summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-96/e_j1l.c
blob: e8a7349cf44715abac3f022b16798f95a4e5298e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* Long double expansions are
  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
  and are incorporated herein by permission of the author.  The author
  reserves the right to distribute this material elsewhere under different
  copying permissions.  These modifications are distributed here under
  the following terms:

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, see
    <http://www.gnu.org/licenses/>.  */

/* __ieee754_j1(x), __ieee754_y1(x)
 * Bessel function of the first and second kinds of order zero.
 * Method -- j1(x):
 *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
 *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
 *	   for x in (0,2)
 *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
 *	   for x in (2,inf)
 *		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
 *		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
 *	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
 *	   as follow:
 *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
 *			=  1/sqrt(2) * (sin(x) - cos(x))
 *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
 *			= -1/sqrt(2) * (sin(x) + cos(x))
 *	   (To avoid cancellation, use
 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 *	    to compute the worse one.)
 *
 *	3 Special cases
 *		j1(nan)= nan
 *		j1(0) = 0
 *		j1(inf) = 0
 *
 * Method -- y1(x):
 *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
 *	2. For x<2.
 *	   Since
 *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
 *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
 *	   We use the following function to approximate y1,
 *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
 *	   Note: For tiny x, 1/x dominate y1 and hence
 *		y1(tiny) = -2/pi/tiny
 *	3. For x>=2.
 *		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
 *	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
 *	   by method mentioned above.
 */

#include <errno.h>
#include <float.h>
#include <math.h>
#include <math_private.h>

static long double pone (long double), qone (long double);

static const long double
  huge = 1e4930L,
 one = 1.0L,
 invsqrtpi = 5.6418958354775628694807945156077258584405e-1L,
  tpi =  6.3661977236758134307553505349005744813784e-1L,

  /* J1(x) = .5 x + x x^2 R(x^2) / S(x^2)
     0 <= x <= 2
     Peak relative error 4.5e-21 */
R[5] = {
    -9.647406112428107954753770469290757756814E7L,
    2.686288565865230690166454005558203955564E6L,
    -3.689682683905671185891885948692283776081E4L,
    2.195031194229176602851429567792676658146E2L,
    -5.124499848728030297902028238597308971319E-1L,
},

  S[4] =
{
  1.543584977988497274437410333029029035089E9L,
  2.133542369567701244002565983150952549520E7L,
  1.394077011298227346483732156167414670520E5L,
  5.252401789085732428842871556112108446506E2L,
  /*  1.000000000000000000000000000000000000000E0L, */
};

static const long double zero = 0.0;


long double
__ieee754_j1l (long double x)
{
  long double z, c, r, s, ss, cc, u, v, y;
  int32_t ix;
  u_int32_t se;

  GET_LDOUBLE_EXP (se, x);
  ix = se & 0x7fff;
  if (__glibc_unlikely (ix >= 0x7fff))
    return one / x;
  y = fabsl (x);
  if (ix >= 0x4000)
    {				/* |x| >= 2.0 */
      __sincosl (y, &s, &c);
      ss = -s - c;
      cc = s - c;
      if (ix < 0x7ffe)
	{			/* make sure y+y not overflow */
	  z = __cosl (y + y);
	  if ((s * c) > zero)
	    cc = z / ss;
	  else
	    ss = z / cc;
	}
      /*
       * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
       * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
       */
      if (__glibc_unlikely (ix > 0x4080))
	z = (invsqrtpi * cc) / __ieee754_sqrtl (y);
      else
	{
	  u = pone (y);
	  v = qone (y);
	  z = invsqrtpi * (u * cc - v * ss) / __ieee754_sqrtl (y);
	}
      if (se & 0x8000)
	return -z;
      else
	return z;
    }
  if (__glibc_unlikely (ix < 0x3fde))       /* |x| < 2^-33 */
    {
      if (huge + x > one)		/* inexact if x!=0 necessary */
	{
	  long double ret = 0.5 * x;
	  math_check_force_underflow (ret);
	  if (ret == 0 && x != 0)
	    __set_errno (ERANGE);
	  return ret;
	}
    }
  z = x * x;
  r = z * (R[0] + z * (R[1]+ z * (R[2] + z * (R[3] + z * R[4]))));
  s = S[0] + z * (S[1] + z * (S[2] + z * (S[3] + z)));
  r *= x;
  return (x * 0.5 + r / s);
}
strong_alias (__ieee754_j1l, __j1l_finite)


/* Y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + x R(x^2)
   0 <= x <= 2
   Peak relative error 2.3e-23 */
static const long double U0[6] = {
  -5.908077186259914699178903164682444848615E10L,
  1.546219327181478013495975514375773435962E10L,
  -6.438303331169223128870035584107053228235E8L,
  9.708540045657182600665968063824819371216E6L,
  -6.138043997084355564619377183564196265471E4L,
  1.418503228220927321096904291501161800215E2L,
};
static const long double V0[5] = {
  3.013447341682896694781964795373783679861E11L,
  4.669546565705981649470005402243136124523E9L,
  3.595056091631351184676890179233695857260E7L,
  1.761554028569108722903944659933744317994E5L,
  5.668480419646516568875555062047234534863E2L,
  /*  1.000000000000000000000000000000000000000E0L, */
};


long double
__ieee754_y1l (long double x)
{
  long double z, s, c, ss, cc, u, v;
  int32_t ix;
  u_int32_t se, i0, i1;

  GET_LDOUBLE_WORDS (se, i0, i1, x);
  ix = se & 0x7fff;
  /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
  if (__glibc_unlikely (se & 0x8000))
    return zero / (zero * x);
  if (__glibc_unlikely (ix >= 0x7fff))
    return one / (x + x * x);
  if (__glibc_unlikely ((i0 | i1) == 0))
    return -HUGE_VALL + x;  /* -inf and overflow exception.  */
  if (ix >= 0x4000)
    {				/* |x| >= 2.0 */
      __sincosl (x, &s, &c);
      ss = -s - c;
      cc = s - c;
      if (ix < 0x7ffe)
	{			/* make sure x+x not overflow */
	  z = __cosl (x + x);
	  if ((s * c) > zero)
	    cc = z / ss;
	  else
	    ss = z / cc;
	}
      /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
       * where x0 = x-3pi/4
       *      Better formula:
       *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
       *                      =  1/sqrt(2) * (sin(x) - cos(x))
       *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
       *                      = -1/sqrt(2) * (cos(x) + sin(x))
       * To avoid cancellation, use
       *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
       * to compute the worse one.
       */
      if (__glibc_unlikely (ix > 0x4080))
	z = (invsqrtpi * ss) / __ieee754_sqrtl (x);
      else
	{
	  u = pone (x);
	  v = qone (x);
	  z = invsqrtpi * (u * ss + v * cc) / __ieee754_sqrtl (x);
	}
      return z;
    }
  if (__glibc_unlikely (ix <= 0x3fbe))
    {				/* x < 2**-65 */
      z = -tpi / x;
      if (isinf (z))
	__set_errno (ERANGE);
      return z;
    }
  z = x * x;
 u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * (U0[4] + z * U0[5]))));
 v = V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * (V0[4] + z))));
  return (x * (u / v) +
	  tpi * (__ieee754_j1l (x) * __ieee754_logl (x) - one / x));
}
strong_alias (__ieee754_y1l, __y1l_finite)


/* For x >= 8, the asymptotic expansions of pone is
 *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
 * We approximate pone by
 *	pone(x) = 1 + (R/S)
 */

/* J1(x) cosX + Y1(x) sinX  =  sqrt( 2/(pi x)) P1(x)
   P1(x) = 1 + z^2 R(z^2), z=1/x
   8 <= x <= inf  (0 <= z <= 0.125)
   Peak relative error 5.2e-22  */

static const long double pr8[7] = {
  8.402048819032978959298664869941375143163E-9L,
  1.813743245316438056192649247507255996036E-6L,
  1.260704554112906152344932388588243836276E-4L,
  3.439294839869103014614229832700986965110E-3L,
  3.576910849712074184504430254290179501209E-2L,
  1.131111483254318243139953003461511308672E-1L,
  4.480715825681029711521286449131671880953E-2L,
};
static const long double ps8[6] = {
  7.169748325574809484893888315707824924354E-8L,
  1.556549720596672576431813934184403614817E-5L,
  1.094540125521337139209062035774174565882E-3L,
  3.060978962596642798560894375281428805840E-2L,
  3.374146536087205506032643098619414507024E-1L,
  1.253830208588979001991901126393231302559E0L,
  /* 1.000000000000000000000000000000000000000E0L, */
};

/* J1(x) cosX + Y1(x) sinX  =  sqrt( 2/(pi x)) P1(x)
   P1(x) = 1 + z^2 R(z^2), z=1/x
   4.54541015625 <= x <= 8
   Peak relative error 7.7e-22  */
static const long double pr5[7] = {
  4.318486887948814529950980396300969247900E-7L,
  4.715341880798817230333360497524173929315E-5L,
  1.642719430496086618401091544113220340094E-3L,
  2.228688005300803935928733750456396149104E-2L,
  1.142773760804150921573259605730018327162E-1L,
  1.755576530055079253910829652698703791957E-1L,
  3.218803858282095929559165965353784980613E-2L,
};
static const long double ps5[6] = {
  3.685108812227721334719884358034713967557E-6L,
  4.069102509511177498808856515005792027639E-4L,
  1.449728676496155025507893322405597039816E-2L,
  2.058869213229520086582695850441194363103E-1L,
  1.164890985918737148968424972072751066553E0L,
  2.274776933457009446573027260373361586841E0L,
  /*  1.000000000000000000000000000000000000000E0L,*/
};

/* J1(x) cosX + Y1(x) sinX  =  sqrt( 2/(pi x)) P1(x)
   P1(x) = 1 + z^2 R(z^2), z=1/x
   2.85711669921875 <= x <= 4.54541015625
   Peak relative error 6.5e-21  */
static const long double pr3[7] = {
  1.265251153957366716825382654273326407972E-5L,
  8.031057269201324914127680782288352574567E-4L,
  1.581648121115028333661412169396282881035E-2L,
  1.179534658087796321928362981518645033967E-1L,
  3.227936912780465219246440724502790727866E-1L,
  2.559223765418386621748404398017602935764E-1L,
  2.277136933287817911091370397134882441046E-2L,
};
static const long double ps3[6] = {
  1.079681071833391818661952793568345057548E-4L,
  6.986017817100477138417481463810841529026E-3L,
  1.429403701146942509913198539100230540503E-1L,
  1.148392024337075609460312658938700765074E0L,
  3.643663015091248720208251490291968840882E0L,
  3.990702269032018282145100741746633960737E0L,
  /* 1.000000000000000000000000000000000000000E0L, */
};

/* J1(x) cosX + Y1(x) sinX  =  sqrt( 2/(pi x)) P1(x)
   P1(x) = 1 + z^2 R(z^2), z=1/x
   2 <= x <= 2.85711669921875
   Peak relative error 3.5e-21  */
static const long double pr2[7] = {
  2.795623248568412225239401141338714516445E-4L,
  1.092578168441856711925254839815430061135E-2L,
  1.278024620468953761154963591853679640560E-1L,
  5.469680473691500673112904286228351988583E-1L,
  8.313769490922351300461498619045639016059E-1L,
  3.544176317308370086415403567097130611468E-1L,
  1.604142674802373041247957048801599740644E-2L,
};
static const long double ps2[6] = {
  2.385605161555183386205027000675875235980E-3L,
  9.616778294482695283928617708206967248579E-2L,
  1.195215570959693572089824415393951258510E0L,
  5.718412857897054829999458736064922974662E0L,
  1.065626298505499086386584642761602177568E1L,
  6.809140730053382188468983548092322151791E0L,
 /* 1.000000000000000000000000000000000000000E0L, */
};


static long double
pone (long double x)
{
  const long double *p, *q;
  long double z, r, s;
  int32_t ix;
  u_int32_t se, i0, i1;

  GET_LDOUBLE_WORDS (se, i0, i1, x);
  ix = se & 0x7fff;
  /* ix >= 0x4000 for all calls to this function.  */
  if (ix >= 0x4002) /* x >= 8 */
    {
      p = pr8;
      q = ps8;
    }
  else
    {
      i1 = (ix << 16) | (i0 >> 16);
      if (i1 >= 0x40019174)	/* x >= 4.54541015625 */
	{
	  p = pr5;
	  q = ps5;
	}
      else if (i1 >= 0x4000b6db)	/* x >= 2.85711669921875 */
	{
	  p = pr3;
	  q = ps3;
	}
      else	/* x >= 2 */
	{
	  p = pr2;
	  q = ps2;
	}
    }
  z = one / (x * x);
 r = p[0] + z * (p[1] +
		 z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
 s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z)))));
  return one + z * r / s;
}


/* For x >= 8, the asymptotic expansions of qone is
 *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
 * We approximate pone by
 *	qone(x) = s*(0.375 + (R/S))
 */

/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
   Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
   8 <= x <= inf
   Peak relative error 8.3e-22 */

static const long double qr8[7] = {
  -5.691925079044209246015366919809404457380E-10L,
  -1.632587664706999307871963065396218379137E-7L,
  -1.577424682764651970003637263552027114600E-5L,
  -6.377627959241053914770158336842725291713E-4L,
  -1.087408516779972735197277149494929568768E-2L,
  -6.854943629378084419631926076882330494217E-2L,
  -1.055448290469180032312893377152490183203E-1L,
};
static const long double qs8[7] = {
  5.550982172325019811119223916998393907513E-9L,
  1.607188366646736068460131091130644192244E-6L,
  1.580792530091386496626494138334505893599E-4L,
  6.617859900815747303032860443855006056595E-3L,
  1.212840547336984859952597488863037659161E-1L,
  9.017885953937234900458186716154005541075E-1L,
  2.201114489712243262000939120146436167178E0L,
  /* 1.000000000000000000000000000000000000000E0L, */
};

/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
   Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
   4.54541015625 <= x <= 8
   Peak relative error 4.1e-22 */
static const long double qr5[7] = {
  -6.719134139179190546324213696633564965983E-8L,
  -9.467871458774950479909851595678622044140E-6L,
  -4.429341875348286176950914275723051452838E-4L,
  -8.539898021757342531563866270278505014487E-3L,
  -6.818691805848737010422337101409276287170E-2L,
  -1.964432669771684034858848142418228214855E-1L,
  -1.333896496989238600119596538299938520726E-1L,
};
static const long double qs5[7] = {
  6.552755584474634766937589285426911075101E-7L,
  9.410814032118155978663509073200494000589E-5L,
  4.561677087286518359461609153655021253238E-3L,
  9.397742096177905170800336715661091535805E-2L,
  8.518538116671013902180962914473967738771E-1L,
  3.177729183645800174212539541058292579009E0L,
  4.006745668510308096259753538973038902990E0L,
  /* 1.000000000000000000000000000000000000000E0L, */
};

/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
   Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
   2.85711669921875 <= x <= 4.54541015625
   Peak relative error 2.2e-21 */
static const long double qr3[7] = {
  -3.618746299358445926506719188614570588404E-6L,
  -2.951146018465419674063882650970344502798E-4L,
  -7.728518171262562194043409753656506795258E-3L,
  -8.058010968753999435006488158237984014883E-2L,
  -3.356232856677966691703904770937143483472E-1L,
  -4.858192581793118040782557808823460276452E-1L,
  -1.592399251246473643510898335746432479373E-1L,
};
static const long double qs3[7] = {
  3.529139957987837084554591421329876744262E-5L,
  2.973602667215766676998703687065066180115E-3L,
  8.273534546240864308494062287908662592100E-2L,
  9.613359842126507198241321110649974032726E-1L,
  4.853923697093974370118387947065402707519E0L,
  1.002671608961669247462020977417828796933E1L,
  7.028927383922483728931327850683151410267E0L,
  /* 1.000000000000000000000000000000000000000E0L, */
};

/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
   Q1(x) = z(.375 + z^2 R(z^2)), z=1/x
   2 <= x <= 2.85711669921875
   Peak relative error 6.9e-22 */
static const long double qr2[7] = {
  -1.372751603025230017220666013816502528318E-4L,
  -6.879190253347766576229143006767218972834E-3L,
  -1.061253572090925414598304855316280077828E-1L,
  -6.262164224345471241219408329354943337214E-1L,
  -1.423149636514768476376254324731437473915E0L,
  -1.087955310491078933531734062917489870754E0L,
  -1.826821119773182847861406108689273719137E-1L,
};
static const long double qs2[7] = {
  1.338768933634451601814048220627185324007E-3L,
  7.071099998918497559736318523932241901810E-2L,
  1.200511429784048632105295629933382142221E0L,
  8.327301713640367079030141077172031825276E0L,
  2.468479301872299311658145549931764426840E1L,
  2.961179686096262083509383820557051621644E1L,
  1.201402313144305153005639494661767354977E1L,
 /* 1.000000000000000000000000000000000000000E0L, */
};


static long double
qone (long double x)
{
  const long double *p, *q;
  static long double s, r, z;
  int32_t ix;
  u_int32_t se, i0, i1;

  GET_LDOUBLE_WORDS (se, i0, i1, x);
  ix = se & 0x7fff;
  /* ix >= 0x4000 for all calls to this function.  */
  if (ix >= 0x4002)		/* x >= 8 */
    {
      p = qr8;
      q = qs8;
    }
  else
    {
      i1 = (ix << 16) | (i0 >> 16);
      if (i1 >= 0x40019174)	/* x >= 4.54541015625 */
	{
	  p = qr5;
	  q = qs5;
	}
      else if (i1 >= 0x4000b6db)	/* x >= 2.85711669921875 */
	{
	  p = qr3;
	  q = qs3;
	}
      else	/* x >= 2 */
	{
	  p = qr2;
	  q = qs2;
	}
    }
  z = one / (x * x);
  r =
    p[0] + z * (p[1] +
		z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6])))));
  s =
    q[0] + z * (q[1] +
		z * (q[2] +
		     z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z))))));
  return (.375 + z * r / s) / x;
}