Age | Commit message (Collapse) | Author |
|
[ Upstream commit 4c8002277167125078e6b9b90137bdf443ebaa08 ]
The grc must be initialize first. There can be a condition where if
fou is NULL, goto out will be executed and grc would be used
uninitialized.
Fixes: 7e4196935069 ("fou: Fix null-ptr-deref in GRO.")
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://patch.msgid.link/20240906102839.202798-1-usama.anjum@collabora.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit c1668292689ad2ee16c9c1750a8044b0b0aad663 upstream.
The 'Fixes' commit recently changed the behaviour of TCP by skipping the
processing of the 3rd ACK when a sk->sk_socket is set. The goal was to
skip tcp_ack_snd_check() in tcp_rcv_state_process() not to send an
unnecessary ACK in case of simultaneous connect(). Unfortunately, that
had an impact on TFO and MPTCP.
I started to look at the impact on MPTCP, because the MPTCP CI found
some issues with the MPTCP Packetdrill tests [1]. Then Paolo Abeni
suggested me to look at the impact on TFO with "plain" TCP.
For MPTCP, when receiving the 3rd ACK of a request adding a new path
(MP_JOIN), sk->sk_socket will be set, and point to the MPTCP sock that
has been created when the MPTCP connection got established before with
the first path. The newly added 'goto' will then skip the processing of
the segment text (step 7) and not go through tcp_data_queue() where the
MPTCP options are validated, and some actions are triggered, e.g.
sending the MPJ 4th ACK [2] as demonstrated by the new errors when
running a packetdrill test [3] establishing a second subflow.
This doesn't fully break MPTCP, mainly the 4th MPJ ACK that will be
delayed. Still, we don't want to have this behaviour as it delays the
switch to the fully established mode, and invalid MPTCP options in this
3rd ACK will not be caught any more. This modification also affects the
MPTCP + TFO feature as well, and being the reason why the selftests
started to be unstable the last few days [4].
For TFO, the existing 'basic-cookie-not-reqd' test [5] was no longer
passing: if the 3rd ACK contains data, and the connection is accept()ed
before receiving them, these data would no longer be processed, and thus
not ACKed.
One last thing about MPTCP, in case of simultaneous connect(), a
fallback to TCP will be done, which seems fine:
`../common/defaults.sh`
0 socket(..., SOCK_STREAM|SOCK_NONBLOCK, IPPROTO_MPTCP) = 3
+0 connect(3, ..., ...) = -1 EINPROGRESS (Operation now in progress)
+0 > S 0:0(0) <mss 1460, sackOK, TS val 100 ecr 0, nop, wscale 8, mpcapable v1 flags[flag_h] nokey>
+0 < S 0:0(0) win 1000 <mss 1460, sackOK, TS val 407 ecr 0, nop, wscale 8, mpcapable v1 flags[flag_h] nokey>
+0 > S. 0:0(0) ack 1 <mss 1460, sackOK, TS val 330 ecr 0, nop, wscale 8, mpcapable v1 flags[flag_h] nokey>
+0 < S. 0:0(0) ack 1 win 65535 <mss 1460, sackOK, TS val 700 ecr 100, nop, wscale 8, mpcapable v1 flags[flag_h] key[skey=2]>
+0 > . 1:1(0) ack 1 <nop, nop, TS val 845707014 ecr 700, nop, nop, sack 0:1>
Simultaneous SYN-data crossing is also not supported by TFO, see [6].
Kuniyuki Iwashima suggested to restrict the processing to SYN+ACK only:
that's a more generic solution than the one initially proposed, and
also enough to fix the issues described above.
Later on, Eric Dumazet mentioned that an ACK should still be sent in
reaction to the second SYN+ACK that is received: not sending a DUPACK
here seems wrong and could hurt:
0 socket(..., SOCK_STREAM|SOCK_NONBLOCK, IPPROTO_TCP) = 3
+0 connect(3, ..., ...) = -1 EINPROGRESS (Operation now in progress)
+0 > S 0:0(0) <mss 1460, sackOK, TS val 1000 ecr 0,nop,wscale 8>
+0 < S 0:0(0) win 1000 <mss 1000, sackOK, nop, nop>
+0 > S. 0:0(0) ack 1 <mss 1460, sackOK, TS val 3308134035 ecr 0,nop,wscale 8>
+0 < S. 0:0(0) ack 1 win 1000 <mss 1000, sackOK, nop, nop>
+0 > . 1:1(0) ack 1 <nop, nop, sack 0:1> // <== Here
So in this version, the 'goto consume' is dropped, to always send an ACK
when switching from TCP_SYN_RECV to TCP_ESTABLISHED. This ACK will be
seen as a DUPACK -- with DSACK if SACK has been negotiated -- in case of
simultaneous SYN crossing: that's what is expected here.
Link: https://github.com/multipath-tcp/mptcp_net-next/actions/runs/9936227696 [1]
Link: https://datatracker.ietf.org/doc/html/rfc8684#fig_tokens [2]
Link: https://github.com/multipath-tcp/packetdrill/blob/mptcp-net-next/gtests/net/mptcp/syscalls/accept.pkt#L28 [3]
Link: https://netdev.bots.linux.dev/contest.html?executor=vmksft-mptcp-dbg&test=mptcp-connect-sh [4]
Link: https://github.com/google/packetdrill/blob/master/gtests/net/tcp/fastopen/server/basic-cookie-not-reqd.pkt#L21 [5]
Link: https://github.com/google/packetdrill/blob/master/gtests/net/tcp/fastopen/client/simultaneous-fast-open.pkt [6]
Fixes: 23e89e8ee7be ("tcp: Don't drop SYN+ACK for simultaneous connect().")
Suggested-by: Paolo Abeni <pabeni@redhat.com>
Suggested-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240724-upstream-net-next-20240716-tcp-3rd-ack-consume-sk_socket-v3-1-d48339764ce9@kernel.org
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 23e89e8ee7be73e21200947885a6d3a109a2c58d ]
RFC 9293 states that in the case of simultaneous connect(), the connection
gets established when SYN+ACK is received. [0]
TCP Peer A TCP Peer B
1. CLOSED CLOSED
2. SYN-SENT --> <SEQ=100><CTL=SYN> ...
3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT
4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED
5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...
6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED
7. ... <SEQ=100><ACK=301><CTL=SYN,ACK> --> ESTABLISHED
However, since commit 0c24604b68fc ("tcp: implement RFC 5961 4.2"), such a
SYN+ACK is dropped in tcp_validate_incoming() and responded with Challenge
ACK.
For example, the write() syscall in the following packetdrill script fails
with -EAGAIN, and wrong SNMP stats get incremented.
0 socket(..., SOCK_STREAM|SOCK_NONBLOCK, IPPROTO_TCP) = 3
+0 connect(3, ..., ...) = -1 EINPROGRESS (Operation now in progress)
+0 > S 0:0(0) <mss 1460,sackOK,TS val 1000 ecr 0,nop,wscale 8>
+0 < S 0:0(0) win 1000 <mss 1000>
+0 > S. 0:0(0) ack 1 <mss 1460,sackOK,TS val 3308134035 ecr 0,nop,wscale 8>
+0 < S. 0:0(0) ack 1 win 1000
+0 write(3, ..., 100) = 100
+0 > P. 1:101(100) ack 1
--
# packetdrill cross-synack.pkt
cross-synack.pkt:13: runtime error in write call: Expected result 100 but got -1 with errno 11 (Resource temporarily unavailable)
# nstat
...
TcpExtTCPChallengeACK 1 0.0
TcpExtTCPSYNChallenge 1 0.0
The problem is that bpf_skops_established() is triggered by the Challenge
ACK instead of SYN+ACK. This causes the bpf prog to miss the chance to
check if the peer supports a TCP option that is expected to be exchanged
in SYN and SYN+ACK.
Let's accept a bare SYN+ACK for active-open TCP_SYN_RECV sockets to avoid
such a situation.
Note that tcp_ack_snd_check() in tcp_rcv_state_process() is skipped not to
send an unnecessary ACK, but this could be a bit risky for net.git, so this
targets for net-next.
Link: https://www.rfc-editor.org/rfc/rfc9293.html#section-3.5-7 [0]
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240710171246.87533-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7e4196935069947d8b70b09c1660b67b067e75cb ]
We observed a null-ptr-deref in fou_gro_receive() while shutting down
a host. [0]
The NULL pointer is sk->sk_user_data, and the offset 8 is of protocol
in struct fou.
When fou_release() is called due to netns dismantle or explicit tunnel
teardown, udp_tunnel_sock_release() sets NULL to sk->sk_user_data.
Then, the tunnel socket is destroyed after a single RCU grace period.
So, in-flight udp4_gro_receive() could find the socket and execute the
FOU GRO handler, where sk->sk_user_data could be NULL.
Let's use rcu_dereference_sk_user_data() in fou_from_sock() and add NULL
checks in FOU GRO handlers.
[0]:
BUG: kernel NULL pointer dereference, address: 0000000000000008
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 80000001032f4067 P4D 80000001032f4067 PUD 103240067 PMD 0
SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.10.216-204.855.amzn2.x86_64 #1
Hardware name: Amazon EC2 c5.large/, BIOS 1.0 10/16/2017
RIP: 0010:fou_gro_receive (net/ipv4/fou.c:233) [fou]
Code: 41 5f c3 cc cc cc cc e8 e7 2e 69 f4 0f 1f 80 00 00 00 00 0f 1f 44 00 00 49 89 f8 41 54 48 89 f7 48 89 d6 49 8b 80 88 02 00 00 <0f> b6 48 08 0f b7 42 4a 66 25 fd fd 80 cc 02 66 89 42 4a 0f b6 42
RSP: 0018:ffffa330c0003d08 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff93d9e3a6b900 RCX: 0000000000000010
RDX: ffff93d9e3a6b900 RSI: ffff93d9e3a6b900 RDI: ffff93dac2e24d08
RBP: ffff93d9e3a6b900 R08: ffff93dacbce6400 R09: 0000000000000002
R10: 0000000000000000 R11: ffffffffb5f369b0 R12: ffff93dacbce6400
R13: ffff93dac2e24d08 R14: 0000000000000000 R15: ffffffffb4edd1c0
FS: 0000000000000000(0000) GS:ffff93daee800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 0000000102140001 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259)
? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420)
? no_context (arch/x86/mm/fault.c:752)
? exc_page_fault (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 arch/x86/mm/fault.c:1435 arch/x86/mm/fault.c:1483)
? asm_exc_page_fault (arch/x86/include/asm/idtentry.h:571)
? fou_gro_receive (net/ipv4/fou.c:233) [fou]
udp_gro_receive (include/linux/netdevice.h:2552 net/ipv4/udp_offload.c:559)
udp4_gro_receive (net/ipv4/udp_offload.c:604)
inet_gro_receive (net/ipv4/af_inet.c:1549 (discriminator 7))
dev_gro_receive (net/core/dev.c:6035 (discriminator 4))
napi_gro_receive (net/core/dev.c:6170)
ena_clean_rx_irq (drivers/amazon/net/ena/ena_netdev.c:1558) [ena]
ena_io_poll (drivers/amazon/net/ena/ena_netdev.c:1742) [ena]
napi_poll (net/core/dev.c:6847)
net_rx_action (net/core/dev.c:6917)
__do_softirq (arch/x86/include/asm/jump_label.h:25 include/linux/jump_label.h:200 include/trace/events/irq.h:142 kernel/softirq.c:299)
asm_call_irq_on_stack (arch/x86/entry/entry_64.S:809)
</IRQ>
do_softirq_own_stack (arch/x86/include/asm/irq_stack.h:27 arch/x86/include/asm/irq_stack.h:77 arch/x86/kernel/irq_64.c:77)
irq_exit_rcu (kernel/softirq.c:393 kernel/softirq.c:423 kernel/softirq.c:435)
common_interrupt (arch/x86/kernel/irq.c:239)
asm_common_interrupt (arch/x86/include/asm/idtentry.h:626)
RIP: 0010:acpi_idle_do_entry (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 drivers/acpi/processor_idle.c:114 drivers/acpi/processor_idle.c:575)
Code: 8b 15 d1 3c c4 02 ed c3 cc cc cc cc 65 48 8b 04 25 40 ef 01 00 48 8b 00 a8 08 75 eb 0f 1f 44 00 00 0f 00 2d d5 09 55 00 fb f4 <fa> c3 cc cc cc cc e9 be fc ff ff 66 66 2e 0f 1f 84 00 00 00 00 00
RSP: 0018:ffffffffb5603e58 EFLAGS: 00000246
RAX: 0000000000004000 RBX: ffff93dac0929c00 RCX: ffff93daee833900
RDX: ffff93daee800000 RSI: ffff93daee87dc00 RDI: ffff93daee87dc64
RBP: 0000000000000001 R08: ffffffffb5e7b6c0 R09: 0000000000000044
R10: ffff93daee831b04 R11: 00000000000001cd R12: 0000000000000001
R13: ffffffffb5e7b740 R14: 0000000000000001 R15: 0000000000000000
? sched_clock_cpu (kernel/sched/clock.c:371)
acpi_idle_enter (drivers/acpi/processor_idle.c:712 (discriminator 3))
cpuidle_enter_state (drivers/cpuidle/cpuidle.c:237)
cpuidle_enter (drivers/cpuidle/cpuidle.c:353)
cpuidle_idle_call (kernel/sched/idle.c:158 kernel/sched/idle.c:239)
do_idle (kernel/sched/idle.c:302)
cpu_startup_entry (kernel/sched/idle.c:395 (discriminator 1))
start_kernel (init/main.c:1048)
secondary_startup_64_no_verify (arch/x86/kernel/head_64.S:310)
Modules linked in: udp_diag tcp_diag inet_diag nft_nat ipip tunnel4 dummy fou ip_tunnel nft_masq nft_chain_nat nf_nat wireguard nft_ct curve25519_x86_64 libcurve25519_generic nf_conntrack libchacha20poly1305 nf_defrag_ipv6 nf_defrag_ipv4 nft_objref chacha_x86_64 nft_counter nf_tables nfnetlink poly1305_x86_64 ip6_udp_tunnel udp_tunnel libchacha crc32_pclmul ghash_clmulni_intel aesni_intel crypto_simd cryptd glue_helper mousedev psmouse button ena ptp pps_core crc32c_intel
CR2: 0000000000000008
Fixes: d92283e338f6 ("fou: change to use UDP socket GRO")
Reported-by: Alphonse Kurian <alkurian@amazon.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://patch.msgid.link/20240902173927.62706-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit fe1910f9337bd46a9343967b547ccab26b4b2c6e upstream.
When we cork messages in psock->cork, the last message triggers the
flushing will result in sending a sk_msg larger than the current
message size. In this case, in tcp_bpf_send_verdict(), 'copied' becomes
negative at least in the following case:
468 case __SK_DROP:
469 default:
470 sk_msg_free_partial(sk, msg, tosend);
471 sk_msg_apply_bytes(psock, tosend);
472 *copied -= (tosend + delta); // <==== HERE
473 return -EACCES;
Therefore, it could lead to the following BUG with a proper value of
'copied' (thanks to syzbot). We should not use negative 'copied' as a
return value here.
------------[ cut here ]------------
kernel BUG at net/socket.c:733!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 UID: 0 PID: 3265 Comm: syz-executor510 Not tainted 6.11.0-rc3-syzkaller-00060-gd07b43284ab3 #0
Hardware name: linux,dummy-virt (DT)
pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
pc : sock_sendmsg_nosec net/socket.c:733 [inline]
pc : sock_sendmsg_nosec net/socket.c:728 [inline]
pc : __sock_sendmsg+0x5c/0x60 net/socket.c:745
lr : sock_sendmsg_nosec net/socket.c:730 [inline]
lr : __sock_sendmsg+0x54/0x60 net/socket.c:745
sp : ffff800088ea3b30
x29: ffff800088ea3b30 x28: fbf00000062bc900 x27: 0000000000000000
x26: ffff800088ea3bc0 x25: ffff800088ea3bc0 x24: 0000000000000000
x23: f9f00000048dc000 x22: 0000000000000000 x21: ffff800088ea3d90
x20: f9f00000048dc000 x19: ffff800088ea3d90 x18: 0000000000000001
x17: 0000000000000000 x16: 0000000000000000 x15: 000000002002ffaf
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: ffff8000815849c0 x9 : ffff8000815b49c0
x8 : 0000000000000000 x7 : 000000000000003f x6 : 0000000000000000
x5 : 00000000000007e0 x4 : fff07ffffd239000 x3 : fbf00000062bc900
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 00000000fffffdef
Call trace:
sock_sendmsg_nosec net/socket.c:733 [inline]
__sock_sendmsg+0x5c/0x60 net/socket.c:745
____sys_sendmsg+0x274/0x2ac net/socket.c:2597
___sys_sendmsg+0xac/0x100 net/socket.c:2651
__sys_sendmsg+0x84/0xe0 net/socket.c:2680
__do_sys_sendmsg net/socket.c:2689 [inline]
__se_sys_sendmsg net/socket.c:2687 [inline]
__arm64_sys_sendmsg+0x24/0x30 net/socket.c:2687
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x48/0x110 arch/arm64/kernel/syscall.c:49
el0_svc_common.constprop.0+0x40/0xe0 arch/arm64/kernel/syscall.c:132
do_el0_svc+0x1c/0x28 arch/arm64/kernel/syscall.c:151
el0_svc+0x34/0xec arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x100/0x12c arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x19c/0x1a0 arch/arm64/kernel/entry.S:598
Code: f9404463 d63f0060 3108441f 54fffe81 (d4210000)
---[ end trace 0000000000000000 ]---
Fixes: 4f738adba30a ("bpf: create tcp_bpf_ulp allowing BPF to monitor socket TX/RX data")
Reported-by: syzbot+58c03971700330ce14d8@syzkaller.appspotmail.com
Cc: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://patch.msgid.link/20240821030744.320934-1-xiyou.wangcong@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 61e2bbafb00e4b9a5de45e6448a7b6b818658576 ]
When I was doing some experiments, I found that when using the first
parameter, namely, struct net, in ip_metrics_convert() always triggers NULL
pointer crash. Then I digged into this part, realizing that we can remove
this one due to its uselessness.
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit c51db4ac10d57c366f9a92121e3889bfc6c324cd upstream.
After commit 1eeb50435739 ("tcp/dccp: do not care about
families in inet_twsk_purge()") tcp_twsk_purge() is
no longer potentially called from a module.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b128ed5ab27330deeeaf51ea8bb69f1442a96f7f ]
When assembling fraglist GSO packets, udp4_gro_complete does not set
skb->csum_start, which makes the extra validation in __udp_gso_segment fail.
Fixes: 89add40066f9 ("net: drop bad gso csum_start and offset in virtio_net_hdr")
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20240819150621.59833-1-nbd@nbd.name
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 565d121b69980637f040eb4d84289869cdaabedf ]
Its possible that two threads call tcp_sk_exit_batch() concurrently,
once from the cleanup_net workqueue, once from a task that failed to clone
a new netns. In the latter case, error unwinding calls the exit handlers
in reverse order for the 'failed' netns.
tcp_sk_exit_batch() calls tcp_twsk_purge().
Problem is that since commit b099ce2602d8 ("net: Batch inet_twsk_purge"),
this function picks up twsk in any dying netns, not just the one passed
in via exit_batch list.
This means that the error unwind of setup_net() can "steal" and destroy
timewait sockets belonging to the exiting netns.
This allows the netns exit worker to proceed to call
WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
without the expected 1 -> 0 transition, which then splats.
At same time, error unwind path that is also running inet_twsk_purge()
will splat as well:
WARNING: .. at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210
...
refcount_dec include/linux/refcount.h:351 [inline]
inet_twsk_kill+0x758/0x9c0 net/ipv4/inet_timewait_sock.c:70
inet_twsk_deschedule_put net/ipv4/inet_timewait_sock.c:221
inet_twsk_purge+0x725/0x890 net/ipv4/inet_timewait_sock.c:304
tcp_sk_exit_batch+0x1c/0x170 net/ipv4/tcp_ipv4.c:3522
ops_exit_list+0x128/0x180 net/core/net_namespace.c:178
setup_net+0x714/0xb40 net/core/net_namespace.c:375
copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508
create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110
... because refcount_dec() of tw_refcount unexpectedly dropped to 0.
This doesn't seem like an actual bug (no tw sockets got lost and I don't
see a use-after-free) but as erroneous trigger of debug check.
Add a mutex to force strict ordering: the task that calls tcp_twsk_purge()
blocks other task from doing final _dec_and_test before mutex-owner has
removed all tw sockets of dying netns.
Fixes: e9bd0cca09d1 ("tcp: Don't allocate tcp_death_row outside of struct netns_ipv4.")
Reported-by: syzbot+8ea26396ff85d23a8929@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/netdev/0000000000003a5292061f5e4e19@google.com/
Link: https://lore.kernel.org/netdev/20240812140104.GA21559@breakpoint.cc/
Signed-off-by: Florian Westphal <fw@strlen.de>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240812222857.29837-1-fw@strlen.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1eeb5043573981f3a1278876515851b7f6b1df1b ]
We lost ability to unload ipv6 module a long time ago.
Instead of calling expensive inet_twsk_purge() twice,
we can handle all families in one round.
Also remove an extra line added in my prior patch,
per Kuniyuki Iwashima feedback.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/netdev/20240327192934.6843-1-kuniyu@amazon.com/
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240329153203.345203-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 565d121b6998 ("tcp: prevent concurrent execution of tcp_sk_exit_batch")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 50e2907ef8bb52cf80ecde9eec5c4dac07177146 ]
TCP ehash table is often sparsely populated.
inet_twsk_purge() spends too much time calling cond_resched().
This patch can reduce time spent in inet_twsk_purge() by 20x.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240327191206.508114-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 565d121b6998 ("tcp: prevent concurrent execution of tcp_sk_exit_batch")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a2cbb1603943281a604f5adc48079a148db5cb0d ]
This patch is based on the discussions between Neal Cardwell and
Eric Dumazet in the link
https://lore.kernel.org/netdev/20240726204105.1466841-1-quic_subashab@quicinc.com/
It was correctly pointed out that tp->window_clamp would not be
updated in cases where net.ipv4.tcp_moderate_rcvbuf=0 or if
(copied <= tp->rcvq_space.space). While it is expected for most
setups to leave the sysctl enabled, the latter condition may
not end up hitting depending on the TCP receive queue size and
the pattern of arriving data.
The updated check should be hit only on initial MSS update from
TCP_MIN_MSS to measured MSS value and subsequently if there was
an update to a larger value.
Fixes: 05f76b2d634e ("tcp: Adjust clamping window for applications specifying SO_RCVBUF")
Signed-off-by: Sean Tranchetti <quic_stranche@quicinc.com>
Signed-off-by: Subash Abhinov Kasiviswanathan <quic_subashab@quicinc.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dd89a81d850fa9a65f67b4527c0e420d15bf836c ]
Drop the WARN_ON_ONCE inn gue_gro_receive if the encapsulated type is
not known or does not have a GRO handler.
Such a packet is easily constructed. Syzbot generates them and sets
off this warning.
Remove the warning as it is expected and not actionable.
The warning was previously reduced from WARN_ON to WARN_ON_ONCE in
commit 270136613bf7 ("fou: Do WARN_ON_ONCE in gue_gro_receive for bad
proto callbacks").
Signed-off-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240614122552.1649044-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6532e257aa73645e28dee5b2232cc3c88be62083 ]
This is inspired by several syzbot reports where
tcp_metrics_flush_all() was seen in the traces.
We can avoid acquiring tcp_metrics_lock for empty buckets,
and we should add one cond_resched() to break potential long loops.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 89add40066f9ed9abe5f7f886fe5789ff7e0c50e upstream.
Tighten csum_start and csum_offset checks in virtio_net_hdr_to_skb
for GSO packets.
The function already checks that a checksum requested with
VIRTIO_NET_HDR_F_NEEDS_CSUM is in skb linear. But for GSO packets
this might not hold for segs after segmentation.
Syzkaller demonstrated to reach this warning in skb_checksum_help
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
By injecting a TSO packet:
WARNING: CPU: 1 PID: 3539 at net/core/dev.c:3284 skb_checksum_help+0x3d0/0x5b0
ip_do_fragment+0x209/0x1b20 net/ipv4/ip_output.c:774
ip_finish_output_gso net/ipv4/ip_output.c:279 [inline]
__ip_finish_output+0x2bd/0x4b0 net/ipv4/ip_output.c:301
iptunnel_xmit+0x50c/0x930 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x2296/0x2c70 net/ipv4/ip_tunnel.c:813
__gre_xmit net/ipv4/ip_gre.c:469 [inline]
ipgre_xmit+0x759/0xa60 net/ipv4/ip_gre.c:661
__netdev_start_xmit include/linux/netdevice.h:4850 [inline]
netdev_start_xmit include/linux/netdevice.h:4864 [inline]
xmit_one net/core/dev.c:3595 [inline]
dev_hard_start_xmit+0x261/0x8c0 net/core/dev.c:3611
__dev_queue_xmit+0x1b97/0x3c90 net/core/dev.c:4261
packet_snd net/packet/af_packet.c:3073 [inline]
The geometry of the bad input packet at tcp_gso_segment:
[ 52.003050][ T8403] skb len=12202 headroom=244 headlen=12093 tailroom=0
[ 52.003050][ T8403] mac=(168,24) mac_len=24 net=(192,52) trans=244
[ 52.003050][ T8403] shinfo(txflags=0 nr_frags=1 gso(size=1552 type=3 segs=0))
[ 52.003050][ T8403] csum(0x60000c7 start=199 offset=1536
ip_summed=3 complete_sw=0 valid=0 level=0)
Mitigate with stricter input validation.
csum_offset: for GSO packets, deduce the correct value from gso_type.
This is already done for USO. Extend it to TSO. Let UFO be:
udp[46]_ufo_fragment ignores these fields and always computes the
checksum in software.
csum_start: finding the real offset requires parsing to the transport
header. Do not add a parser, use existing segmentation parsing. Thanks
to SKB_GSO_DODGY, that also catches bad packets that are hw offloaded.
Again test both TSO and USO. Do not test UFO for the above reason, and
do not test UDP tunnel offload.
GSO packet are almost always CHECKSUM_PARTIAL. USO packets may be
CHECKSUM_NONE since commit 10154dbded6d6 ("udp: Allow GSO transmit
from devices with no checksum offload"), but then still these fields
are initialized correctly in udp4_hwcsum/udp6_hwcsum_outgoing. So no
need to test for ip_summed == CHECKSUM_PARTIAL first.
This revises an existing fix mentioned in the Fixes tag, which broke
small packets with GSO offload, as detected by kselftests.
Link: https://syzkaller.appspot.com/bug?extid=e1db31216c789f552871
Link: https://lore.kernel.org/netdev/20240723223109.2196886-1-kuba@kernel.org
Fixes: e269d79c7d35 ("net: missing check virtio")
Cc: stable@vger.kernel.org
Signed-off-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20240729201108.1615114-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5830aa863981d43560748aa93589c0695191d95d ]
We had a report that iptables-restore sometimes triggered null-ptr-deref
at boot time. [0]
The problem is that iptable_nat_table_init() is exposed to user space
before the kernel fully initialises netns.
In the small race window, a user could call iptable_nat_table_init()
that accesses net_generic(net, iptable_nat_net_id), which is available
only after registering iptable_nat_net_ops.
Let's call register_pernet_subsys() before xt_register_template().
[0]:
bpfilter: Loaded bpfilter_umh pid 11702
Started bpfilter
BUG: kernel NULL pointer dereference, address: 0000000000000013
PF: supervisor write access in kernel mode
PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
PREEMPT SMP NOPTI
CPU: 2 PID: 11879 Comm: iptables-restor Not tainted 6.1.92-99.174.amzn2023.x86_64 #1
Hardware name: Amazon EC2 c6i.4xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat
Code: 10 4c 89 f6 48 89 ef e8 0b 19 bb ff 41 89 c4 85 c0 75 38 41 83 c7 01 49 83 c6 28 41 83 ff 04 75 dc 48 8b 44 24 08 48 8b 0c 24 <48> 89 08 4c 89 ef e8 a2 3b a2 cf 48 83 c4 10 44 89 e0 5b 5d 41 5c
RSP: 0018:ffffbef902843cd0 EFLAGS: 00010246
RAX: 0000000000000013 RBX: ffff9f4b052caa20 RCX: ffff9f4b20988d80
RDX: 0000000000000000 RSI: 0000000000000064 RDI: ffffffffc04201c0
RBP: ffff9f4b29394000 R08: ffff9f4b07f77258 R09: ffff9f4b07f77240
R10: 0000000000000000 R11: ffff9f4b09635388 R12: 0000000000000000
R13: ffff9f4b1a3c6c00 R14: ffff9f4b20988e20 R15: 0000000000000004
FS: 00007f6284340000(0000) GS:ffff9f51fe280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000013 CR3: 00000001d10a6005 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259)
? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259)
? xt_find_table_lock (net/netfilter/x_tables.c:1259)
? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420)
? page_fault_oops (arch/x86/mm/fault.c:727)
? exc_page_fault (./arch/x86/include/asm/irqflags.h:40 ./arch/x86/include/asm/irqflags.h:75 arch/x86/mm/fault.c:1470 arch/x86/mm/fault.c:1518)
? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:570)
? iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat
xt_find_table_lock (net/netfilter/x_tables.c:1259)
xt_request_find_table_lock (net/netfilter/x_tables.c:1287)
get_info (net/ipv4/netfilter/ip_tables.c:965)
? security_capable (security/security.c:809 (discriminator 13))
? ns_capable (kernel/capability.c:376 kernel/capability.c:397)
? do_ipt_get_ctl (net/ipv4/netfilter/ip_tables.c:1656)
? bpfilter_send_req (net/bpfilter/bpfilter_kern.c:52) bpfilter
nf_getsockopt (net/netfilter/nf_sockopt.c:116)
ip_getsockopt (net/ipv4/ip_sockglue.c:1827)
__sys_getsockopt (net/socket.c:2327)
__x64_sys_getsockopt (net/socket.c:2342 net/socket.c:2339 net/socket.c:2339)
do_syscall_64 (arch/x86/entry/common.c:51 arch/x86/entry/common.c:81)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:121)
RIP: 0033:0x7f62844685ee
Code: 48 8b 0d 45 28 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 37 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 0a c3 66 0f 1f 84 00 00 00 00 00 48 8b 15 09
RSP: 002b:00007ffd1f83d638 EFLAGS: 00000246 ORIG_RAX: 0000000000000037
RAX: ffffffffffffffda RBX: 00007ffd1f83d680 RCX: 00007f62844685ee
RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000004
RBP: 0000000000000004 R08: 00007ffd1f83d670 R09: 0000558798ffa2a0
R10: 00007ffd1f83d680 R11: 0000000000000246 R12: 00007ffd1f83e3b2
R13: 00007f628455baa0 R14: 00007ffd1f83d7b0 R15: 00007f628457a008
</TASK>
Modules linked in: iptable_nat(+) bpfilter rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache veth xt_state xt_connmark xt_nat xt_statistic xt_MASQUERADE xt_mark xt_addrtype ipt_REJECT nf_reject_ipv4 nft_chain_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_comment nft_compat nf_tables nfnetlink overlay nls_ascii nls_cp437 vfat fat ghash_clmulni_intel aesni_intel ena crypto_simd ptp cryptd i8042 pps_core serio button sunrpc sch_fq_codel configfs loop dm_mod fuse dax dmi_sysfs crc32_pclmul crc32c_intel efivarfs
CR2: 0000000000000013
Fixes: fdacd57c79b7 ("netfilter: x_tables: never register tables by default")
Reported-by: Takahiro Kawahara <takawaha@amazon.co.jp>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 05f76b2d634e65ab34472802d9b142ea9e03f74e ]
tp->scaling_ratio is not updated based on skb->len/skb->truesize once
SO_RCVBUF is set leading to the maximum window scaling to be 25% of
rcvbuf after
commit dfa2f0483360 ("tcp: get rid of sysctl_tcp_adv_win_scale")
and 50% of rcvbuf after
commit 697a6c8cec03 ("tcp: increase the default TCP scaling ratio").
50% tries to emulate the behavior of older kernels using
sysctl_tcp_adv_win_scale with default value.
Systems which were using a different values of sysctl_tcp_adv_win_scale
in older kernels ended up seeing reduced download speeds in certain
cases as covered in https://lists.openwall.net/netdev/2024/05/15/13
While the sysctl scheme is no longer acceptable, the value of 50% is
a bit conservative when the skb->len/skb->truesize ratio is later
determined to be ~0.66.
Applications not specifying SO_RCVBUF update the window scaling and
the receiver buffer every time data is copied to userspace. This
computation is now used for applications setting SO_RCVBUF to update
the maximum window scaling while ensuring that the receive buffer
is within the application specified limit.
Fixes: dfa2f0483360 ("tcp: get rid of sysctl_tcp_adv_win_scale")
Signed-off-by: Sean Tranchetti <quic_stranche@quicinc.com>
Signed-off-by: Subash Abhinov Kasiviswanathan <quic_subashab@quicinc.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f410cbea9f3d2675b4c8e52af1d1985b11b387d1 ]
tp->window_clamp can be read locklessly, add READ_ONCE()
and WRITE_ONCE() annotations.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Link: https://lore.kernel.org/r/20240404114231.2195171-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 05f76b2d634e ("tcp: Adjust clamping window for applications specifying SO_RCVBUF")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6d745cd0e9720282cd291d36b9db528aea18add2 ]
struct nexthop_grp contains two reserved fields that are not initialized by
nla_put_nh_group(), and carry garbage. This can be observed e.g. with
strace (edited for clarity):
# ip nexthop add id 1 dev lo
# ip nexthop add id 101 group 1
# strace -e recvmsg ip nexthop get id 101
...
recvmsg(... [{nla_len=12, nla_type=NHA_GROUP},
[{id=1, weight=0, resvd1=0x69, resvd2=0x67}]] ...) = 52
The fields are reserved and therefore not currently used. But as they are, they
leak kernel memory, and the fact they are not just zero complicates repurposing
of the fields for new ends. Initialize the full structure.
Fixes: 430a049190de ("nexthop: Add support for nexthop groups")
Signed-off-by: Petr Machata <petrm@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cc73bbab4b1fb8a4f53a24645871dafa5f81266a ]
The Record Route IP option records the addresses of the routers that
routed the packet. In the case of forwarded packets, the kernel performs
a route lookup via fib_lookup() and fills in the preferred source
address of the matched route.
The lookup is performed with the DS field of the forwarded packet, but
using the RT_TOS() macro which only masks one of the two ECN bits. If
the packet is ECT(0) or CE, the matched route might be different than
the route via which the packet was forwarded as the input path masks
both of the ECN bits, resulting in the wrong address being filled in the
Record Route option.
Fix by masking both of the ECN bits.
Fixes: 8e36360ae876 ("ipv4: Remove route key identity dependencies in ip_rt_get_source().")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Guillaume Nault <gnault@redhat.com>
Link: https://patch.msgid.link/20240718123407.434778-1-idosch@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6807352353561187a718e87204458999dbcbba1b upstream.
By default, an address assigned to the output interface is selected when
the source address is not specified. This is problematic when a route,
configured in a vrf, uses an interface from another vrf (aka route leak).
The original vrf does not own the selected source address.
Let's add a check against the output interface and call the appropriate
function to select the source address.
CC: stable@vger.kernel.org
Fixes: 8cbb512c923d ("net: Add source address lookup op for VRF")
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://patch.msgid.link/20240710081521.3809742-2-nicolas.dichtel@6wind.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f036e68212c11e5a7edbb59b5e25299341829485 ]
The TOS value that is returned to user space in the route get reply is
the one with which the lookup was performed ('fl4->flowi4_tos'). This is
fine when the matched route is configured with a TOS as it would not
match if its TOS value did not match the one with which the lookup was
performed.
However, matching on TOS is only performed when the route's TOS is not
zero. It is therefore possible to have the kernel incorrectly return a
non-zero TOS:
# ip link add name dummy1 up type dummy
# ip address add 192.0.2.1/24 dev dummy1
# ip route get fibmatch 192.0.2.2 tos 0xfc
192.0.2.0/24 tos 0x1c dev dummy1 proto kernel scope link src 192.0.2.1
Fix by instead returning the DSCP field from the FIB result structure
which was populated during the route lookup.
Output after the patch:
# ip link add name dummy1 up type dummy
# ip address add 192.0.2.1/24 dev dummy1
# ip route get fibmatch 192.0.2.2 tos 0xfc
192.0.2.0/24 dev dummy1 proto kernel scope link src 192.0.2.1
Extend the existing selftests to not only verify that the correct route
is returned, but that it is also returned with correct "tos" value (or
without it).
Fixes: b61798130f1b ("net: ipv4: RTM_GETROUTE: return matched fib result when requested")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 338bb57e4c2a1c2c6fc92f9c0bd35be7587adca7 ]
The TOS value that is returned to user space in the route get reply is
the one with which the lookup was performed ('fl4->flowi4_tos'). This is
fine when the matched route is configured with a TOS as it would not
match if its TOS value did not match the one with which the lookup was
performed.
However, matching on TOS is only performed when the route's TOS is not
zero. It is therefore possible to have the kernel incorrectly return a
non-zero TOS:
# ip link add name dummy1 up type dummy
# ip address add 192.0.2.1/24 dev dummy1
# ip route get 192.0.2.2 tos 0xfc
192.0.2.2 tos 0x1c dev dummy1 src 192.0.2.1 uid 0
cache
Fix by adding a DSCP field to the FIB result structure (inside an
existing 4 bytes hole), populating it in the route lookup and using it
when filling the route get reply.
Output after the patch:
# ip link add name dummy1 up type dummy
# ip address add 192.0.2.1/24 dev dummy1
# ip route get 192.0.2.2 tos 0xfc
192.0.2.2 dev dummy1 src 192.0.2.1 uid 0
cache
Fixes: 1a00fee4ffb2 ("ipv4: Remove rt_key_{src,dst,tos} from struct rtable.")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fde6f897f2a184546bf5516ac736523ef24dc6a7 ]
These functions have races when they:
1) Write sk->sk_err
2) call sk_error_report(sk)
3) call tcp_done(sk)
As described in prior patches in this series:
An smp_wmb() is missing.
We should call tcp_done() before sk_error_report(sk)
to have consistent tcp_poll() results on SMP hosts.
Use tcp_done_with_error() where we centralized the
correct sequence.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240528125253.1966136-5-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 853c3bd7b7917670224c9fe5245bd045cac411dd ]
I noticed flakes in a packetdrill test, expecting an epoll_wait()
to return EPOLLERR | EPOLLHUP on a failed connect() attempt,
after multiple SYN retransmits. It sometimes return EPOLLERR only.
The issue is that tcp_write_err():
1) writes an error in sk->sk_err,
2) calls sk_error_report(),
3) then calls tcp_done().
tcp_done() is writing SHUTDOWN_MASK into sk->sk_shutdown,
among other things.
Problem is that the awaken user thread (from 2) sk_error_report())
might call tcp_poll() before tcp_done() has written sk->sk_shutdown.
tcp_poll() only sees a non zero sk->sk_err and returns EPOLLERR.
This patch fixes the issue by making sure to call sk_error_report()
after tcp_done().
tcp_write_err() also lacks an smp_wmb().
We can reuse tcp_done_with_error() to factor out the details,
as Neal suggested.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240528125253.1966136-3-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5e514f1cba090e1c8fff03e92a175eccfe46305f ]
tcp_reset() ends with a sequence that is carefuly ordered.
We need to fix [e]poll bugs in the following patches,
it makes sense to use a common helper.
Suggested-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240528125253.1966136-2-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 853c3bd7b791 ("tcp: fix race in tcp_write_err()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 96f887a612e4cda89efc3f54bc10c1997e3ab0e9 ]
xmit() functions should consume skb or return error codes in error
paths.
When the configuration "CONFIG_INET_ESPINTCP" is not set, the
implementation of the function "esp_output_tail_tcp" violates this rule.
The function frees the skb and returns the error code.
This change removes the kfree_skb from both functions, for both
esp4 and esp6.
WARN_ON is added because esp_output_tail_tcp() should never be called if
CONFIG_INET_ESPINTCP is not set.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc.
Fixes: e27cca96cd68 ("xfrm: add espintcp (RFC 8229)")
Signed-off-by: Hagar Hemdan <hagarhem@amazon.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 97a9063518f198ec0adb2ecb89789de342bb8283 upstream.
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk->icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk->icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 ("net: tcp:
fix unexcepted socket die when snd_wnd is 0"), the issue
would last 2 minutes instead of 4.
Fixes: b701a99e431d ("tcp: Add tcp_clamp_rto_to_user_timeout() helper to improve accuracy")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Reviewed-by: Jon Maxwell <jmaxwell37@gmail.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://patch.msgid.link/20240710001402.2758273-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36534d3c54537bf098224a32dc31397793d4594d upstream.
Due to timer wheel implementation, a timer will usually fire
after its schedule.
For instance, for HZ=1000, a timeout between 512ms and 4s
has a granularity of 64ms.
For this range of values, the extra delay could be up to 63ms.
For TCP, this means that tp->rcv_tstamp may be after
inet_csk(sk)->icsk_timeout whenever the timer interrupt
finally triggers, if one packet came during the extra delay.
We need to make sure tcp_rtx_probe0_timed_out() handles this case.
Fixes: e89688e3e978 ("net: tcp: fix unexcepted socket die when snd_wnd is 0")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Menglong Dong <imagedong@tencent.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Link: https://lore.kernel.org/r/20240607125652.1472540-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5c0b485a8c6116516f33925b9ce5b6104a6eadfd ]
syzkaller triggered the warning [0] in udp_v4_early_demux().
In udp_v[46]_early_demux() and sk_lookup(), we do not touch the refcount
of the looked-up sk and use sock_pfree() as skb->destructor, so we check
SOCK_RCU_FREE to ensure that the sk is safe to access during the RCU grace
period.
Currently, SOCK_RCU_FREE is flagged for a bound socket after being put
into the hash table. Moreover, the SOCK_RCU_FREE check is done too early
in udp_v[46]_early_demux() and sk_lookup(), so there could be a small race
window:
CPU1 CPU2
---- ----
udp_v4_early_demux() udp_lib_get_port()
| |- hlist_add_head_rcu()
|- sk = __udp4_lib_demux_lookup() |
|- DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
`- sock_set_flag(sk, SOCK_RCU_FREE)
We had the same bug in TCP and fixed it in commit 871019b22d1b ("net:
set SOCK_RCU_FREE before inserting socket into hashtable").
Let's apply the same fix for UDP.
[0]:
WARNING: CPU: 0 PID: 11198 at net/ipv4/udp.c:2599 udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Modules linked in:
CPU: 0 PID: 11198 Comm: syz-executor.1 Not tainted 6.9.0-g93bda33046e7 #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Code: c5 7a 15 fe bb 01 00 00 00 44 89 e9 31 ff d3 e3 81 e3 bf ef ff ff 89 de e8 2c 74 15 fe 85 db 0f 85 02 06 00 00 e8 9f 7a 15 fe <0f> 0b e8 98 7a 15 fe 49 8d 7e 60 e8 4f 39 2f fe 49 c7 46 60 20 52
RSP: 0018:ffffc9000ce3fa58 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8318c92c
RDX: ffff888036ccde00 RSI: ffffffff8318c2f1 RDI: 0000000000000001
RBP: ffff88805a2dd6e0 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0001ffffffffffff R12: ffff88805a2dd680
R13: 0000000000000007 R14: ffff88800923f900 R15: ffff88805456004e
FS: 00007fc449127640(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc449126e38 CR3: 000000003de4b002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<TASK>
ip_rcv_finish_core.constprop.0+0xbdd/0xd20 net/ipv4/ip_input.c:349
ip_rcv_finish+0xda/0x150 net/ipv4/ip_input.c:447
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netfilter.h:308 [inline]
ip_rcv+0x16c/0x180 net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0xb3/0xe0 net/core/dev.c:5624
__netif_receive_skb+0x21/0xd0 net/core/dev.c:5738
netif_receive_skb_internal net/core/dev.c:5824 [inline]
netif_receive_skb+0x271/0x300 net/core/dev.c:5884
tun_rx_batched drivers/net/tun.c:1549 [inline]
tun_get_user+0x24db/0x2c50 drivers/net/tun.c:2002
tun_chr_write_iter+0x107/0x1a0 drivers/net/tun.c:2048
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0x76f/0x8d0 fs/read_write.c:590
ksys_write+0xbf/0x190 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x41/0x50 fs/read_write.c:652
x64_sys_call+0xe66/0x1990 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4b/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fc44a68bc1f
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 e9 cf f5 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 3c d0 f5 ff 48
RSP: 002b:00007fc449126c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007fc44a68bc1f
RDX: 0000000000000032 RSI: 00000000200000c0 RDI: 00000000000000c8
RBP: 00000000004bc050 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000032 R11: 0000000000000293 R12: 0000000000000000
R13: 000000000000000b R14: 00007fc44a5ec530 R15: 0000000000000000
</TASK>
Fixes: 6acc9b432e67 ("bpf: Add helper to retrieve socket in BPF")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240709191356.24010-1-kuniyu@amazon.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0ec986ed7bab6801faed1440e8839dcc710331ff ]
Loss recovery undo_retrans bookkeeping had a long-standing bug where a
DSACK from a spurious TLP retransmit packet could cause an erroneous
undo of a fast recovery or RTO recovery that repaired a single
really-lost packet (in a sequence range outside that of the TLP
retransmit). Basically, because the loss recovery state machine didn't
account for the fact that it sent a TLP retransmit, the DSACK for the
TLP retransmit could erroneously be implicitly be interpreted as
corresponding to the normal fast recovery or RTO recovery retransmit
that plugged a real hole, thus resulting in an improper undo.
For example, consider the following buggy scenario where there is a
real packet loss but the congestion control response is improperly
undone because of this bug:
+ send packets P1, P2, P3, P4
+ P1 is really lost
+ send TLP retransmit of P4
+ receive SACK for original P2, P3, P4
+ enter fast recovery, fast-retransmit P1, increment undo_retrans to 1
+ receive DSACK for TLP P4, decrement undo_retrans to 0, undo (bug!)
+ receive cumulative ACK for P1-P4 (fast retransmit plugged real hole)
The fix: when we initialize undo machinery in tcp_init_undo(), if
there is a TLP retransmit in flight, then increment tp->undo_retrans
so that we make sure that we receive a DSACK corresponding to the TLP
retransmit, as well as DSACKs for all later normal retransmits, before
triggering a loss recovery undo. Note that we also have to move the
line that clears tp->tlp_high_seq for RTO recovery, so that upon RTO
we remember the tp->tlp_high_seq value until tcp_init_undo() and clear
it only afterward.
Also note that the bug dates back to the original 2013 TLP
implementation, commit 6ba8a3b19e76 ("tcp: Tail loss probe (TLP)").
However, this patch will only compile and work correctly with kernels
that have tp->tlp_retrans, which was added only in v5.8 in 2020 in
commit 76be93fc0702 ("tcp: allow at most one TLP probe per flight").
So we associate this fix with that later commit.
Fixes: 76be93fc0702 ("tcp: allow at most one TLP probe per flight")
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Kevin Yang <yyd@google.com>
Link: https://patch.msgid.link/20240703171246.1739561-1-ncardwell.sw@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 61cf1c739f08190a4cbf047b9fbb192a94d87e3f ]
KMSAN reported uninit-value access in raw_lookup() [1]. Diag for raw
sockets uses the pad field in struct inet_diag_req_v2 for the
underlying protocol. This field corresponds to the sdiag_raw_protocol
field in struct inet_diag_req_raw.
inet_diag_get_exact_compat() converts inet_diag_req to
inet_diag_req_v2, but leaves the pad field uninitialized. So the issue
occurs when raw_lookup() accesses the sdiag_raw_protocol field.
Fix this by initializing the pad field in
inet_diag_get_exact_compat(). Also, do the same fix in
inet_diag_dump_compat() to avoid the similar issue in the future.
[1]
BUG: KMSAN: uninit-value in raw_lookup net/ipv4/raw_diag.c:49 [inline]
BUG: KMSAN: uninit-value in raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71
raw_lookup net/ipv4/raw_diag.c:49 [inline]
raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71
raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99
inet_diag_cmd_exact+0x7d9/0x980
inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline]
inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426
sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282
netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564
sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297
netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline]
netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361
netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x332/0x3d0 net/socket.c:745
____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585
___sys_sendmsg+0x271/0x3b0 net/socket.c:2639
__sys_sendmsg net/socket.c:2668 [inline]
__do_sys_sendmsg net/socket.c:2677 [inline]
__se_sys_sendmsg net/socket.c:2675 [inline]
__x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675
x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was stored to memory at:
raw_sock_get+0x650/0x800 net/ipv4/raw_diag.c:71
raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99
inet_diag_cmd_exact+0x7d9/0x980
inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline]
inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426
sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282
netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564
sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297
netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline]
netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361
netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x332/0x3d0 net/socket.c:745
____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585
___sys_sendmsg+0x271/0x3b0 net/socket.c:2639
__sys_sendmsg net/socket.c:2668 [inline]
__do_sys_sendmsg net/socket.c:2677 [inline]
__se_sys_sendmsg net/socket.c:2675 [inline]
__x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675
x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Local variable req.i created at:
inet_diag_get_exact_compat net/ipv4/inet_diag.c:1396 [inline]
inet_diag_rcv_msg_compat+0x2a6/0x530 net/ipv4/inet_diag.c:1426
sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282
CPU: 1 PID: 8888 Comm: syz-executor.6 Not tainted 6.10.0-rc4-00217-g35bb670d65fc #32
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
Fixes: 432490f9d455 ("net: ip, diag -- Add diag interface for raw sockets")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240703091649.111773-1-syoshida@redhat.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 66be40e622e177316ae81717aa30057ba9e61dff ]
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated).
Reviewed-by: Eric Dumazet <edumazet@google.com>
Fixes: 3e7013ddf55a ("tcp: metrics: Allow selective get/del of tcp-metrics based on src IP")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a6458ab7fd4f427d4f6f54380453ad255b7fde83 ]
In some production workloads we noticed that connections could
sometimes close extremely prematurely with ETIMEDOUT after
transmitting only 1 TLP and RTO retransmission (when we would normally
expect roughly tcp_retries2 = TCP_RETR2 = 15 RTOs before a connection
closes with ETIMEDOUT).
From tracing we determined that these workloads can suffer from a
scenario where in fast recovery, after some retransmits, a DSACK undo
can happen at a point where the scoreboard is totally clear (we have
retrans_out == sacked_out == lost_out == 0). In such cases, calling
tcp_try_keep_open() means that we do not execute any code path that
clears tp->retrans_stamp to 0. That means that tp->retrans_stamp can
remain erroneously set to the start time of the undone fast recovery,
even after the fast recovery is undone. If minutes or hours elapse,
and then a TLP/RTO/RTO sequence occurs, then the start_ts value in
retransmits_timed_out() (which is from tp->retrans_stamp) will be
erroneously ancient (left over from the fast recovery undone via
DSACKs). Thus this ancient tp->retrans_stamp value can cause the
connection to die very prematurely with ETIMEDOUT via
tcp_write_err().
The fix: we change DSACK undo in fast recovery (TCP_CA_Recovery) to
call tcp_try_to_open() instead of tcp_try_keep_open(). This ensures
that if no retransmits are in flight at the time of DSACK undo in fast
recovery then we properly zero retrans_stamp. Note that calling
tcp_try_to_open() is more consistent with other loss recovery
behavior, since normal fast recovery (CA_Recovery) and RTO recovery
(CA_Loss) both normally end when tp->snd_una meets or exceeds
tp->high_seq and then in tcp_fastretrans_alert() the "default" switch
case executes tcp_try_to_open(). Also note that by inspection this
change to call tcp_try_to_open() implies at least one other nice bug
fix, where now an ECE-marked DSACK that causes an undo will properly
invoke tcp_enter_cwr() rather than ignoring the ECE mark.
Fixes: c7d9d6a185a7 ("tcp: undo on DSACK during recovery")
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5dfe9d273932c647bdc9d664f939af9a5a398cbc ]
Testing determined that the recent commit 9e046bb111f1 ("tcp: clear
tp->retrans_stamp in tcp_rcv_fastopen_synack()") has a race, and does
not always ensure retrans_stamp is 0 after a TFO payload retransmit.
If transmit completion for the SYN+data skb happens after the client
TCP stack receives the SYNACK (which sometimes happens), then
retrans_stamp can erroneously remain non-zero for the lifetime of the
connection, causing a premature ETIMEDOUT later.
Testing and tracing showed that the buggy scenario is the following
somewhat tricky sequence:
+ Client attempts a TFO handshake. tcp_send_syn_data() sends SYN + TFO
cookie + data in a single packet in the syn_data skb. It hands the
syn_data skb to tcp_transmit_skb(), which makes a clone. Crucially,
it then reuses the same original (non-clone) syn_data skb,
transforming it by advancing the seq by one byte and removing the
FIN bit, and enques the resulting payload-only skb in the
sk->tcp_rtx_queue.
+ Client sets retrans_stamp to the start time of the three-way
handshake.
+ Cookie mismatches or server has TFO disabled, and server only ACKs
SYN.
+ tcp_ack() sees SYN is acked, tcp_clean_rtx_queue() clears
retrans_stamp.
+ Since the client SYN was acked but not the payload, the TFO failure
code path in tcp_rcv_fastopen_synack() tries to retransmit the
payload skb. However, in some cases the transmit completion for the
clone of the syn_data (which had SYN + TFO cookie + data) hasn't
happened. In those cases, skb_still_in_host_queue() returns true
for the retransmitted TFO payload, because the clone of the syn_data
skb has not had its tx completetion.
+ Because skb_still_in_host_queue() finds skb_fclone_busy() is true,
it sets the TSQ_THROTTLED bit and the retransmit does not happen in
the tcp_rcv_fastopen_synack() call chain.
+ The tcp_rcv_fastopen_synack() code next implicitly assumes the
retransmit process is finished, and sets retrans_stamp to 0 to clear
it, but this is later overwritten (see below).
+ Later, upon tx completion, tcp_tsq_write() calls
tcp_xmit_retransmit_queue(), which puts the retransmit in flight and
sets retrans_stamp to a non-zero value.
+ The client receives an ACK for the retransmitted TFO payload data.
+ Since we're in CA_Open and there are no dupacks/SACKs/DSACKs/ECN to
make tcp_ack_is_dubious() true and make us call
tcp_fastretrans_alert() and reach a code path that clears
retrans_stamp, retrans_stamp stays nonzero.
+ Later, if there is a TLP, RTO, RTO sequence, then the connection
will suffer an early ETIMEDOUT due to the erroneously ancient
retrans_stamp.
The fix: this commit refactors the code to have
tcp_rcv_fastopen_synack() retransmit by reusing the relevant parts of
tcp_simple_retransmit() that enter CA_Loss (without changing cwnd) and
call tcp_xmit_retransmit_queue(). We have tcp_simple_retransmit() and
tcp_rcv_fastopen_synack() share code in this way because in both cases
we get a packet indicating non-congestion loss (MTU reduction or TFO
failure) and thus in both cases we want to retransmit as many packets
as cwnd allows, without reducing cwnd. And given that retransmits will
set retrans_stamp to a non-zero value (and may do so in a later
calling context due to TSQ), we also want to enter CA_Loss so that we
track when all retransmitted packets are ACked and clear retrans_stamp
when that happens (to ensure later recurring RTOs are using the
correct retrans_stamp and don't declare ETIMEDOUT prematurely).
Fixes: 9e046bb111f1 ("tcp: clear tp->retrans_stamp in tcp_rcv_fastopen_synack()")
Fixes: a7abf3cd76e1 ("tcp: consider using standard rtx logic in tcp_rcv_fastopen_synack()")
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Link: https://patch.msgid.link/20240624144323.2371403-1-ncardwell.sw@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ff46e3b4421923937b7f6e44ffcd3549a074f321 ]
When bonding is configured in BOND_MODE_BROADCAST mode, if two identical
SYN packets are received at the same time and processed on different CPUs,
it can potentially create the same sk (sock) but two different reqsk
(request_sock) in tcp_conn_request().
These two different reqsk will respond with two SYNACK packets, and since
the generation of the seq (ISN) incorporates a timestamp, the final two
SYNACK packets will have different seq values.
The consequence is that when the Client receives and replies with an ACK
to the earlier SYNACK packet, we will reset(RST) it.
========================================================================
This behavior is consistently reproducible in my local setup,
which comprises:
| NETA1 ------ NETB1 |
PC_A --- bond --- | | --- bond --- PC_B
| NETA2 ------ NETB2 |
- PC_A is the Server and has two network cards, NETA1 and NETA2. I have
bonded these two cards using BOND_MODE_BROADCAST mode and configured
them to be handled by different CPU.
- PC_B is the Client, also equipped with two network cards, NETB1 and
NETB2, which are also bonded and configured in BOND_MODE_BROADCAST mode.
If the client attempts a TCP connection to the server, it might encounter
a failure. Capturing packets from the server side reveals:
10.10.10.10.45182 > localhost: Flags [S], seq 320236027,
10.10.10.10.45182 > localhost: Flags [S], seq 320236027,
localhost > 10.10.10.10.45182: Flags [S.], seq 2967855116,
localhost > 10.10.10.10.45182: Flags [S.], seq 2967855123, <==
10.10.10.10.45182 > localhost: Flags [.], ack 4294967290,
10.10.10.10.45182 > localhost: Flags [.], ack 4294967290,
localhost > 10.10.10.10.45182: Flags [R], seq 2967855117, <==
localhost > 10.10.10.10.45182: Flags [R], seq 2967855117,
Two SYNACKs with different seq numbers are sent by localhost,
resulting in an anomaly.
========================================================================
The attempted solution is as follows:
Add a return value to inet_csk_reqsk_queue_hash_add() to confirm if the
ehash insertion is successful (Up to now, the reason for unsuccessful
insertion is that a reqsk for the same connection has already been
inserted). If the insertion fails, release the reqsk.
Due to the refcnt, Kuniyuki suggests also adding a return value check
for the DCCP module; if ehash insertion fails, indicating a successful
insertion of the same connection, simply release the reqsk as well.
Simultaneously, In the reqsk_queue_hash_req(), the start of the
req->rsk_timer is adjusted to be after successful insertion.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: luoxuanqiang <luoxuanqiang@kylinos.cn>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240621013929.1386815-1-luoxuanqiang@kylinos.cn
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9e046bb111f13461d3f9331e24e974324245140e upstream.
Some applications were reporting ETIMEDOUT errors on apparently
good looking flows, according to packet dumps.
We were able to root cause the issue to an accidental setting
of tp->retrans_stamp in the following scenario:
- client sends TFO SYN with data.
- server has TFO disabled, ACKs only SYN but not payload.
- client receives SYNACK covering only SYN.
- tcp_ack() eats SYN and sets tp->retrans_stamp to 0.
- tcp_rcv_fastopen_synack() calls tcp_xmit_retransmit_queue()
to retransmit TFO payload w/o SYN, sets tp->retrans_stamp to "now",
but we are not in any loss recovery state.
- TFO payload is ACKed.
- we are not in any loss recovery state, and don't see any dupacks,
so we don't get to any code path that clears tp->retrans_stamp.
- tp->retrans_stamp stays non-zero for the lifetime of the connection.
- after first RTO, tcp_clamp_rto_to_user_timeout() clamps second RTO
to 1 jiffy due to bogus tp->retrans_stamp.
- on clamped RTO with non-zero icsk_retransmits, retransmits_timed_out()
sets start_ts from tp->retrans_stamp from TFO payload retransmit
hours/days ago, and computes bogus long elapsed time for loss recovery,
and suffers ETIMEDOUT early.
Fixes: a7abf3cd76e1 ("tcp: consider using standard rtx logic in tcp_rcv_fastopen_synack()")
CC: stable@vger.kernel.org
Co-developed-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Co-developed-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240614130615.396837-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9f36169912331fa035d7b73a91252d7c2512eb1a ]
As evident from the definition of ip_options_get(), the IP option
IPOPT_END is used to pad the IP option data array, not IPOPT_NOP. Yet
the loop that walks the IP options to determine the total IP options
length in cipso_v4_delopt() doesn't take IPOPT_END into account.
Fix it by recognizing the IPOPT_END value as the end of actual options.
Fixes: 014ab19a69c3 ("selinux: Set socket NetLabel based on connection endpoint")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a46d0ea5c94205f40ecf912d1bb7806a8a64704f ]
According to RFC 1213, we should also take CLOSE-WAIT sockets into
consideration:
"tcpCurrEstab OBJECT-TYPE
...
The number of TCP connections for which the current state
is either ESTABLISHED or CLOSE- WAIT."
After this, CurrEstab counter will display the total number of
ESTABLISHED and CLOSE-WAIT sockets.
The logic of counting
When we increment the counter?
a) if we change the state to ESTABLISHED.
b) if we change the state from SYN-RECEIVED to CLOSE-WAIT.
When we decrement the counter?
a) if the socket leaves ESTABLISHED and will never go into CLOSE-WAIT,
say, on the client side, changing from ESTABLISHED to FIN-WAIT-1.
b) if the socket leaves CLOSE-WAIT, say, on the server side, changing
from CLOSE-WAIT to LAST-ACK.
Please note: there are two chances that old state of socket can be changed
to CLOSE-WAIT in tcp_fin(). One is SYN-RECV, the other is ESTABLISHED.
So we have to take care of the former case.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a535d59432370343058755100ee75ab03c0e3f91 ]
For TLS offload we mark packets with skb->decrypted to make sure
they don't escape the host without getting encrypted first.
The crypto state lives in the socket, so it may get detached
by a call to skb_orphan(). As a safety check - the egress path
drops all packets with skb->decrypted and no "crypto-safe" socket.
The skb marking was added to sendpage only (and not sendmsg),
because tls_device injected data into the TCP stack using sendpage.
This special case was missed when sendpage got folded into sendmsg.
Fixes: c5c37af6ecad ("tcp: Convert do_tcp_sendpages() to use MSG_SPLICE_PAGES")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240530232607.82686-1-kuba@kernel.org
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 92f1655aa2b2294d0b49925f3b875a634bd3b59e upstream.
__dst_negative_advice() does not enforce proper RCU rules when
sk->dst_cache must be cleared, leading to possible UAF.
RCU rules are that we must first clear sk->sk_dst_cache,
then call dst_release(old_dst).
Note that sk_dst_reset(sk) is implementing this protocol correctly,
while __dst_negative_advice() uses the wrong order.
Given that ip6_negative_advice() has special logic
against RTF_CACHE, this means each of the three ->negative_advice()
existing methods must perform the sk_dst_reset() themselves.
Note the check against NULL dst is centralized in
__dst_negative_advice(), there is no need to duplicate
it in various callbacks.
Many thanks to Clement Lecigne for tracking this issue.
This old bug became visible after the blamed commit, using UDP sockets.
Fixes: a87cb3e48ee8 ("net: Facility to report route quality of connected sockets")
Reported-by: Clement Lecigne <clecigne@google.com>
Diagnosed-by: Clement Lecigne <clecigne@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Tom Herbert <tom@herbertland.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20240528114353.1794151-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
[Lee: Stable backport]
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 21a673bddc8fd4873c370caf9ae70ffc6d47e8d3 ]
syzbot reports:
general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
[..]
RIP: 0010:nf_tproxy_laddr4+0xb7/0x340 net/ipv4/netfilter/nf_tproxy_ipv4.c:62
Call Trace:
nft_tproxy_eval_v4 net/netfilter/nft_tproxy.c:56 [inline]
nft_tproxy_eval+0xa9a/0x1a00 net/netfilter/nft_tproxy.c:168
__in_dev_get_rcu() can return NULL, so check for this.
Reported-and-tested-by: syzbot+b94a6818504ea90d7661@syzkaller.appspotmail.com
Fixes: cc6eb4338569 ("tproxy: use the interface primary IP address as a default value for --on-ip")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 26afda78cda3da974fd4c287962c169e9462c495 ]
Christoph reported the following splat:
WARNING: CPU: 1 PID: 772 at net/ipv4/af_inet.c:761 __inet_accept+0x1f4/0x4a0
Modules linked in:
CPU: 1 PID: 772 Comm: syz-executor510 Not tainted 6.9.0-rc7-g7da7119fe22b #56
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
RIP: 0010:__inet_accept+0x1f4/0x4a0 net/ipv4/af_inet.c:759
Code: 04 38 84 c0 0f 85 87 00 00 00 41 c7 04 24 03 00 00 00 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 ec b7 da fd <0f> 0b e9 7f fe ff ff e8 e0 b7 da fd 0f 0b e9 fe fe ff ff 89 d9 80
RSP: 0018:ffffc90000c2fc58 EFLAGS: 00010293
RAX: ffffffff836bdd14 RBX: 0000000000000000 RCX: ffff888104668000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: dffffc0000000000 R08: ffffffff836bdb89 R09: fffff52000185f64
R10: dffffc0000000000 R11: fffff52000185f64 R12: dffffc0000000000
R13: 1ffff92000185f98 R14: ffff88810754d880 R15: ffff8881007b7800
FS: 000000001c772880(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb9fcf2e178 CR3: 00000001045d2002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
inet_accept+0x138/0x1d0 net/ipv4/af_inet.c:786
do_accept+0x435/0x620 net/socket.c:1929
__sys_accept4_file net/socket.c:1969 [inline]
__sys_accept4+0x9b/0x110 net/socket.c:1999
__do_sys_accept net/socket.c:2016 [inline]
__se_sys_accept net/socket.c:2013 [inline]
__x64_sys_accept+0x7d/0x90 net/socket.c:2013
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x58/0x100 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x4315f9
Code: fd ff 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 ab b4 fd ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007ffdb26d9c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002b
RAX: ffffffffffffffda RBX: 0000000000400300 RCX: 00000000004315f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000004
RBP: 00000000006e1018 R08: 0000000000400300 R09: 0000000000400300
R10: 0000000000400300 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000040cdf0 R14: 000000000040ce80 R15: 0000000000000055
</TASK>
The reproducer invokes shutdown() before entering the listener status.
After commit 94062790aedb ("tcp: defer shutdown(SEND_SHUTDOWN) for
TCP_SYN_RECV sockets"), the above causes the child to reach the accept
syscall in FIN_WAIT1 status.
Eric noted we can relax the existing assertion in __inet_accept()
Reported-by: Christoph Paasch <cpaasch@apple.com>
Closes: https://github.com/multipath-tcp/mptcp_net-next/issues/490
Suggested-by: Eric Dumazet <edumazet@google.com>
Fixes: 94062790aedb ("tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets")
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/23ab880a44d8cfd967e84de8b93dbf48848e3d8c.1716299669.git.pabeni@redhat.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3ebc46ca8675de6378e3f8f40768e180bb8afa66 ]
In dctcp_update_alpha(), we use a module parameter dctcp_shift_g
as follows:
alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
...
delivered_ce <<= (10 - dctcp_shift_g);
It seems syzkaller started fuzzing module parameters and triggered
shift-out-of-bounds [0] by setting 100 to dctcp_shift_g:
memcpy((void*)0x20000080,
"/sys/module/tcp_dctcp/parameters/dctcp_shift_g\000", 47);
res = syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0x20000080ul,
/*flags=*/2ul, /*mode=*/0ul);
memcpy((void*)0x20000000, "100\000", 4);
syscall(__NR_write, /*fd=*/r[0], /*val=*/0x20000000ul, /*len=*/4ul);
Let's limit the max value of dctcp_shift_g by param_set_uint_minmax().
With this patch:
# echo 10 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
# cat /sys/module/tcp_dctcp/parameters/dctcp_shift_g
10
# echo 11 > /sys/module/tcp_dctcp/parameters/dctcp_shift_g
-bash: echo: write error: Invalid argument
[0]:
UBSAN: shift-out-of-bounds in net/ipv4/tcp_dctcp.c:143:12
shift exponent 100 is too large for 32-bit type 'u32' (aka 'unsigned int')
CPU: 0 PID: 8083 Comm: syz-executor345 Not tainted 6.9.0-05151-g1b294a1f3561 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x201/0x300 lib/dump_stack.c:114
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_shift_out_of_bounds+0x346/0x3a0 lib/ubsan.c:468
dctcp_update_alpha+0x540/0x570 net/ipv4/tcp_dctcp.c:143
tcp_in_ack_event net/ipv4/tcp_input.c:3802 [inline]
tcp_ack+0x17b1/0x3bc0 net/ipv4/tcp_input.c:3948
tcp_rcv_state_process+0x57a/0x2290 net/ipv4/tcp_input.c:6711
tcp_v4_do_rcv+0x764/0xc40 net/ipv4/tcp_ipv4.c:1937
sk_backlog_rcv include/net/sock.h:1106 [inline]
__release_sock+0x20f/0x350 net/core/sock.c:2983
release_sock+0x61/0x1f0 net/core/sock.c:3549
mptcp_subflow_shutdown+0x3d0/0x620 net/mptcp/protocol.c:2907
mptcp_check_send_data_fin+0x225/0x410 net/mptcp/protocol.c:2976
__mptcp_close+0x238/0xad0 net/mptcp/protocol.c:3072
mptcp_close+0x2a/0x1a0 net/mptcp/protocol.c:3127
inet_release+0x190/0x1f0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:659 [inline]
sock_close+0xc0/0x240 net/socket.c:1421
__fput+0x41b/0x890 fs/file_table.c:422
task_work_run+0x23b/0x300 kernel/task_work.c:180
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x9c8/0x2540 kernel/exit.c:878
do_group_exit+0x201/0x2b0 kernel/exit.c:1027
__do_sys_exit_group kernel/exit.c:1038 [inline]
__se_sys_exit_group kernel/exit.c:1036 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1036
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xe4/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f6c2b5005b6
Code: Unable to access opcode bytes at 0x7f6c2b50058c.
RSP: 002b:00007ffe883eb948 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00007f6c2b5862f0 RCX: 00007f6c2b5005b6
RDX: 0000000000000001 RSI: 000000000000003c RDI: 0000000000000001
RBP: 0000000000000001 R08: 00000000000000e7 R09: ffffffffffffffc0
R10: 0000000000000006 R11: 0000000000000246 R12: 00007f6c2b5862f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Reported-by: syzkaller <syzkaller@googlegroups.com>
Reported-by: Yue Sun <samsun1006219@gmail.com>
Reported-by: xingwei lee <xrivendell7@gmail.com>
Closes: https://lore.kernel.org/netdev/CAEkJfYNJM=cw-8x7_Vmj1J6uYVCWMbbvD=EFmDPVBGpTsqOxEA@mail.gmail.com/
Fixes: e3118e8359bb ("net: tcp: add DCTCP congestion control algorithm")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://lore.kernel.org/r/20240517091626.32772-1-kuniyu@amazon.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ec00ed472bdb7d0af840da68c8c11bff9f4d9caa ]
While testing TCP performance with latest trees,
I saw suspect SOCKET_BACKLOG drops.
tcp_add_backlog() computes its limit with :
limit = (u32)READ_ONCE(sk->sk_rcvbuf) +
(u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
limit += 64 * 1024;
This does not take into account that sk->sk_backlog.len
is reset only at the very end of __release_sock().
Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
sk_rcvbuf in normal conditions.
We should double sk->sk_rcvbuf contribution in the formula
to absorb bubbles in the backlog, which happen more often
for very fast flows.
This change maintains decent protection against abuses.
Fixes: c377411f2494 ("net: sk_add_backlog() take rmem_alloc into account")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240423125620.3309458-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 50aee97d15113b95a68848db1f0cb2a6c09f753a ]
We've observed a 7-12% performance regression in iperf3 UDP ipv4 and
ipv6 tests with multiple sockets on Zen3 cpus, which we traced back to
commit f0ea27e7bfe1 ("udp: re-score reuseport groups when connected
sockets are present"). The failing tests were those that would spawn
UDP sockets per-cpu on systems that have a high number of cpus.
Unsurprisingly, it is not caused by the extra re-scoring of the reused
socket, but due to the compiler no longer inlining compute_score, once
it has the extra call site in udp4_lib_lookup2. This is augmented by
the "Safe RET" mitigation for SRSO, needed in our Zen3 cpus.
We could just explicitly inline it, but compute_score() is quite a large
function, around 300b. Inlining in two sites would almost double
udp4_lib_lookup2, which is a silly thing to do just to workaround a
mitigation. Instead, this patch shuffles the code a bit to avoid the
multiple calls to compute_score. Since it is a static function used in
one spot, the compiler can safely fold it in, as it did before, without
increasing the text size.
With this patch applied I ran my original iperf3 testcases. The failing
cases all looked like this (ipv4):
iperf3 -c 127.0.0.1 --udp -4 -f K -b $R -l 8920 -t 30 -i 5 -P 64 -O 2
where $R is either 1G/10G/0 (max, unlimited). I ran 3 times each.
baseline is v6.9-rc3. harmean == harmonic mean; CV == coefficient of
variation.
ipv4:
1G 10G MAX
HARMEAN (CV) HARMEAN (CV) HARMEAN (CV)
baseline 1743852.66(0.0208) 1725933.02(0.0167) 1705203.78(0.0386)
patched 1968727.61(0.0035) 1962283.22(0.0195) 1923853.50(0.0256)
ipv6:
1G 10G MAX
HARMEAN (CV) HARMEAN (CV) HARMEAN (CV)
baseline 1729020.03(0.0028) 1691704.49(0.0243) 1692251.34(0.0083)
patched 1900422.19(0.0067) 1900968.01(0.0067) 1568532.72(0.1519)
This restores the performance we had before the change above with this
benchmark. We obviously don't expect any real impact when mitigations
are disabled, but just to be sure it also doesn't regresses:
mitigations=off ipv4:
1G 10G MAX
HARMEAN (CV) HARMEAN (CV) HARMEAN (CV)
baseline 3230279.97(0.0066) 3229320.91(0.0060) 2605693.19(0.0697)
patched 3242802.36(0.0073) 3239310.71(0.0035) 2502427.19(0.0882)
Cc: Lorenz Bauer <lmb@isovalent.com>
Fixes: f0ea27e7bfe1 ("udp: re-score reuseport groups when connected sockets are present")
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f2db7230f73a80dbb179deab78f88a7947f0ab7e ]
Anderson Nascimento reported a use-after-free splat in tcp_twsk_unique()
with nice analysis.
Since commit ec94c2696f0b ("tcp/dccp: avoid one atomic operation for
timewait hashdance"), inet_twsk_hashdance() sets TIME-WAIT socket's
sk_refcnt after putting it into ehash and releasing the bucket lock.
Thus, there is a small race window where other threads could try to
reuse the port during connect() and call sock_hold() in tcp_twsk_unique()
for the TIME-WAIT socket with zero refcnt.
If that happens, the refcnt taken by tcp_twsk_unique() is overwritten
and sock_put() will cause underflow, triggering a real use-after-free
somewhere else.
To avoid the use-after-free, we need to use refcount_inc_not_zero() in
tcp_twsk_unique() and give up on reusing the port if it returns false.
[0]:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 0 PID: 1039313 at lib/refcount.c:25 refcount_warn_saturate+0xe5/0x110
CPU: 0 PID: 1039313 Comm: trigger Not tainted 6.8.6-200.fc39.x86_64 #1
Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.21805430.B64.2305221830 05/22/2023
RIP: 0010:refcount_warn_saturate+0xe5/0x110
Code: 42 8e ff 0f 0b c3 cc cc cc cc 80 3d aa 13 ea 01 00 0f 85 5e ff ff ff 48 c7 c7 f8 8e b7 82 c6 05 96 13 ea 01 01 e8 7b 42 8e ff <0f> 0b c3 cc cc cc cc 48 c7 c7 50 8f b7 82 c6 05 7a 13 ea 01 01 e8
RSP: 0018:ffffc90006b43b60 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff888009bb3ef0 RCX: 0000000000000027
RDX: ffff88807be218c8 RSI: 0000000000000001 RDI: ffff88807be218c0
RBP: 0000000000069d70 R08: 0000000000000000 R09: ffffc90006b439f0
R10: ffffc90006b439e8 R11: 0000000000000003 R12: ffff8880029ede84
R13: 0000000000004e20 R14: ffffffff84356dc0 R15: ffff888009bb3ef0
FS: 00007f62c10926c0(0000) GS:ffff88807be00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020ccb000 CR3: 000000004628c005 CR4: 0000000000f70ef0
PKRU: 55555554
Call Trace:
<TASK>
? refcount_warn_saturate+0xe5/0x110
? __warn+0x81/0x130
? refcount_warn_saturate+0xe5/0x110
? report_bug+0x171/0x1a0
? refcount_warn_saturate+0xe5/0x110
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? refcount_warn_saturate+0xe5/0x110
tcp_twsk_unique+0x186/0x190
__inet_check_established+0x176/0x2d0
__inet_hash_connect+0x74/0x7d0
? __pfx___inet_check_established+0x10/0x10
tcp_v4_connect+0x278/0x530
__inet_stream_connect+0x10f/0x3d0
inet_stream_connect+0x3a/0x60
__sys_connect+0xa8/0xd0
__x64_sys_connect+0x18/0x20
do_syscall_64+0x83/0x170
entry_SYSCALL_64_after_hwframe+0x78/0x80
RIP: 0033:0x7f62c11a885d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d a3 45 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007f62c1091e58 EFLAGS: 00000296 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 0000000020ccb004 RCX: 00007f62c11a885d
RDX: 0000000000000010 RSI: 0000000020ccb000 RDI: 0000000000000003
RBP: 00007f62c1091e90 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000296 R12: 00007f62c10926c0
R13: ffffffffffffff88 R14: 0000000000000000 R15: 00007ffe237885b0
</TASK>
Fixes: ec94c2696f0b ("tcp/dccp: avoid one atomic operation for timewait hashdance")
Reported-by: Anderson Nascimento <anderson@allelesecurity.com>
Closes: https://lore.kernel.org/netdev/37a477a6-d39e-486b-9577-3463f655a6b7@allelesecurity.com/
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240501213145.62261-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 94062790aedb505bdda209b10bea47b294d6394f ]
TCP_SYN_RECV state is really special, it is only used by
cross-syn connections, mostly used by fuzzers.
In the following crash [1], syzbot managed to trigger a divide
by zero in tcp_rcv_space_adjust()
A socket makes the following state transitions,
without ever calling tcp_init_transfer(),
meaning tcp_init_buffer_space() is also not called.
TCP_CLOSE
connect()
TCP_SYN_SENT
TCP_SYN_RECV
shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN)
TCP_FIN_WAIT1
To fix this issue, change tcp_shutdown() to not
perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition,
which makes no sense anyway.
When tcp_rcv_state_process() later changes socket state
from TCP_SYN_RECV to TCP_ESTABLISH, then look at
sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state,
and send a FIN packet from a sane socket state.
This means tcp_send_fin() can now be called from BH
context, and must use GFP_ATOMIC allocations.
[1]
divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767
Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48
RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246
RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7
R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30
R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da
FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513
tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578
inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x109/0x280 net/socket.c:1068
____sys_recvmsg+0x1db/0x470 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x474/0xae0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7faeb6363db9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9
RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c
R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240501125448.896529-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 58fbfecab965014b6e3cc956a76b4a96265a1add ]
The software GRO path for esp transport mode uses skb_mac_header_rebuild
prior to re-injecting the packet via the xfrm_napi_dev. This only
copies skb->mac_len bytes of header which may not be sufficient if the
packet contains 802.1Q tags or other VLAN tags. Worse copying only the
initial header will leave a packet marked as being VLAN tagged but
without the corresponding tag leading to mangling when it is later
untagged.
The VLAN tags are important when receiving the decrypted esp transport
mode packet after GRO processing to ensure it is received on the correct
interface.
Therefore record the full mac header length in xfrm*_transport_input for
later use in corresponding xfrm*_transport_finish to copy the entire mac
header when rebuilding the mac header for GRO. The skb->data pointer is
left pointing skb->mac_header bytes after the start of the mac header as
is expected by the network stack and network and transport header
offsets reset to this location.
Fixes: 7785bba299a8 ("esp: Add a software GRO codepath")
Signed-off-by: Paul Davey <paul.davey@alliedtelesis.co.nz>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5babae777c61aa8a8679d59d3cdc54165ad96d42 ]
GRO-GSO path is supposed to be transparent and as such L3 flush checks are
relevant to all UDP flows merging in GRO. This patch uses the same logic
and code from tcp_gro_receive, terminating merge if flush is non zero.
Fixes: e20cf8d3f1f7 ("udp: implement GRO for plain UDP sockets.")
Signed-off-by: Richard Gobert <richardbgobert@gmail.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|