1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
|
/*
* Copyright (c) 2010-2014 Richard Braun.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <kern/assert.h>
#include <kern/cpumap.h>
#include <kern/error.h>
#include <kern/init.h>
#include <kern/kmem.h>
#include <kern/list.h>
#include <kern/macros.h>
#include <kern/mutex.h>
#include <kern/panic.h>
#include <kern/param.h>
#include <kern/spinlock.h>
#include <kern/stddef.h>
#include <kern/string.h>
#include <kern/thread.h>
#include <kern/types.h>
#include <machine/biosmem.h>
#include <machine/boot.h>
#include <machine/cpu.h>
#include <machine/lapic.h>
#include <machine/pmap.h>
#include <machine/trap.h>
#include <vm/vm_kmem.h>
#include <vm/vm_page.h>
#include <vm/vm_prot.h>
#define PMAP_PTEMAP_INDEX(va, shift) (((va) & PMAP_VA_MASK) >> (shift))
/*
* Recursive mapping of PTEs.
*/
#define PMAP_PTEMAP_BASE ((pmap_pte_t *)VM_PMAP_PTEMAP_ADDRESS)
#define PMAP_LX_INDEX(shift) PMAP_PTEMAP_INDEX(VM_PMAP_PTEMAP_ADDRESS, shift)
/*
* Base addresses of the page tables for each level in the recursive mapping.
*/
#define PMAP_L0_PTEMAP_BASE PMAP_PTEMAP_BASE
#define PMAP_L1_PTEMAP_BASE (PMAP_L0_PTEMAP_BASE + PMAP_LX_INDEX(PMAP_L0_SHIFT))
#define PMAP_L2_PTEMAP_BASE (PMAP_L1_PTEMAP_BASE + PMAP_LX_INDEX(PMAP_L1_SHIFT))
#define PMAP_L3_PTEMAP_BASE (PMAP_L2_PTEMAP_BASE + PMAP_LX_INDEX(PMAP_L2_SHIFT))
/*
* Properties of a page translation level.
*/
struct pmap_pt_level {
unsigned int bits;
unsigned int shift;
pmap_pte_t *ptemap_base;
unsigned int ptes_per_ptp;
pmap_pte_t mask;
};
/*
* Table of page translation properties.
*/
static struct pmap_pt_level pmap_pt_levels[] __read_mostly = {
{ PMAP_L0_BITS, PMAP_L0_SHIFT, PMAP_L0_PTEMAP_BASE, PMAP_L0_PTES_PER_PTP,
PMAP_L0_MASK },
{ PMAP_L1_BITS, PMAP_L1_SHIFT, PMAP_L1_PTEMAP_BASE, PMAP_L1_PTES_PER_PTP,
PMAP_L1_MASK },
#if PMAP_NR_LEVELS == 4
{ PMAP_L2_BITS, PMAP_L2_SHIFT, PMAP_L2_PTEMAP_BASE, PMAP_L2_PTES_PER_PTP,
PMAP_L2_MASK },
{ PMAP_L3_BITS, PMAP_L3_SHIFT, PMAP_L3_PTEMAP_BASE, PMAP_L3_PTES_PER_PTP,
PMAP_L3_MASK }
#endif /* PMAP_NR_LEVELS == 4 */
};
/*
* Number of mappings to reserve for the pmap module after the kernel.
*
* This pool of pure virtual memory can be used to reserve virtual addresses
* before the VM system is initialized.
*
* List of users :
* - pmap_zero_mapping (1 page per CPU)
* - pmap_root_ptp_mapping (PMAP_NR_RPTPS pages per CPU)
* - CGA video memory (1 page)
*/
#define PMAP_RESERVED_PAGES (MAX_CPUS \
+ (PMAP_NR_RPTPS * MAX_CPUS) \
+ 1)
/*
* Addresses reserved for temporary mappings.
*/
struct pmap_tmp_mapping {
struct mutex lock;
unsigned long va;
} __aligned(CPU_L1_SIZE);
static struct pmap_tmp_mapping pmap_zero_mappings[MAX_CPUS];
static struct pmap_tmp_mapping pmap_root_ptp_mappings[MAX_CPUS];
static struct pmap kernel_pmap_store;
struct pmap *kernel_pmap __read_mostly = &kernel_pmap_store;
/*
* Reserved pages of virtual memory available for early allocation.
*/
static unsigned long pmap_boot_heap __initdata;
static unsigned long pmap_boot_heap_current __initdata;
static unsigned long pmap_boot_heap_end __initdata;
static char pmap_panic_inval_msg[] __bootdata
= "pmap: invalid physical address";
#ifdef X86_PAE
/*
* Alignment required on page directory pointer tables.
*/
#define PMAP_PDPT_ALIGN 32
/*
* "Hidden" kernel root page table for PAE mode.
*/
static pmap_pte_t pmap_kpdpt[PMAP_NR_RPTPS] __aligned(PMAP_PDPT_ALIGN);
#endif /* X86_PAE */
/*
* Flags related to page protection.
*/
#define PMAP_PTE_PROT_MASK PMAP_PTE_RW
/*
* Table used to convert machine independent protection flags to architecture
* specific PTE bits.
*/
static pmap_pte_t pmap_prot_table[VM_PROT_ALL + 1] __read_mostly;
/*
* Maximum number of mappings for which individual TLB invalidations can be
* performed. Global TLB flushes are done beyond this value.
*/
#define PMAP_UPDATE_MAX_MAPPINGS 64
/*
* Structures related to TLB invalidation.
*/
/*
* Request sent by a processor.
*/
struct pmap_update_request {
struct pmap *pmap;
unsigned long start;
unsigned long end;
} __aligned(CPU_L1_SIZE);
/*
* Per processor request, queued on remote processor.
*
* A processor receiving such a request is able to locate the invalidation
* data from the address of the request, without an explicit pointer.
*/
struct pmap_update_cpu_request {
struct list node;
int done;
} __aligned(CPU_L1_SIZE);
/*
* Queue holding update requests from remote processors.
*/
struct pmap_update_queue {
struct spinlock lock;
struct list cpu_requests;
} __aligned(CPU_L1_SIZE);
/*
* Per processor TLB invalidation data.
*/
struct pmap_update_data {
struct pmap_update_request request;
struct pmap_update_cpu_request cpu_requests[MAX_CPUS];
struct cpumap cpumap;
struct pmap_update_queue queue;
} __aligned(CPU_L1_SIZE);
static struct pmap_update_data pmap_update_data[MAX_CPUS];
/*
* Global list of physical maps.
*/
static struct mutex pmap_list_lock;
static struct list pmap_list;
static struct kmem_cache pmap_cache;
#ifdef X86_PAE
static struct kmem_cache pmap_pdpt_cache;
#endif /* X86_PAE */
static int pmap_ready __read_mostly;
static void __boot
pmap_boot_enter(pmap_pte_t *root_ptp, unsigned long va, phys_addr_t pa)
{
const struct pmap_pt_level *pt_level, *pt_levels;
unsigned long index;
unsigned int level;
pmap_pte_t *pt, *ptp, *pte;
if (pa != (pa & PMAP_PA_MASK))
boot_panic(pmap_panic_inval_msg);
pt_levels = (void *)BOOT_VTOP((unsigned long)pmap_pt_levels);
pt = root_ptp;
for (level = PMAP_NR_LEVELS - 1; level != 0; level--) {
pt_level = &pt_levels[level];
index = (va >> pt_level->shift) & ((1UL << pt_level->bits) - 1);
pte = &pt[index];
if (*pte != 0)
ptp = (void *)(unsigned long)(*pte & PMAP_PA_MASK);
else {
ptp = biosmem_bootalloc(1);
*pte = ((unsigned long)ptp | PMAP_PTE_RW | PMAP_PTE_P)
& pt_level->mask;
}
pt = ptp;
}
/*
* As a special case, a null physical address allocates the page tables
* but doesn't create a mapping.
*/
if (pa == 0)
return;
pte = &pt[(va >> PMAP_L0_SHIFT) & ((1UL << PMAP_L0_BITS) - 1)];
*pte = (pa & PMAP_PA_MASK) | PMAP_PTE_RW | PMAP_PTE_P;
}
static void __boot
pmap_setup_ptemap(pmap_pte_t *root_ptp)
{
const struct pmap_pt_level *pt_level, *pt_levels;
phys_addr_t pa;
unsigned long va, index;
unsigned int i;
pt_levels = (void *)BOOT_VTOP((unsigned long)pmap_pt_levels);
pt_level = &pt_levels[PMAP_NR_LEVELS - 1];
for (i = 0; i < PMAP_NR_RPTPS; i++) {
va = VM_PMAP_PTEMAP_ADDRESS + (i * (1UL << pt_level->shift));
index = (va >> pt_level->shift) & ((1UL << pt_level->bits) - 1);
pa = (unsigned long)root_ptp + (i * PAGE_SIZE);
root_ptp[index] = (pa | PMAP_PTE_RW | PMAP_PTE_P) & pt_level->mask;
}
}
pmap_pte_t * __boot
pmap_setup_paging(void)
{
struct pmap *pmap;
pmap_pte_t *root_ptp;
unsigned long va;
phys_addr_t pa;
size_t i, size;
/*
* Create the kernel mappings. The first two are for the .boot section and
* the kernel code and data at high addresses respectively. The .boot
* section mapping also acts as the mandatory identity mapping. The third
* is the recursive mapping of PTEs.
*
* Any page table required for the virtual addresses that are reserved by
* this module is also allocated.
*/
root_ptp = biosmem_bootalloc(PMAP_NR_RPTPS);
va = vm_page_trunc((unsigned long)&_boot);
pa = va;
size = vm_page_round((unsigned long)&_eboot) - va;
for (i = 0; i < size; i += PAGE_SIZE) {
pmap_boot_enter(root_ptp, va, pa);
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
va = vm_page_trunc((unsigned long)&_init);
pa = BOOT_VTOP(va);
size = vm_page_round((unsigned long)&_end) - va;
for (i = 0; i < size; i += PAGE_SIZE) {
pmap_boot_enter(root_ptp, va, pa);
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
for (i = 0; i < PMAP_RESERVED_PAGES; i++) {
pmap_boot_enter(root_ptp, va, 0);
va += PAGE_SIZE;
}
assert(va > (unsigned long)&_end);
pmap_setup_ptemap(root_ptp);
pmap = (void *)BOOT_VTOP((unsigned long)&kernel_pmap_store);
pmap->root_ptp_pa = (unsigned long)root_ptp;
#ifdef X86_PAE
pmap->pdpt = pmap_kpdpt;
pmap->pdpt_pa = BOOT_VTOP((unsigned long)pmap_kpdpt);
root_ptp = (void *)pmap->pdpt_pa;
for (i = 0; i < PMAP_NR_RPTPS; i++)
root_ptp[i] = (pmap->root_ptp_pa + (i * PAGE_SIZE)) | PMAP_PTE_P;
cpu_enable_pae();
#endif /* X86_PAE */
return root_ptp;
}
pmap_pte_t * __boot
pmap_ap_setup_paging(void)
{
struct pmap *pmap;
pmap_pte_t *root_ptp;
pmap = (void *)BOOT_VTOP((unsigned long)&kernel_pmap_store);
#ifdef X86_PAE
root_ptp = (void *)pmap->pdpt_pa;
cpu_enable_pae();
#else /* X86_PAE */
root_ptp = (void *)pmap->root_ptp_pa;
#endif /* X86_PAE */
return root_ptp;
}
/*
* Helper function for initialization procedures that require post-fixing
* page properties.
*/
static void __init
pmap_walk_vas(unsigned long start, unsigned long end, int skip_null,
void (*f)(pmap_pte_t *pte))
{
const struct pmap_pt_level *pt_level;
unsigned long va, index;
unsigned int level;
pmap_pte_t *pte;
if (start == 0)
start = PAGE_SIZE;
assert(vm_page_aligned(start));
assert(start < end);
#ifdef __LP64__
assert((start <= VM_MAX_ADDRESS) || (start >= VM_PMAP_PTEMAP_ADDRESS));
#endif /* __LP64__ */
va = start;
do {
#ifdef __LP64__
/* Handle long mode canonical form */
if (va == ((PMAP_VA_MASK >> 1) + 1))
va = ~(PMAP_VA_MASK >> 1);
#endif /* __LP64__ */
for (level = PMAP_NR_LEVELS - 1; level < PMAP_NR_LEVELS; level--) {
pt_level = &pmap_pt_levels[level];
index = PMAP_PTEMAP_INDEX(va, pt_level->shift);
pte = &pt_level->ptemap_base[index];
if ((*pte == 0) && (skip_null || (level != 0))) {
pte = NULL;
va = P2END(va, 1UL << pt_level->shift);
break;
}
}
if (pte == NULL)
continue;
f(pte);
va += PAGE_SIZE;
} while ((va < end) && (va >= start));
}
static void __init
pmap_setup_global_page(pmap_pte_t *pte)
{
*pte |= PMAP_PTE_G;
}
static void __init
pmap_setup_global_pages(void)
{
pmap_walk_vas(VM_MAX_KERNEL_ADDRESS, (unsigned long)-1, 1,
pmap_setup_global_page);
pmap_pt_levels[0].mask |= PMAP_PTE_G;
cpu_enable_global_pages();
}
void __init
pmap_bootstrap(void)
{
unsigned int i;
mutex_init(&kernel_pmap->lock);
cpumap_zero(&kernel_pmap->cpumap);
cpumap_set(&kernel_pmap->cpumap, 0);
cpu_percpu_set_pmap(kernel_pmap);
pmap_boot_heap = (unsigned long)&_end;
pmap_boot_heap_current = pmap_boot_heap;
pmap_boot_heap_end = pmap_boot_heap + (PMAP_RESERVED_PAGES * PAGE_SIZE);
pmap_prot_table[VM_PROT_NONE] = 0;
pmap_prot_table[VM_PROT_READ] = 0;
pmap_prot_table[VM_PROT_WRITE] = PMAP_PTE_RW;
pmap_prot_table[VM_PROT_WRITE | VM_PROT_READ] = PMAP_PTE_RW;
pmap_prot_table[VM_PROT_EXECUTE] = 0;
pmap_prot_table[VM_PROT_EXECUTE | VM_PROT_READ] = 0;
pmap_prot_table[VM_PROT_EXECUTE | VM_PROT_WRITE] = PMAP_PTE_RW;
pmap_prot_table[VM_PROT_ALL] = PMAP_PTE_RW;
for (i = 0; i < MAX_CPUS; i++) {
mutex_init(&pmap_zero_mappings[i].lock);
pmap_zero_mappings[i].va = pmap_bootalloc(1);
mutex_init(&pmap_root_ptp_mappings[i].lock);
pmap_root_ptp_mappings[i].va = pmap_bootalloc(PMAP_NR_RPTPS);
spinlock_init(&pmap_update_data[i].queue.lock);
list_init(&pmap_update_data[i].queue.cpu_requests);
}
mutex_init(&pmap_list_lock);
list_init(&pmap_list);
list_insert_tail(&pmap_list, &kernel_pmap->node);
pmap_protect(kernel_pmap, (unsigned long)&_text, (unsigned long)&_rodata,
VM_PROT_READ | VM_PROT_EXECUTE);
pmap_protect(kernel_pmap, (unsigned long)&_rodata, (unsigned long)&_data,
VM_PROT_READ);
if (cpu_has_global_pages())
pmap_setup_global_pages();
cpu_tlb_flush();
}
void __init
pmap_ap_bootstrap(void)
{
cpumap_set(&kernel_pmap->cpumap, cpu_id());
cpu_percpu_set_pmap(kernel_pmap);
if (cpu_has_global_pages())
cpu_enable_global_pages();
}
unsigned long __init
pmap_bootalloc(unsigned int nr_pages)
{
unsigned long page;
size_t size;
assert(nr_pages > 0);
page = pmap_boot_heap_current;
size = nr_pages * PAGE_SIZE;
pmap_boot_heap_current += size;
assert(pmap_boot_heap_current > pmap_boot_heap);
assert(pmap_boot_heap_current <= pmap_boot_heap_end);
return page;
}
/*
* Check address range with regard to physical map.
*
* Note that there is no addressing restriction on the kernel pmap.
*/
#define pmap_assert_range(pmap, start, end) \
MACRO_BEGIN \
assert(vm_page_aligned(start) && vm_page_aligned(end)); \
assert((start) < (end)); \
assert(((pmap) == kernel_pmap) || ((end) <= VM_MAX_ADDRESS)); \
MACRO_END
static inline void
pmap_pte_set(pmap_pte_t *pte, phys_addr_t pa, pmap_pte_t pte_bits,
unsigned int level)
{
assert(level < PMAP_NR_LEVELS);
*pte = ((pa & PMAP_PA_MASK) | PMAP_PTE_P | pte_bits)
& pmap_pt_levels[level].mask;
}
static inline void
pmap_pte_clear(pmap_pte_t *pte)
{
*pte = 0;
}
/*
* The pmap_kenter() and pmap_kremove() functions are quicker and simpler
* versions of pmap_enter() and pmap_remove() that only operate on the
* kernel physical map and assume the page tables for the target mappings
* have already been prepared.
*/
static void
pmap_kenter(unsigned long va, phys_addr_t pa, int prot)
{
pmap_pte_t *pte;
pmap_assert_range(kernel_pmap, va, va + PAGE_SIZE);
pte = PMAP_PTEMAP_BASE + PMAP_PTEMAP_INDEX(va, PMAP_L0_SHIFT);
pmap_pte_set(pte, pa, PMAP_PTE_G | pmap_prot_table[prot & VM_PROT_ALL], 0);
}
static void
pmap_kremove(unsigned long start, unsigned long end)
{
pmap_pte_t *pte;
pmap_assert_range(kernel_pmap, start, end);
while (start < end) {
pte = PMAP_PTEMAP_BASE + PMAP_PTEMAP_INDEX(start, PMAP_L0_SHIFT);
pmap_pte_clear(pte);
start += PAGE_SIZE;
}
}
static void
pmap_zero_page(phys_addr_t pa)
{
struct pmap_tmp_mapping *zero_mapping;
unsigned long va;
thread_pin();
zero_mapping = &pmap_zero_mappings[cpu_id()];
mutex_lock(&zero_mapping->lock);
va = zero_mapping->va;
pmap_kenter(va, pa, VM_PROT_WRITE);
cpu_tlb_flush_va(va);
memset((void *)va, 0, PAGE_SIZE);
pmap_kremove(va, va + PAGE_SIZE);
cpu_tlb_flush_va(va);
mutex_unlock(&zero_mapping->lock);
thread_unpin();
}
static struct pmap_tmp_mapping *
pmap_map_root_ptp(phys_addr_t pa)
{
struct pmap_tmp_mapping *root_ptp_mapping;
unsigned long va;
unsigned int i, offset;
thread_pin();
root_ptp_mapping = &pmap_root_ptp_mappings[cpu_id()];
mutex_lock(&root_ptp_mapping->lock);
for (i = 0; i < PMAP_NR_RPTPS; i++) {
offset = i * PAGE_SIZE;
va = root_ptp_mapping->va + offset;
pmap_kenter(va, pa + offset, VM_PROT_READ | VM_PROT_WRITE);
cpu_tlb_flush_va(va);
}
return root_ptp_mapping;
}
static void
pmap_unmap_root_ptp(struct pmap_tmp_mapping *root_ptp_mapping)
{
unsigned long va;
unsigned int i;
assert(thread_pinned());
mutex_assert_locked(&root_ptp_mapping->lock);
va = root_ptp_mapping->va;
pmap_kremove(va, va + (PMAP_NR_RPTPS * PAGE_SIZE));
for (i = 0; i < PMAP_NR_RPTPS; i++)
cpu_tlb_flush_va(va + (i * PAGE_SIZE));
mutex_unlock(&root_ptp_mapping->lock);
thread_unpin();
}
static void
pmap_protect_ptemap(unsigned long start, unsigned long end, int prot)
{
pmap_pte_t *pte, flags;
flags = pmap_prot_table[prot & VM_PROT_ALL];
while (start < end) {
pte = PMAP_PTEMAP_BASE + PMAP_PTEMAP_INDEX(start, PMAP_L0_SHIFT);
*pte = (*pte & ~PMAP_PTE_PROT_MASK) | flags;
start += PAGE_SIZE;
}
}
void
pmap_protect(struct pmap *pmap, unsigned long start, unsigned long end,
int prot)
{
pmap_assert_range(pmap, start, end);
if ((pmap == kernel_pmap) || (pmap == pmap_current())) {
pmap_protect_ptemap(start, end, prot);
return;
}
/* TODO Complete pmap_protect() */
panic("pmap: pmap_protect not completely implemented yet");
}
static phys_addr_t
pmap_extract_ptemap(unsigned long va)
{
const struct pmap_pt_level *pt_level;
unsigned long index;
unsigned int level;
pmap_pte_t *pte;
for (level = PMAP_NR_LEVELS - 1; level < PMAP_NR_LEVELS; level--) {
pt_level = &pmap_pt_levels[level];
index = PMAP_PTEMAP_INDEX(va, pt_level->shift);
pte = &pt_level->ptemap_base[index];
if (*pte == 0)
return 0;
}
return *pte & PMAP_PA_MASK;
}
phys_addr_t
pmap_extract(struct pmap *pmap, unsigned long va)
{
pmap_assert_range(pmap, va, va + PAGE_SIZE);
if ((pmap == kernel_pmap) || (pmap == pmap_current()))
return pmap_extract_ptemap(va);
/* TODO Complete pmap_extract() */
panic("pmap: pmap_extract not completely implemented yet");
}
static void
pmap_update_local(struct pmap *pmap, unsigned long start, unsigned long end)
{
if ((pmap != pmap_current()) && (pmap != kernel_pmap))
return;
if (vm_page_atop(end - start) > PMAP_UPDATE_MAX_MAPPINGS) {
if (pmap == kernel_pmap)
cpu_tlb_flush_all();
else
cpu_tlb_flush();
} else {
while (start < end) {
cpu_tlb_flush_va(start);
start += PAGE_SIZE;
}
}
}
void
pmap_update(struct pmap *pmap, unsigned long start, unsigned long end)
{
struct pmap_update_data *pud;
struct pmap_update_queue *queue;
unsigned long flags;
unsigned int cpu;
int i;
pmap_assert_range(pmap, start, end);
if (cpu_count() == 1) {
pmap_update_local(pmap, start, end);
return;
}
assert(cpu_intr_enabled());
thread_preempt_disable();
cpu = cpu_id();
pud = &pmap_update_data[cpu];
pud->request.pmap = pmap;
pud->request.start = start;
pud->request.end = end;
cpumap_copy(&pud->cpumap, &pmap->cpumap);
cpumap_for_each(&pud->cpumap, i)
if ((unsigned int)i != cpu) {
pud->cpu_requests[i].done = 0;
queue = &pmap_update_data[i].queue;
spinlock_lock_intr_save(&queue->lock, &flags);
list_insert_tail(&queue->cpu_requests, &pud->cpu_requests[i].node);
spinlock_unlock_intr_restore(&queue->lock, flags);
}
if (pmap == kernel_pmap)
lapic_ipi_broadcast(TRAP_PMAP_UPDATE);
else
cpumap_for_each(&pud->cpumap, i)
if ((unsigned int)i != cpu)
lapic_ipi_send(i, TRAP_PMAP_UPDATE);
pmap_update_local(pmap, start, end);
cpumap_for_each(&pud->cpumap, i)
if ((unsigned int)i != cpu)
while (!pud->cpu_requests[i].done)
cpu_pause();
thread_preempt_enable();
}
void
pmap_update_intr(struct trap_frame *frame)
{
struct pmap_update_cpu_request *cpu_request, *array;
struct pmap_update_data *pud;
struct list cpu_requests, *node;
unsigned int cpu;
(void)frame;
lapic_eoi();
cpu = cpu_id();
pud = &pmap_update_data[cpu];
spinlock_lock(&pud->queue.lock);
list_set_head(&cpu_requests, &pud->queue.cpu_requests);
list_init(&pud->queue.cpu_requests);
spinlock_unlock(&pud->queue.lock);
while (!list_empty(&cpu_requests)) {
node = list_first(&cpu_requests);
cpu_request = list_entry(node, struct pmap_update_cpu_request, node);
list_remove(&cpu_request->node);
array = cpu_request - cpu;
pud = structof(array, struct pmap_update_data, cpu_requests);
pmap_update_local(pud->request.pmap, pud->request.start,
pud->request.end);
cpu_request->done = 1;
}
}
#ifdef X86_PAE
static unsigned long
pmap_pdpt_alloc(size_t slab_size)
{
struct vm_page *page;
unsigned long va, start, end;
int error;
va = vm_kmem_alloc_va(slab_size);
if (va == 0)
return 0;
for (start = va, end = va + slab_size; start < end; start += PAGE_SIZE) {
page = vm_page_alloc_seg(0, VM_PAGE_SEG_NORMAL, VM_PAGE_PMAP);
if (page == NULL)
goto error_page;
error = pmap_enter(kernel_pmap, start, vm_page_to_pa(page),
VM_PROT_READ | VM_PROT_WRITE);
if (error)
goto error_enter;
}
pmap_update(kernel_pmap, va, end);
return va;
error_enter:
vm_page_free(page, 0);
error_page:
vm_kmem_free(va, slab_size);
return 0;
}
#endif /* X86_PAE */
static void __init
pmap_setup_inc_nr_ptes(pmap_pte_t *pte)
{
struct vm_page *page;
page = vm_kmem_lookup_page(vm_page_trunc((unsigned long)pte));
assert(page != NULL);
page->pmap_page.nr_ptes++;
}
static void __init
pmap_setup_set_ptp_type(pmap_pte_t *pte)
{
struct vm_page *page;
page = vm_kmem_lookup_page(vm_page_trunc((unsigned long)pte));
assert(page != NULL);
if (vm_page_type(page) != VM_PAGE_PMAP) {
assert(vm_page_type(page) == VM_PAGE_RESERVED);
vm_page_set_type(page, 0, VM_PAGE_PMAP);
}
}
static void __init
pmap_setup_count_ptes(void)
{
pmap_walk_vas(0, pmap_boot_heap, 1, pmap_setup_inc_nr_ptes);
pmap_walk_vas(0, pmap_boot_heap, 1, pmap_setup_set_ptp_type);
/* Account for the reserved mappings, whether they exist or not */
pmap_walk_vas(pmap_boot_heap, pmap_boot_heap_end, 0,
pmap_setup_inc_nr_ptes);
pmap_walk_vas(pmap_boot_heap, pmap_boot_heap_end, 0,
pmap_setup_set_ptp_type);
}
void __init
pmap_setup(void)
{
pmap_setup_count_ptes();
kmem_cache_init(&pmap_cache, "pmap", sizeof(struct pmap),
0, NULL, NULL, NULL, 0);
#ifdef X86_PAE
kmem_cache_init(&pmap_pdpt_cache, "pmap_pdpt",
PMAP_NR_RPTPS * sizeof(pmap_pte_t), PMAP_PDPT_ALIGN,
NULL, pmap_pdpt_alloc, NULL, 0);
#endif /* X86_PAE */
pmap_ready = 1;
}
int
pmap_create(struct pmap **pmapp)
{
const struct pmap_pt_level *pt_level;
struct pmap_tmp_mapping *root_ptp_mapping;
struct vm_page *root_pages;
struct pmap *pmap;
pmap_pte_t *pt, *kpt;
phys_addr_t pa;
unsigned long va, index;
unsigned int i;
int error;
pmap = kmem_cache_alloc(&pmap_cache);
if (pmap == NULL) {
error = ERROR_NOMEM;
goto error_pmap;
}
root_pages = vm_page_alloc(PMAP_RPTP_ORDER, VM_PAGE_PMAP);
if (root_pages == NULL) {
error = ERROR_NOMEM;
goto error_pages;
}
pmap->root_ptp_pa = vm_page_to_pa(root_pages);
#ifdef X86_PAE
pmap->pdpt = kmem_cache_alloc(&pmap_pdpt_cache);
if (pmap->pdpt == NULL) {
error = ERROR_NOMEM;
goto error_pdpt;
}
va = (unsigned long)pmap->pdpt;
assert(P2ALIGNED(va, PMAP_PDPT_ALIGN));
for (i = 0; i < PMAP_NR_RPTPS; i++)
pmap->pdpt[i] = (pmap->root_ptp_pa + (i * PAGE_SIZE)) | PMAP_PTE_P;
pa = pmap_extract_ptemap(va) + (va & PAGE_MASK);
assert(pa < VM_PAGE_NORMAL_LIMIT);
pmap->pdpt_pa = (unsigned long)pa;
#endif /* X86_PAE */
pt_level = &pmap_pt_levels[PMAP_NR_LEVELS - 1];
kpt = pt_level->ptemap_base;
index = PMAP_PTEMAP_INDEX(VM_PMAP_PTEMAP_ADDRESS, pt_level->shift);
mutex_init(&pmap->lock);
cpumap_zero(&pmap->cpumap);
/* The pmap list lock also protects the shared root page table entries */
mutex_lock(&pmap_list_lock);
root_ptp_mapping = pmap_map_root_ptp(pmap->root_ptp_pa);
pt = (pmap_pte_t *)root_ptp_mapping->va;
memset(pt, 0, index * sizeof(pmap_pte_t));
index += PMAP_NR_RPTPS;
memcpy(&pt[index], &kpt[index], (pt_level->ptes_per_ptp - index)
* sizeof(pmap_pte_t));
for (i = 0; i < PMAP_NR_RPTPS; i++) {
va = VM_PMAP_PTEMAP_ADDRESS + (i * (1UL << pt_level->shift));
index = (va >> pt_level->shift) & ((1UL << pt_level->bits) - 1);
pa = pmap->root_ptp_pa + (i * PAGE_SIZE);
pt[index] = (pa | PMAP_PTE_RW | PMAP_PTE_P) & pt_level->mask;
}
pmap_unmap_root_ptp(root_ptp_mapping);
list_insert_tail(&pmap_list, &pmap->node);
mutex_unlock(&pmap_list_lock);
*pmapp = pmap;
return 0;
#ifdef X86_PAE
error_pdpt:
vm_page_free(root_pages, PMAP_RPTP_ORDER);
#endif /* X86_PAE */
error_pages:
kmem_cache_free(&pmap_cache, pmap);
error_pmap:
return error;
}
static void
pmap_enter_ptemap_sync_kernel(unsigned long index)
{
const struct pmap_pt_level *pt_level;
struct pmap_tmp_mapping *root_ptp_mapping;
struct pmap *pmap, *current;
pmap_pte_t *root_ptp;
pt_level = &pmap_pt_levels[PMAP_NR_LEVELS - 1];
assert(index < pt_level->ptes_per_ptp);
current = pmap_current();
mutex_lock(&pmap_list_lock);
list_for_each_entry(&pmap_list, pmap, node) {
if (pmap == current)
continue;
root_ptp_mapping = pmap_map_root_ptp(pmap->root_ptp_pa);
root_ptp = (pmap_pte_t *)root_ptp_mapping->va;
assert(root_ptp[index] == 0);
root_ptp[index] = pt_level->ptemap_base[index];
pmap_unmap_root_ptp(root_ptp_mapping);
}
mutex_unlock(&pmap_list_lock);
/*
* Since kernel page table pages can only be added, it is certain there
* could be no previous translation for them in the recursive mapping.
* As a result, there is no need to flush TLBs.
*/
}
static void
pmap_enter_ptemap_inc_nr_ptes(const pmap_pte_t *pte)
{
struct vm_page *page;
if (!pmap_ready)
return;
page = vm_kmem_lookup_page(vm_page_trunc((unsigned long)pte));
assert(page != NULL);
assert(vm_page_type(page) == VM_PAGE_PMAP);
page->pmap_page.nr_ptes++;
}
static int
pmap_enter_ptemap(struct pmap *pmap, unsigned long va, phys_addr_t pa, int prot)
{
const struct pmap_pt_level *pt_level;
struct vm_page *page;
unsigned long index;
unsigned int level;
pmap_pte_t *pte, pte_bits;
phys_addr_t ptp_pa;
pte_bits = PMAP_PTE_RW;
/*
* The recursive mapping is protected from user access by not setting
* the U/S bit when inserting the root page table into itself.
*/
if (pmap != kernel_pmap)
pte_bits |= PMAP_PTE_US;
for (level = PMAP_NR_LEVELS - 1; level != 0; level--) {
pt_level = &pmap_pt_levels[level];
index = PMAP_PTEMAP_INDEX(va, pt_level->shift);
pte = &pt_level->ptemap_base[index];
if (*pte != 0)
continue;
if (!vm_page_ready()) {
assert(pmap == kernel_pmap);
ptp_pa = vm_page_bootalloc();
} else {
page = vm_page_alloc(0, VM_PAGE_PMAP);
/* TODO Release page table pages */
if (page == NULL)
return ERROR_NOMEM;
ptp_pa = vm_page_to_pa(page);
}
pmap_enter_ptemap_inc_nr_ptes(pte);
pmap_zero_page(ptp_pa);
pmap_pte_set(pte, ptp_pa, pte_bits, level);
if ((pmap == kernel_pmap) && (level == (PMAP_NR_LEVELS - 1)))
pmap_enter_ptemap_sync_kernel(index);
}
pte = PMAP_PTEMAP_BASE + PMAP_PTEMAP_INDEX(va, PMAP_L0_SHIFT);
pmap_enter_ptemap_inc_nr_ptes(pte);
pte_bits = ((pmap == kernel_pmap) ? PMAP_PTE_G : PMAP_PTE_US)
| pmap_prot_table[prot & VM_PROT_ALL];
pmap_pte_set(pte, pa, pte_bits, 0);
return 0;
}
int
pmap_enter(struct pmap *pmap, unsigned long va, phys_addr_t pa, int prot)
{
pmap_assert_range(pmap, va, va + PAGE_SIZE);
if ((pmap == kernel_pmap) || (pmap == pmap_current()))
return pmap_enter_ptemap(pmap, va, pa, prot);
/* TODO Complete pmap_enter() */
panic("pmap: pmap_enter not completely implemented yet");
}
static void
pmap_remove_ptemap_dec_nr_ptes(const pmap_pte_t *pte)
{
struct vm_page *page;
if (!pmap_ready)
return;
page = vm_kmem_lookup_page(vm_page_trunc((unsigned long)pte));
assert(page != NULL);
assert(vm_page_type(page) == VM_PAGE_PMAP);
page->pmap_page.nr_ptes--;
}
static void
pmap_remove_ptemap(struct pmap *pmap, unsigned long start, unsigned long end)
{
pmap_pte_t *pte;
pmap_assert_range(pmap, start, end);
while (start < end) {
pte = PMAP_PTEMAP_BASE + PMAP_PTEMAP_INDEX(start, PMAP_L0_SHIFT);
pmap_remove_ptemap_dec_nr_ptes(pte);
pmap_pte_clear(pte);
start += PAGE_SIZE;
}
/* TODO Release page table pages */
}
void
pmap_remove(struct pmap *pmap, unsigned long start, unsigned long end)
{
if ((pmap == kernel_pmap) || (pmap == pmap_current())) {
pmap_remove_ptemap(pmap, start, end);
return;
}
/* TODO Complete pmap_remove() */
panic("pmap: pmap_remove not completely implemented yet");
}
void
pmap_load(struct pmap *pmap)
{
struct pmap *prev;
unsigned int cpu;
assert(!cpu_intr_enabled());
assert(!thread_preempt_enabled());
prev = pmap_current();
if (prev == pmap)
return;
cpu = cpu_id();
/*
* The kernel pmap is considered always loaded on every processor. As a
* result, its CPU map is never changed. In addition, don't bother
* flushing the TLB when switching to a kernel thread, which results in
* a form of lazy TLB invalidation.
*
* TODO As an exception, force switching when the currently loaded pmap
* is about to be destroyed.
*/
if (prev == kernel_pmap) {
cpu_percpu_set_pmap(pmap);
cpumap_set_atomic(&pmap->cpumap, cpu);
} else if (pmap == kernel_pmap) {
cpumap_clear_atomic(&prev->cpumap, cpu);
cpu_percpu_set_pmap(kernel_pmap);
return;
} else {
cpumap_clear_atomic(&prev->cpumap, cpu);
cpu_percpu_set_pmap(pmap);
cpumap_set_atomic(&pmap->cpumap, cpu);
}
#ifdef X86_PAE
cpu_set_cr3(pmap->pdpt_pa);
#else /* X86_PAE */
cpu_set_cr3(pmap->root_ptp_pa);
#endif /* X86_PAE */
}
|