summaryrefslogtreecommitdiff
path: root/net/sunrpc/xprtrdma/svc_rdma_sendto.c
AgeCommit message (Collapse)Author
2020-07-13svcrdma: Add common XDR encoders for RDMA and Read segmentsChuck Lever
Clean up: De-duplicate some code. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Add common XDR decoders for RDMA and Read segmentsChuck Lever
Clean up: De-duplicate some code. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Clean up trace_svcrdma_send_failed() tracepointChuck Lever
- Use the _err naming convention instead - Remove display of kernel memory address of the controlling xprt Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Make svc_rdma_send_error_msg() a global functionChuck Lever
Prepare for svc_rdma_send_error_msg() to be invoked from another source file. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Eliminate return value for svc_rdma_send_error_msg()Chuck Lever
Like svc_rdma_send_error(), have svc_rdma_send_error_msg() handle any error conditions internally, rather than duplicating that recovery logic at every call site. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Add a @status parameter to svc_rdma_send_error_msg()Chuck Lever
The common "send RDMA_ERR" function should be in svc_rdma_sendto.c, since that is where the other Send-related functions are located. So from here, I will beef up svc_rdma_send_error_msg() and deprecate svc_rdma_send_error(). A generic svc_rdma_send_error_msg() will need to handle both ERR_CHUNK and ERR_VERS. Copy that logic from svc_rdma_send_error() to svc_rdma_send_error_msg(). Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Add @rctxt parameter to svc_rdma_send_error() functionsChuck Lever
Another step towards making svc_rdma_send_error_msg() and svc_rdma_send_error() similar enough to eliminate one of them. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-07-13svcrdma: Remove save_io_pages() call from send_error_msg()Chuck Lever
Commit 4757d90b15d8 ("svcrdma: Report Write/Reply chunk overruns") made an effort to preserve I/O pages until RDMA Write completion. In a subsequent patch, I intend to de-duplicate the two functions that send ERR_CHUNK responses. Pull the save_io_pages() call out of svc_rdma_send_error_msg() to make it more like svc_rdma_send_error(). Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-05-18SUNRPC: Move xpt_mutex into socket xpo_sendto methodsChuck Lever
It appears that the RPC/RDMA transport does not need serialization of calls to its xpo_sendto method. Move the mutex into the socket methods that still need that serialization. Tail latencies are unambiguously better with this patch applied. fio randrw 8KB 70/30 on NFSv3, smaller numbers are better: clat percentiles (usec): With xpt_mutex: r | 99.99th=[ 8848] w | 99.99th=[ 9634] Without xpt_mutex: r | 99.99th=[ 8586] w | 99.99th=[ 8979] Serializing the construction of RPC/RDMA transport headers is not really necessary at this point, because the Linux NFS server implementation never changes its credit grant on a connection. If that should change, then svc_rdma_sendto will need to serialize access to the transport's credit grant fields. Reported-by: kbuild test robot <lkp@intel.com> [ cel: fix uninitialized variable warning ] Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-04-17svcrdma: Fix leak of svc_rdma_recv_ctxt objectsChuck Lever
Utilize the xpo_release_rqst transport method to ensure that each rqstp's svc_rdma_recv_ctxt object is released even when the server cannot return a Reply for that rqstp. Without this fix, each RPC whose Reply cannot be sent leaks one svc_rdma_recv_ctxt. This is a 2.5KB structure, a 4KB DMA-mapped Receive buffer, and any pages that might be part of the Reply message. The leak is infrequent unless the network fabric is unreliable or Kerberos is in use, as GSS sequence window overruns, which result in connection loss, are more common on fast transports. Fixes: 3a88092ee319 ("svcrdma: Preserve Receive buffer until svc_rdma_sendto") Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-04-17svcrdma: Fix trace point use-after-free raceChuck Lever
I hit this while testing nfsd-5.7 with kernel memory debugging enabled on my server: Mar 30 13:21:45 klimt kernel: BUG: unable to handle page fault for address: ffff8887e6c279a8 Mar 30 13:21:45 klimt kernel: #PF: supervisor read access in kernel mode Mar 30 13:21:45 klimt kernel: #PF: error_code(0x0000) - not-present page Mar 30 13:21:45 klimt kernel: PGD 3601067 P4D 3601067 PUD 87c519067 PMD 87c3e2067 PTE 800ffff8193d8060 Mar 30 13:21:45 klimt kernel: Oops: 0000 [#1] SMP DEBUG_PAGEALLOC PTI Mar 30 13:21:45 klimt kernel: CPU: 2 PID: 1933 Comm: nfsd Not tainted 5.6.0-rc6-00040-g881e87a3c6f9 #1591 Mar 30 13:21:45 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015 Mar 30 13:21:45 klimt kernel: RIP: 0010:svc_rdma_post_chunk_ctxt+0xab/0x284 [rpcrdma] Mar 30 13:21:45 klimt kernel: Code: c1 83 34 02 00 00 29 d0 85 c0 7e 72 48 8b bb a0 02 00 00 48 8d 54 24 08 4c 89 e6 48 8b 07 48 8b 40 20 e8 5a 5c 2b e1 41 89 c6 <8b> 45 20 89 44 24 04 8b 05 02 e9 01 00 85 c0 7e 33 e9 5e 01 00 00 Mar 30 13:21:45 klimt kernel: RSP: 0018:ffffc90000dfbdd8 EFLAGS: 00010286 Mar 30 13:21:45 klimt kernel: RAX: 0000000000000000 RBX: ffff8887db8db400 RCX: 0000000000000030 Mar 30 13:21:45 klimt kernel: RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000246 Mar 30 13:21:45 klimt kernel: RBP: ffff8887e6c27988 R08: 0000000000000000 R09: 0000000000000004 Mar 30 13:21:45 klimt kernel: R10: ffffc90000dfbdd8 R11: 00c068ef00000000 R12: ffff8887eb4e4a80 Mar 30 13:21:45 klimt kernel: R13: ffff8887db8db634 R14: 0000000000000000 R15: ffff8887fc931000 Mar 30 13:21:45 klimt kernel: FS: 0000000000000000(0000) GS:ffff88885bd00000(0000) knlGS:0000000000000000 Mar 30 13:21:45 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8 CR3: 000000081b72e002 CR4: 00000000001606e0 Mar 30 13:21:45 klimt kernel: Call Trace: Mar 30 13:21:45 klimt kernel: ? svc_rdma_vec_to_sg+0x7f/0x7f [rpcrdma] Mar 30 13:21:45 klimt kernel: svc_rdma_send_write_chunk+0x59/0xce [rpcrdma] Mar 30 13:21:45 klimt kernel: svc_rdma_sendto+0xf9/0x3ae [rpcrdma] Mar 30 13:21:45 klimt kernel: ? nfsd_destroy+0x51/0x51 [nfsd] Mar 30 13:21:45 klimt kernel: svc_send+0x105/0x1e3 [sunrpc] Mar 30 13:21:45 klimt kernel: nfsd+0xf2/0x149 [nfsd] Mar 30 13:21:45 klimt kernel: kthread+0xf6/0xfb Mar 30 13:21:45 klimt kernel: ? kthread_queue_delayed_work+0x74/0x74 Mar 30 13:21:45 klimt kernel: ret_from_fork+0x3a/0x50 Mar 30 13:21:45 klimt kernel: Modules linked in: ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue ib_umad ib_ipoib mlx4_ib sb_edac x86_pkg_temp_thermal iTCO_wdt iTCO_vendor_support coretemp kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel glue_helper crypto_simd cryptd pcspkr rpcrdma i2c_i801 rdma_ucm lpc_ich mfd_core ib_iser rdma_cm iw_cm ib_cm mei_me raid0 libiscsi mei sg scsi_transport_iscsi ioatdma wmi ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter nfsd nfs_acl lockd auth_rpcgss grace sunrpc ip_tables xfs libcrc32c mlx4_en sd_mod sr_mod cdrom mlx4_core crc32c_intel igb nvme i2c_algo_bit ahci i2c_core libahci nvme_core dca libata t10_pi qedr dm_mirror dm_region_hash dm_log dm_mod dax qede qed crc8 ib_uverbs ib_core Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8 Mar 30 13:21:45 klimt kernel: ---[ end trace 87971d2ad3429424 ]--- It's absolutely not safe to use resources pointed to by the @send_wr argument of ib_post_send() _after_ that function returns. Those resources are typically freed by the Send completion handler, which can run before ib_post_send() returns. Thus the trace points currently around ib_post_send() in the server's RPC/RDMA transport are a hazard, even when they are disabled. Rearrange them so that they touch the Work Request only _before_ ib_post_send() is invoked. Fixes: bd2abef33394 ("svcrdma: Trace key RDMA API events") Fixes: 4201c7464753 ("svcrdma: Introduce svc_rdma_send_ctxt") Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Avoid DMA mapping small RPC RepliesChuck Lever
On some platforms, DMA mapping part of a page is more costly than copying bytes. Indeed, not involving the I/O MMU can help the RPC/RDMA transport scale better for tiny I/Os across more RDMA devices. This is because interaction with the I/O MMU is eliminated for each of these small I/Os. Without the explicit unmapping, the NIC no longer needs to do a costly internal TLB shoot down for buffers that are just a handful of bytes. Since pull-up is now a more a frequent operation, I've introduced a trace point in the pull-up path. It can be used for debugging or user-space tools that count pull-up frequency. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Fix double sync of transport header bufferChuck Lever
Performance optimization: Avoid syncing the transport buffer twice when Reply buffer pull-up is necessary. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Refactor chunk list encodersChuck Lever
Same idea as the receive-side changes I did a while back: use xdr_stream helpers rather than open-coding the XDR chunk list encoders. This builds the Reply transport header from beginning to end without backtracking. As additional clean-ups, fill in documenting comments for the XDR encoders and sprinkle some trace points in the new encoding functions. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Update synopsis of svc_rdma_send_reply_msg()Chuck Lever
Preparing for subsequent patches, no behavior change expected. Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto() path. This enables passing more information about Requester- provided Write and Reply chunks into those lower-level functions. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Update synopsis of svc_rdma_map_reply_msg()Chuck Lever
Preparing for subsequent patches, no behavior change expected. Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto() path. This enables passing more information about Requester- provided Write and Reply chunks into those lower-level functions. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Update synopsis of svc_rdma_send_reply_chunk()Chuck Lever
Preparing for subsequent patches, no behavior change expected. Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto() path. This enables passing more information about Requester- provided Write and Reply chunks into the lower-level send functions. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: De-duplicate code that locates Write and Reply chunksChuck Lever
Cache the locations of the Requester-provided Write list and Reply chunk so that the Send path doesn't need to parse the Call header again. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16SUNRPC: Add xdr_pad_size() helperChuck Lever
Introduce a helper function to compute the XDR pad size of a variable-length XDR object. Clean up: Replace open-coded calculation of XDR pad sizes. I'm sure I haven't found every instance of this calculation. Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16svcrdma: Fix double svc_rdma_send_ctxt_put() in an error pathChuck Lever
This error path is almost never executed. Found by code inspection. Fixes: 99722fe4d5a6 ("svcrdma: Persistently allocate and DMA-map Send buffers") Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2020-03-16nfsd: Fix NFSv4 READ on RDMA when using readvChuck Lever
svcrdma expects that the payload falls precisely into the xdr_buf page vector. This does not seem to be the case for nfsd4_encode_readv(). This code is called only when fops->splice_read is missing or when RQ_SPLICE_OK is clear, so it's not a noticeable problem in many common cases. Add new transport method: ->xpo_read_payload so that when a READ payload does not fit exactly in rq_res's page vector, the XDR encoder can inform the RPC transport exactly where that payload is, without the payload's XDR pad. That way, when a Write chunk is present, the transport knows what byte range in the Reply message is supposed to be matched with the chunk. Note that the Linux NFS server implementation of NFS/RDMA can currently handle only one Write chunk per RPC-over-RDMA message. This simplifies the implementation of this fix. Fixes: b04209806384 ("nfsd4: allow exotic read compounds") Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=198053 Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2019-10-08svcrdma: Improve DMA mapping trace pointsChuck Lever
Capture the total size of Sends, the size of DMA map and the matching DMA unmap to ensure operation is correct. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-02-06svcrdma: Remove syslog warnings in work completion handlersChuck Lever
These can result in a lot of log noise, and are able to be triggered by client misbehavior. Since there are trace points in these handlers now, there's no need to spam the log. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2019-02-06svcrdma: Remove max_sge check at connect timeChuck Lever
Two and a half years ago, the client was changed to use gathered Send for larger inline messages, in commit 655fec6987b ("xprtrdma: Use gathered Send for large inline messages"). Several fixes were required because there are a few in-kernel device drivers whose max_sge is 3, and these were broken by the change. Apparently my memory is going, because some time later, I submitted commit 25fd86eca11c ("svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt"), and after that, commit f3c1fd0ee294 ("svcrdma: Reduce max_send_sges"). These too incorrectly assumed in-kernel device drivers would have more than a few Send SGEs available. The fix for the server side is not the same. This is because the fundamental problem on the server is that, whether or not the client has provisioned a chunk for the RPC reply, the server must squeeze even the most complex RPC replies into a single RDMA Send. Failing in the send path because of Send SGE exhaustion should never be an option. Therefore, instead of failing when the send path runs out of SGEs, switch to using a bounce buffer mechanism to handle RPC replies that are too complex for the device to send directly. That allows us to remove the max_sge check to enable drivers with small max_sge to work again. Reported-by: Don Dutile <ddutile@redhat.com> Fixes: 25fd86eca11c ("svcrdma: Don't overrun the SGE array in ...") Cc: stable@vger.kernel.org Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-12-27sunrpc: remove unused xpo_prep_reply_hdr callbackVasily Averin
xpo_prep_reply_hdr are not used now. It was defined for tcp transport only, however it cannot be called indirectly, so let's move it to its caller and remove unused callback. Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-11-28svcrdma: Optimize the logic that selects the R_key to invalidateChuck Lever
o Select the R_key to invalidate while the CPU cache still contains the received RPC Call transport header, rather than waiting until we're about to send the RPC Reply. o Choose Send With Invalidate if there is exactly one distinct R_key in the received transport header. If there's more than one, the client will have to perform local invalidation after it has already waited for remote invalidation. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-08-23Merge tag 'nfsd-4.19-1' of git://linux-nfs.org/~bfields/linuxLinus Torvalds
Pull nfsd updates from Bruce Fields: "Chuck Lever fixed a problem with NFSv4.0 callbacks over GSS from multi-homed servers. The only new feature is a minor bit of protocol (change_attr_type) which the client doesn't even use yet. Other than that, various bugfixes and cleanup" * tag 'nfsd-4.19-1' of git://linux-nfs.org/~bfields/linux: (27 commits) sunrpc: Add comment defining gssd upcall API keywords nfsd: Remove callback_cred nfsd: Use correct credential for NFSv4.0 callback with GSS sunrpc: Extract target name into svc_cred sunrpc: Enable the kernel to specify the hostname part of service principals sunrpc: Don't use stack buffer with scatterlist rpc: remove unneeded variable 'ret' in rdma_listen_handler nfsd: use true and false for boolean values nfsd: constify write_op[] fs/nfsd: Delete invalid assignment statements in nfsd4_decode_exchange_id NFSD: Handle full-length symlinks NFSD: Refactor the generic write vector fill helper svcrdma: Clean up Read chunk path svcrdma: Avoid releasing a page in svc_xprt_release() nfsd: Mark expected switch fall-through sunrpc: remove redundant variables 'checksumlen','blocksize' and 'data' nfsd: fix leaked file lock with nfs exported overlayfs nfsd: don't advertise a SCSI layout for an unsupported request_queue nfsd: fix corrupted reply to badly ordered compound nfsd: clarify check_op_ordering ...
2018-08-09svcrdma: Avoid releasing a page in svc_xprt_release()Chuck Lever
svc_xprt_release() invokes svc_free_res_pages(), which releases pages between rq_respages and rq_next_page. Historically, the RPC/RDMA transport has set these two pointers to be different by one, which means: - one page gets released when svc_recv returns 0. This normally happens whenever one or more RDMA Reads need to be dispatched to complete construction of an RPC Call. - one page gets released after every call to svc_send. In both cases, this released page is immediately refilled by svc_alloc_arg. There does not seem to be a reason for releasing this page. To avoid this unnecessary memory allocator traffic, set rq_next_page more carefully. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-07-24net/xprtrdma: Simplify ib_post_(send|recv|srq_recv)() callsBart Van Assche
Instead of declaring and passing a dummy 'bad_wr' pointer, pass NULL as third argument to ib_post_(send|recv|srq_recv)(). Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Chuck Lever <chuck.lever@oracle.com> Acked-by: Anna Schumaker <Anna.Schumaker@netapp.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2018-05-11svcrdma: Persistently allocate and DMA-map Send buffersChuck Lever
While sending each RPC Reply, svc_rdma_sendto allocates and DMA- maps a separate buffer where the RPC/RDMA transport header is constructed. The buffer is unmapped and released in the Send completion handler. This is significant per-RPC overhead, especially for small RPCs. Instead, allocate and DMA-map a buffer, and cache it in each svc_rdma_send_ctxt. This buffer and its mapping can be re-used for each RPC, saving the cost of memory allocation and DMA mapping. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Simplify svc_rdma_send()Chuck Lever
Clean up: No current caller of svc_rdma_send's passes in a chained WR. The logic that counts the chain length can be replaced with a constant (1). Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Remove post_send_wrChuck Lever
Clean up: Now that the send_wr is part of the svc_rdma_send_ctxt, svc_rdma_post_send_wr is nearly empty. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxtChuck Lever
Receive buffers are always the same size, but each Send WR has a variable number of SGEs, based on the contents of the xdr_buf being sent. While assembling a Send WR, keep track of the number of SGEs so that we don't exceed the device's maximum, or walk off the end of the Send SGE array. For now the Send path just fails if it exceeds the maximum. The current logic in svc_rdma_accept bases the maximum number of Send SGEs on the largest NFS request that can be sent or received. In the transport layer, the limit is actually based on the capabilities of the underlying device, not on properties of the Upper Layer Protocol. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Introduce svc_rdma_send_ctxtChuck Lever
svc_rdma_op_ctxt's are pre-allocated and maintained on a per-xprt free list. This eliminates the overhead of calling kmalloc / kfree, both of which grab a globally shared lock that disables interrupts. Introduce a replacement to svc_rdma_op_ctxt's that is built especially for the svcrdma Send path. Subsequent patches will take advantage of this new structure by allocating real resources which are then cached in these objects. The allocations are freed when the transport is torn down. I've renamed the structure so that static type checking can be used to ensure that uses of op_ctxt and send_ctxt are not confused. As an additional clean up, structure fields are renamed to conform with kernel coding conventions. Additional clean ups: - Handle svc_rdma_send_ctxt_get allocation failure at each call site, rather than pre-allocating and hoping we guessed correctly - All send_ctxt_put call-sites request page freeing, so remove the @free_pages argument - All send_ctxt_put call-sites unmap SGEs, so fold that into svc_rdma_send_ctxt_put Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Clean up Send SGE accountingChuck Lever
Clean up: Since there's already a svc_rdma_op_ctxt being passed around with the running count of mapped SGEs, drop unneeded parameters to svc_rdma_post_send_wr(). Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Refactor svc_rdma_dma_map_bufChuck Lever
Clean up: svc_rdma_dma_map_buf does mostly the same thing as svc_rdma_dma_map_page, so let's fold these together. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Persistently allocate and DMA-map Receive buffersChuck Lever
The current Receive path uses an array of pages which are allocated and DMA mapped when each Receive WR is posted, and then handed off to the upper layer in rqstp::rq_arg. The page flip releases unused pages in the rq_pages pagelist. This mechanism introduces a significant amount of overhead. So instead, kmalloc the Receive buffer, and leave it DMA-mapped while the transport remains connected. This confers a number of benefits: * Each Receive WR requires only one receive SGE, no matter how large the inline threshold is. This helps the server-side NFS/RDMA transport operate on less capable RDMA devices. * The Receive buffer is left allocated and mapped all the time. This relieves svc_rdma_post_recv from the overhead of allocating and DMA-mapping a fresh buffer. * svc_rdma_wc_receive no longer has to DMA unmap the Receive buffer. It has to DMA sync only the number of bytes that were received. * svc_rdma_build_arg_xdr no longer has to free a page in rq_pages for each page in the Receive buffer, making it a constant-time function. * The Receive buffer is now plugged directly into the rq_arg's head[0].iov_vec, and can be larger than a page without spilling over into rq_arg's page list. This enables simplification of the RDMA Read path in subsequent patches. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Preserve Receive buffer until svc_rdma_sendtoChuck Lever
Rather than releasing the incoming svc_rdma_recv_ctxt at the end of svc_rdma_recvfrom, hold onto it until svc_rdma_sendto. This permits the contents of the Receive buffer to be preserved through svc_process and then referenced directly in sendto as it constructs Write and Reply chunks to return to the client. The real changes will come in subsequent patches. Note: I cannot use ->xpo_release_rqst for this purpose because that is called _before_ ->xpo_sendto. svc_rdma_sendto uses information in the received Call transport header to construct the Reply transport header, which is preserved in the RPC's Receive buffer. The historical comment in svc_send() isn't helpful: it is already obvious that ->xpo_release_rqst is being called before ->xpo_sendto, but there is no explanation for this ordering going back to the beginning of the git era. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Introduce svc_rdma_recv_ctxtChuck Lever
svc_rdma_op_ctxt's are pre-allocated and maintained on a per-xprt free list. This eliminates the overhead of calling kmalloc / kfree, both of which grab a globally shared lock that disables interrupts. To reduce contention further, separate the use of these objects in the Receive and Send paths in svcrdma. Subsequent patches will take advantage of this separation by allocating real resources which are then cached in these objects. The allocations are freed when the transport is torn down. I've renamed the structure so that static type checking can be used to ensure that uses of op_ctxt and recv_ctxt are not confused. As an additional clean up, structure fields are renamed to conform with kernel coding conventions. As a final clean up, helpers related to recv_ctxt are moved closer to the functions that use them. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Trace key RDMA API eventsChuck Lever
This includes: * Posting on the Send and Receive queues * Send, Receive, Read, and Write completion * Connect upcalls * QP errors Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Trace key RPC/RDMA protocol eventsChuck Lever
This includes: * Transport accept and tear-down * Decisions about using Write and Reply chunks * Each RDMA segment that is handled * Whenever an RDMA_ERR is sent As a clean-up, I've standardized the order of the includes, and removed some now redundant dprintk call sites. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-05-11svcrdma: Add proper SPDX tags for NetApp-contributed sourceChuck Lever
Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-01-18svcrdma: Post Receives in the Receive completion handlerChuck Lever
This change improves Receive efficiency by posting Receives only on the same CPU that handles Receive completion. Improved latency and throughput has been noted with this change. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-07-13svcrdma: fix an incorrect check on -E2BIG and -EINVALColin Ian King
The current check will always be true and will always jump to err1, this looks dubious to me. I believe && should be used instead of ||. Detected by CoverityScan, CID#1450120 ("Logically Dead Code") Fixes: 107c1d0a991a ("svcrdma: Avoid Send Queue overflow") Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-06-28svcrdma: Avoid Send Queue overflowChuck Lever
Sanity case: Catch the case where more Work Requests are being posted to the Send Queue than there are Send Queue Entries. This might happen if a client sends a chunk with more segments than there are SQEs for the transport. The server can't send that reply, so the transport will deadlock unless the client drops the RPC. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-06-28svcrdma: Squelch disconnection messagesChuck Lever
The server displays "svcrdma: failed to post Send WR (-107)" in the kernel log when the client disconnects. This could flood the server's log, so remove the message. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-04-25svcrdma: Remove the req_map cacheChuck Lever
req_maps are no longer used by the send path and can thus be removed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-04-25svcrdma: Report Write/Reply chunk overrunsChuck Lever
Observed at Connectathon 2017. If a client has underestimated the size of a Write or Reply chunk, the Linux server writes as much payload data as it can, then it recognizes there was a problem and closes the connection without sending the transport header. This creates a couple of problems: <> The client never receives indication of the server-side failure, so it continues to retransmit the bad RPC. Forward progress on the transport is blocked. <> The reply payload pages are not moved out of the svc_rqst, thus they can be released by the RPC server before the RDMA Writes have completed. The new rdma_rw-ized helpers return a distinct error code when a Write/Reply chunk overrun occurs, so it's now easy for the caller (svc_rdma_sendto) to recognize this case. Instead of dropping the connection, post an RDMA_ERROR message. The client now sees an RDMA_ERROR and can properly terminate the RPC transaction. As part of the new logic, set up the same delayed release for these payload pages as would have occurred in the normal case. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-04-25svcrdma: Clean up RDMA_ERROR pathChuck Lever
Now that svc_rdma_sendto has been renovated, svc_rdma_send_error can be refactored to reduce code duplication and remove C structure- based XDR encoding. It is also relocated to the source file that contains its only caller. This is a refactoring change only. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Reviewed-by: Sagi Grimberg <sagi@grimberg.me> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2017-04-25svcrdma: Use rdma_rw API in RPC reply pathChuck Lever
The current svcrdma sendto code path posts one RDMA Write WR at a time. Each of these Writes typically carries a small number of pages (for instance, up to 30 pages for mlx4 devices). That means a 1MB NFS READ reply requires 9 ib_post_send() calls for the Write WRs, and one for the Send WR carrying the actual RPC Reply message. Instead, use the new rdma_rw API. The details of Write WR chain construction and memory registration are taken care of in the RDMA core. svcrdma can focus on the details of the RPC-over-RDMA protocol. This gives three main benefits: 1. All Write WRs for one RDMA segment are posted in a single chain. As few as one ib_post_send() for each Write chunk. 2. The Write path can now use FRWR to register the Write buffers. If the device's maximum page list depth is large, this means a single Write WR is needed for each RPC's Write chunk data. 3. The new code introduces support for RPCs that carry both a Write list and a Reply chunk. This combination can be used for an NFSv4 READ where the data payload is large, and thus is removed from the Payload Stream, but the Payload Stream is still larger than the inline threshold. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>