c8fff3d79336 100644 --- a/fs/file.c +++ b/fs/file.c @@ -90,18 +90,11 @@ static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) * 'unsigned long' in some places, but simply because that is how the Linux * kernel bitmaps are defined to work: they are not "bits in an array of bytes", * they are very much "bits in an array of unsigned long". - * - * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied - * by that "1024/sizeof(ptr)" before, we already know there are sufficient - * clear low bits. Clang seems to realize that, gcc ends up being confused. - * - * On a 128-bit machine, the ALIGN() would actually matter. In the meantime, - * let's consider it documentation (and maybe a test-case for gcc to improve - * its code generation ;) */ -static struct fdtable * alloc_fdtable(unsigned int nr) +static struct fdtable *alloc_fdtable(unsigned int slots_wanted) { struct fdtable *fdt; + unsigned int nr; void *data; /* @@ -109,22 +102,32 @@ static struct fdtable * alloc_fdtable(unsigned int nr) * Allocation steps are keyed to the size of the fdarray, since it * grows far faster than any of the other dynamic data. We try to fit * the fdarray into comfortable page-tuned chunks: starting at 1024B - * and growing in powers of two from there on. + * and growing in powers of two from there on. Since we called only + * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab + * already gives BITS_PER_LONG slots), the above boils down to + * 1. use the smallest power of two large enough to give us that many + * slots. + * 2. on 32bit skip 64 and 128 - the minimal capacity we want there is + * 256 slots (i.e. 1Kb fd array). + * 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there + * and we are never going to be asked for 64 or less. */ - nr /= (1024 / sizeof(struct file *)); - nr = roundup_pow_of_two(nr + 1); - nr *= (1024 / sizeof(struct file *)); - nr = ALIGN(nr, BITS_PER_LONG); + if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256) + nr = 256; + else + nr = roundup_pow_of_two(slots_wanted); /* * Note that this can drive nr *below* what we had passed if sysctl_nr_open - * had been set lower between the check in expand_files() and here. Deal - * with that in caller, it's cheaper that way. + * had been set lower between the check in expand_files() and here. * * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise * bitmaps handling below becomes unpleasant, to put it mildly... */ - if (unlikely(nr > sysctl_nr_open)) - nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; + if (unlikely(nr > sysctl_nr_open)) { + nr = round_down(sysctl_nr_open, BITS_PER_LONG); + if (nr < slots_wanted) + return ERR_PTR(-EMFILE); + } /* * Check if the allocation size would exceed INT_MAX. kvmalloc_array() @@ -168,7 +171,7 @@ out_arr: out_fdt: kfree(fdt); out: - return NULL; + return ERR_PTR(-ENOMEM); } /* @@ -185,7 +188,7 @@ static int expand_fdtable(struct files_struct *files, unsigned int nr) struct fdtable *new_fdt, *cur_fdt; spin_unlock(&files->file_lock); - new_fdt = alloc_fdtable(nr); + new_fdt = alloc_fdtable(nr + 1); /* make sure all fd_install() have seen resize_in_progress * or have finished their rcu_read_lock_sched() section. @@ -194,16 +197,8 @@ static int expand_fdtable(struct files_struct *files, unsigned int nr) synchronize_rcu(); spin_lock(&files->file_lock); - if (!new_fdt) - return -ENOMEM; - /* - * extremely unlikely race - sysctl_nr_open decreased between the check in - * caller and alloc_fdtable(). Cheaper to catch it here... - */ - if (unlikely(new_fdt->max_fds <= nr)) { - __free_fdtable(new_fdt); - return -EMFILE; - } + if (IS_ERR(new_fdt)) + return PTR_ERR(new_fdt); cur_fdt = files_fdtable(files); BUG_ON(nr < cur_fdt->max_fds); copy_fdtable(new_fdt, cur_fdt); @@ -363,16 +358,9 @@ struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int if (new_fdt != &newf->fdtab) __free_fdtable(new_fdt); - new_fdt = alloc_fdtable(open_files - 1); - if (!new_fdt) { - *errorp = -ENOMEM; - goto out_release; - } - - /* beyond sysctl_nr_open; nothing to do */ - if (unlikely(new_fdt->max_fds < open_files)) { - __free_fdtable(new_fdt); - *errorp = -EMFILE; + new_fdt = alloc_fdtable(open_files); + if (IS_ERR(new_fdt)) { + *errorp = PTR_ERR(new_fdt); goto out_release; } |