summaryrefslogtreecommitdiff
path: root/.topmsg
blob: 2aad85cb6224ee60c03f056fac087eedde2a7eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
commited for glibc 2.31

Subject: [PATCH] Global signal dispositions.

Although they should not change the
default behaviors of signals for cthread programs, these patches add
new functions which can be used by libpthread to enable
POSIX-conforming behavior of signals on a per-thread basis.

YYYY-MM-DD  Jeremie Koenig  <jk@jk.fr.eu.org>

    e407ae3 Hurd signals: implement global signal dispositions
    38eb4b3 Hurd signals: provide a sigstate destructor
    344dfd6 Hurd signals: fix sigwait() for global signals
    fb055f2 Hurd signals: fix global untraced signals.

YYYY-MM-DD  Thomas Schwinge  <thomas@codesourcery.com>

	* sysdeps/mach/hurd/fork.c (__fork): In the child, reinitialize
	the global sigstate's lock.

This is work in progress.

This cures an issue that would very rarely cause a deadlock in the child
in fork, tries to unlock ss' critical section lock at the end of fork.
This will typically (always?) be observed in /bin/sh, which is not
surprising as that is the foremost caller of fork.

To reproduce an intermediate state, add an endless loop if
_hurd_global_sigstate is locked after __proc_dostop (cast through
volatile); that is, while still being in the fork's parent process.

When that triggers (use the libtool testsuite), the signal thread has
already locked ss (which is _hurd_global_sigstate), and is stuck at
hurdsig.c:685 in post_signal, trying to lock _hurd_siglock (which the
main thread already has locked and keeps locked until after
__task_create).  This is the case that ss->thread == MACH_PORT_NULL, that
is, a global signal.  In the main thread, between __proc_dostop and
__task_create is the __thread_abort call on the signal thread which would
abort any current kernel operation (but leave ss locked).  Later in fork,
in the parent, when _hurd_siglock is unlocked in fork, the parent's
signal thread can proceed and will unlock eventually the global sigstate.
In the client, _hurd_siglock will likewise be unlocked, but the global
sigstate never will be, as the client's signal thread has been configured
to restart execution from _hurd_msgport_receive.  Thus, when the child
tries to unlock ss' critical section lock at the end of fork, it will
first lock the global sigstate, will spin trying to lock it, which can
never be successful, and we get our deadlock.

Options seem to be:

  * Move the locking of _hurd_siglock earlier in post_signal -- but that
    may generally impact performance, if this locking isn't generally
    needed anyway?

    On the other hand, would it actually make sense to wait here until we
    are not any longer in a critical section (which is meant to disable
    signal delivery anway (but not for preempted signals?))?

  * Clear the global sigstate in the fork's child with the rationale that
    we're anyway restarting the signal thread from a clean state.  This
    has now been implemented.

Why has this problem not been observed before Jérémie's patches?  (Or has
it?  Perhaps even more rarely?)  In _S_msg_sig_post, the signal is now
posted to a *global receiver thread*, whereas previously it was posted to
the *designated signal-receiving thread*.  The latter one was in a
critical section in fork, so didn't try to handle the signal until after
leaving the critical section?  (Not completely analyzed and verified.)

Another question is what the signal is that is being received
during/around the time __proc_dostop executes.