summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2011-10-31mm: delete various needless include <linux/module.h>Paul Gortmaker
There is nothing modular in these files, and no reason to drag in all the 357 headers that module.h brings with it, since it just slows down compiles. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31writeback: Add a 'reason' to wb_writeback_workCurt Wohlgemuth
This creates a new 'reason' field in a wb_writeback_work structure, which unambiguously identifies who initiates writeback activity. A 'wb_reason' enumeration has been added to writeback.h, to enumerate the possible reasons. The 'writeback_work_class' and tracepoint event class and 'writeback_queue_io' tracepoints are updated to include the symbolic 'reason' in all trace events. And the 'writeback_inodes_sbXXX' family of routines has had a wb_stats parameter added to them, so callers can specify why writeback is being started. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Curt Wohlgemuth <curtw@google.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-31writeback: trace event balance_dirty_pagesWu Fengguang
Useful for analyzing the dynamics of the throttling algorithms and debugging user reported problems. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-31writeback: trace event bdi_dirty_ratelimitWu Fengguang
It helps understand how various throttle bandwidths are updated. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-28Merge branch 'for-next' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/hch/vfs-queue * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/hch/vfs-queue: (21 commits) leases: fix write-open/read-lease race nfs: drop unnecessary locking in llseek ext4: replace cut'n'pasted llseek code with generic_file_llseek_size vfs: add generic_file_llseek_size vfs: do (nearly) lockless generic_file_llseek direct-io: merge direct_io_walker into __blockdev_direct_IO direct-io: inline the complete submission path direct-io: separate map_bh from dio direct-io: use a slab cache for struct dio direct-io: rearrange fields in dio/dio_submit to avoid holes direct-io: fix a wrong comment direct-io: separate fields only used in the submission path from struct dio vfs: fix spinning prevention in prune_icache_sb vfs: add a comment to inode_permission() vfs: pass all mask flags check_acl and posix_acl_permission vfs: add hex format for MAY_* flag values vfs: indicate that the permission functions take all the MAY_* flags compat: sync compat_stats with statfs. vfs: add "device" tag to /proc/self/mountstats cleanup: vfs: small comment fix for block_invalidatepage ... Fix up trivial conflict in fs/gfs2/file.c (llseek changes)
2011-10-28vfs: iov_iter: have iov_iter_advance decrement nr_segs appropriatelyJeff Layton
Currently, when you call iov_iter_advance, then the pointer to the iovec array can be incremented, but it does not decrement the nr_segs value in the iov_iter struct. The result is a iov_iter struct with a nr_segs value that goes beyond the end of the array. While I'm not aware of anything that's specifically broken by this, it seems odd and a bit dangerous not to decrement that value. If someone were to trust the nr_segs value to be correct, then they could end up walking off the end of the array. Changing this might also provide some micro-optimization when dealing with the last iovec in an array. Many of the other routines that deal with iov_iter have optimized codepaths when nr_segs == 1. Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2011-10-26Merge branches 'slab/next' and 'slub/partial' into slab/for-linusPekka Enberg
2011-10-25Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (59 commits) MAINTAINERS: linux-m32r is moderated for non-subscribers linux@lists.openrisc.net is moderated for non-subscribers Drop default from "DM365 codec select" choice parisc: Kconfig: cleanup Kernel page size default Kconfig: remove redundant CONFIG_ prefix on two symbols cris: remove arch/cris/arch-v32/lib/nand_init.S microblaze: add missing CONFIG_ prefixes h8300: drop puzzling Kconfig dependencies MAINTAINERS: microblaze-uclinux@itee.uq.edu.au is moderated for non-subscribers tty: drop superfluous dependency in Kconfig ARM: mxc: fix Kconfig typo 'i.MX51' Fix file references in Kconfig files aic7xxx: fix Kconfig references to READMEs Fix file references in drivers/ide/ thinkpad_acpi: Fix printk typo 'bluestooth' bcmring: drop commented out line in Kconfig btmrvl_sdio: fix typo 'btmrvl_sdio_sd6888' doc: raw1394: Trivial typo fix CIFS: Don't free volume_info->UNC until we are entirely done with it. treewide: Correct spelling of successfully in comments ...
2011-10-25Merge branch 'next' of git://selinuxproject.org/~jmorris/linux-securityLinus Torvalds
* 'next' of git://selinuxproject.org/~jmorris/linux-security: (95 commits) TOMOYO: Fix incomplete read after seek. Smack: allow to access /smack/access as normal user TOMOYO: Fix unused kernel config option. Smack: fix: invalid length set for the result of /smack/access Smack: compilation fix Smack: fix for /smack/access output, use string instead of byte Smack: domain transition protections (v3) Smack: Provide information for UDS getsockopt(SO_PEERCRED) Smack: Clean up comments Smack: Repair processing of fcntl Smack: Rule list lookup performance Smack: check permissions from user space (v2) TOMOYO: Fix quota and garbage collector. TOMOYO: Remove redundant tasklist_lock. TOMOYO: Fix domain transition failure warning. TOMOYO: Remove tomoyo_policy_memory_lock spinlock. TOMOYO: Simplify garbage collector. TOMOYO: Fix make namespacecheck warnings. target: check hex2bin result encrypted-keys: check hex2bin result ...
2011-10-20block: initialize the bounce pool if high memory may be added laterDavid Vrabel
init_emergency_pool() does not create the page pool for bouncing block requests if the current count of high pages is zero. If high memory may be added later (either via memory hotplug or a balloon driver in a virtualized system) then a oops occurs if a request with a high page need bouncing because the pool does not exist. So, always create the pool if memory hotplug is enabled and change the test so it's valid even if all high pages are currently in the balloon (the balloon drivers adjust totalhigh_pages but not max_pfn). Signed-off-by: David Vrabel <david.vrabel@citrix.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-10-19mm: fix race between mremap and removing migration entryHugh Dickins
I don't usually pay much attention to the stale "? " addresses in stack backtraces, but this lucky report from Pawel Sikora hints that mremap's move_ptes() has inadequate locking against page migration. 3.0 BUG_ON(!PageLocked(p)) in migration_entry_to_page(): kernel BUG at include/linux/swapops.h:105! RIP: 0010:[<ffffffff81127b76>] [<ffffffff81127b76>] migration_entry_wait+0x156/0x160 [<ffffffff811016a1>] handle_pte_fault+0xae1/0xaf0 [<ffffffff810feee2>] ? __pte_alloc+0x42/0x120 [<ffffffff8112c26b>] ? do_huge_pmd_anonymous_page+0xab/0x310 [<ffffffff81102a31>] handle_mm_fault+0x181/0x310 [<ffffffff81106097>] ? vma_adjust+0x537/0x570 [<ffffffff81424bed>] do_page_fault+0x11d/0x4e0 [<ffffffff81109a05>] ? do_mremap+0x2d5/0x570 [<ffffffff81421d5f>] page_fault+0x1f/0x30 mremap's down_write of mmap_sem, together with i_mmap_mutex or lock, and pagetable locks, were good enough before page migration (with its requirement that every migration entry be found) came in, and enough while migration always held mmap_sem; but not enough nowadays, when there's memory hotremove and compaction. The danger is that move_ptes() lets a migration entry dodge around behind remove_migration_pte()'s back, so it's in the old location when looking at the new, then in the new location when looking at the old. Either mremap's move_ptes() must additionally take anon_vma lock(), or migration's remove_migration_pte() must stop peeking for is_swap_entry() before it takes pagetable lock. Consensus chooses the latter: we prefer to add overhead to migration than to mremapping, which gets used by JVMs and by exec stack setup. Reported-and-tested-by: Paweł Sikora <pluto@agmk.net> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-11writeback: fix ppc compile warnings on do_div(long long, unsigned long)Wu Fengguang
Fix powerpc compile warnings mm/page-writeback.c: In function 'bdi_position_ratio': mm/page-writeback.c:622:3: warning: comparison of distinct pointer types lacks a cast [enabled by default] page-writeback.c:635:4: warning: comparison of distinct pointer types lacks a cast [enabled by default] Also fix gcc "uninitialized var" warnings. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty position control - bdi reserve areaWu Fengguang
Keep a minimal pool of dirty pages for each bdi, so that the disk IO queues won't underrun. Also gently increase a small bdi_thresh to avoid it stuck in 0 for some light dirtied bdi. It's particularly useful for JBOD and small memory system. It may result in (pos_ratio > 1) at the setpoint and push the dirty pages high. This is more or less intended because the bdi is in the danger of IO queue underflow. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: control dirty pause timeWu Fengguang
The dirty pause time shall ultimately be controlled by adjusting nr_dirtied_pause, since there is relationship pause = pages_dirtied / task_ratelimit Assuming pages_dirtied ~= nr_dirtied_pause task_ratelimit ~= dirty_ratelimit We get nr_dirtied_pause ~= dirty_ratelimit * desired_pause Here dirty_ratelimit is preferred over task_ratelimit because it's more stable. It's also important to limit possible large transitional errors: - bw is changing quickly - pages_dirtied << nr_dirtied_pause on entering dirty exceeded area - pages_dirtied >> nr_dirtied_pause on btrfs (to be improved by a separate fix, but still expect non-trivial errors) So we end up using the above formula inside clamp_val(). The best test case for this code is to run 100 "dd bs=4M" tasks on btrfs and check its pause time distribution. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: limit max dirty pause timeWu Fengguang
Apply two policies to scale down the max pause time for 1) small number of concurrent dirtiers 2) small memory system (comparing to storage bandwidth) MAX_PAUSE=200ms may only be suitable for high end servers with lots of concurrent dirtiers, where the large pause time can reduce much overheads. Otherwise, smaller pause time is desirable whenever possible, so as to get good responsiveness and smooth user experiences. It's actually required for good disk utilization in the case when all the dirty pages can be synced to disk within MAX_PAUSE=200ms. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: IO-less balance_dirty_pages()Wu Fengguang
As proposed by Chris, Dave and Jan, don't start foreground writeback IO inside balance_dirty_pages(). Instead, simply let it idle sleep for some time to throttle the dirtying task. In the mean while, kick off the per-bdi flusher thread to do background writeback IO. RATIONALS ========= - disk seeks on concurrent writeback of multiple inodes (Dave Chinner) If every thread doing writes and being throttled start foreground writeback, it leads to N IO submitters from at least N different inodes at the same time, end up with N different sets of IO being issued with potentially zero locality to each other, resulting in much lower elevator sort/merge efficiency and hence we seek the disk all over the place to service the different sets of IO. OTOH, if there is only one submission thread, it doesn't jump between inodes in the same way when congestion clears - it keeps writing to the same inode, resulting in large related chunks of sequential IOs being issued to the disk. This is more efficient than the above foreground writeback because the elevator works better and the disk seeks less. - lock contention and cache bouncing on concurrent IO submitters (Dave Chinner) With this patchset, the fs_mark benchmark on a 12-drive software RAID0 goes from CPU bound to IO bound, freeing "3-4 CPUs worth of spinlock contention". * "CPU usage has dropped by ~55%", "it certainly appears that most of the CPU time saving comes from the removal of contention on the inode_wb_list_lock" (IMHO at least 10% comes from the reduction of cacheline bouncing, because the new code is able to call much less frequently into balance_dirty_pages() and hence access the global page states) * the user space "App overhead" is reduced by 20%, by avoiding the cacheline pollution by the complex writeback code path * "for a ~5% throughput reduction", "the number of write IOs have dropped by ~25%", and the elapsed time reduced from 41:42.17 to 40:53.23. * On a simple test of 100 dd, it reduces the CPU %system time from 30% to 3%, and improves IO throughput from 38MB/s to 42MB/s. - IO size too small for fast arrays and too large for slow USB sticks The write_chunk used by current balance_dirty_pages() cannot be directly set to some large value (eg. 128MB) for better IO efficiency. Because it could lead to more than 1 second user perceivable stalls. Even the current 4MB write size may be too large for slow USB sticks. The fact that balance_dirty_pages() starts IO on itself couples the IO size to wait time, which makes it hard to do suitable IO size while keeping the wait time under control. Now it's possible to increase writeback chunk size proportional to the disk bandwidth. In a simple test of 50 dd's on XFS, 1-HDD, 3GB ram, the larger writeback size dramatically reduces the seek count to 1/10 (far beyond my expectation) and improves the write throughput by 24%. - long block time in balance_dirty_pages() hurts desktop responsiveness Many of us may have the experience: it often takes a couple of seconds or even long time to stop a heavy writing dd/cp/tar command with Ctrl-C or "kill -9". - IO pipeline broken by bumpy write() progress There are a broad class of "loop {read(buf); write(buf);}" applications whose read() pipeline will be under-utilized or even come to a stop if the write()s have long latencies _or_ don't progress in a constant rate. The current threshold based throttling inherently transfers the large low level IO completion fluctuations to bumpy application write()s, and further deteriorates with increasing number of dirtiers and/or bdi's. For example, when doing 50 dd's + 1 remote rsync to an XFS partition, the rsync progresses very bumpy in legacy kernel, and throughput is improved by 67% by this patchset. (plus the larger write chunk size, it will be 93% speedup). The new rate based throttling can support 1000+ dd's with excellent smoothness, low latency and low overheads. For the above reasons, it's much better to do IO-less and low latency pauses in balance_dirty_pages(). Jan Kara, Dave Chinner and me explored the scheme to let balance_dirty_pages() wait for enough writeback IO completions to safeguard the dirty limit. However it's found to have two problems: - in large NUMA systems, the per-cpu counters may have big accounting errors, leading to big throttle wait time and jitters. - NFS may kill large amount of unstable pages with one single COMMIT. Because NFS server serves COMMIT with expensive fsync() IOs, it is desirable to delay and reduce the number of COMMITs. So it's not likely to optimize away such kind of bursty IO completions, and the resulted large (and tiny) stall times in IO completion based throttling. So here is a pause time oriented approach, which tries to control the pause time in each balance_dirty_pages() invocations, by controlling the number of pages dirtied before calling balance_dirty_pages(), for smooth and efficient dirty throttling: - avoid useless (eg. zero pause time) balance_dirty_pages() calls - avoid too small pause time (less than 4ms, which burns CPU power) - avoid too large pause time (more than 200ms, which hurts responsiveness) - avoid big fluctuations of pause times It can control pause times at will. The default policy (in a followup patch) will be to do ~10ms pauses in 1-dd case, and increase to ~100ms in 1000-dd case. BEHAVIOR CHANGE =============== (1) dirty threshold Users will notice that the applications will get throttled once crossing the global (background + dirty)/2=15% threshold, and then balanced around 17.5%. Before patch, the behavior is to just throttle it at 20% dirtyable memory in 1-dd case. Since the task will be soft throttled earlier than before, it may be perceived by end users as performance "slow down" if his application happens to dirty more than 15% dirtyable memory. (2) smoothness/responsiveness Users will notice a more responsive system during heavy writeback. "killall dd" will take effect instantly. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: per task dirty rate limitWu Fengguang
Add two fields to task_struct. 1) account dirtied pages in the individual tasks, for accuracy 2) per-task balance_dirty_pages() call intervals, for flexibility The balance_dirty_pages() call interval (ie. nr_dirtied_pause) will scale near-sqrt to the safety gap between dirty pages and threshold. The main problem of per-task nr_dirtied is, if 1k+ tasks start dirtying pages at exactly the same time, each task will be assigned a large initial nr_dirtied_pause, so that the dirty threshold will be exceeded long before each task reached its nr_dirtied_pause and hence call balance_dirty_pages(). The solution is to watch for the number of pages dirtied on each CPU in between the calls into balance_dirty_pages(). If it exceeds ratelimit_pages (3% dirty threshold), force call balance_dirty_pages() for a chance to set bdi->dirty_exceeded. In normal situations, this safeguarding condition is not expected to trigger at all. On the sqrt in dirty_poll_interval(): It will serve as an initial guess when dirty pages are still in the freerun area. When dirty pages are floating inside the dirty control scope [freerun, limit], a followup patch will use some refined dirty poll interval to get the desired pause time. thresh-dirty (MB) sqrt 1 16 2 22 4 32 8 45 16 64 32 90 64 128 128 181 256 256 512 362 1024 512 The above table means, given 1MB (or 1GB) gap and the dd tasks polling balance_dirty_pages() on every 16 (or 512) pages, the dirty limit won't be exceeded as long as there are less than 16 (or 512) concurrent dd's. So sqrt naturally leads to less overheads and more safe concurrent tasks for large memory servers, which have large (thresh-freerun) gaps. peter: keep the per-CPU ratelimit for safeguarding the 1k+ tasks case CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Andrea Righi <andrea@betterlinux.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: stabilize bdi->dirty_ratelimitWu Fengguang
There are some imperfections in balanced_dirty_ratelimit. 1) large fluctuations The dirty_rate used for computing balanced_dirty_ratelimit is merely averaged in the past 200ms (very small comparing to the 3s estimation period for write_bw), which makes rather dispersed distribution of balanced_dirty_ratelimit. It's pretty hard to average out the singular points by increasing the estimation period. Considering that the averaging technique will introduce very undesirable time lags, I give it up totally. (btw, the 3s write_bw averaging time lag is much more acceptable because its impact is one-way and therefore won't lead to oscillations.) The more practical way is filtering -- most singular balanced_dirty_ratelimit points can be filtered out by remembering some prev_balanced_rate and prev_prev_balanced_rate. However the more reliable way is to guard balanced_dirty_ratelimit with task_ratelimit. 2) due to truncates and fs redirties, the (write_bw <=> dirty_rate) match could become unbalanced, which may lead to large systematical errors in balanced_dirty_ratelimit. The truncates, due to its possibly bumpy nature, can hardly be compensated smoothly. So let's face it. When some over-estimated balanced_dirty_ratelimit brings dirty_ratelimit high, dirty pages will go higher than the setpoint. task_ratelimit will in turn become lower than dirty_ratelimit. So if we consider both balanced_dirty_ratelimit and task_ratelimit and update dirty_ratelimit only when they are on the same side of dirty_ratelimit, the systematical errors in balanced_dirty_ratelimit won't be able to bring dirty_ratelimit far away. The balanced_dirty_ratelimit estimation may also be inaccurate near @limit or @freerun, however is less an issue. 3) since we ultimately want to - keep the fluctuations of task ratelimit as small as possible - keep the dirty pages around the setpoint as long time as possible the update policy used for (2) also serves the above goals nicely: if for some reason the dirty pages are high (task_ratelimit < dirty_ratelimit), and dirty_ratelimit is low (dirty_ratelimit < balanced_dirty_ratelimit), there is no point to bring up dirty_ratelimit in a hurry only to hurt both the above two goals. So, we make use of task_ratelimit to limit the update of dirty_ratelimit in two ways: 1) avoid changing dirty rate when it's against the position control target (the adjusted rate will slow down the progress of dirty pages going back to setpoint). 2) limit the step size. task_ratelimit is changing values step by step, leaving a consistent trace comparing to the randomly jumping balanced_dirty_ratelimit. task_ratelimit also has the nice smaller errors in stable state and typically larger errors when there are big errors in rate. So it's a pretty good limiting factor for the step size of dirty_ratelimit. Note that bdi->dirty_ratelimit is always tracking balanced_dirty_ratelimit. task_ratelimit is merely used as a limiting factor. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty rate controlWu Fengguang
It's all about bdi->dirty_ratelimit, which aims to be (write_bw / N) when there are N dd tasks. On write() syscall, use bdi->dirty_ratelimit ============================================ balance_dirty_pages(pages_dirtied) { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); pause = pages_dirtied / task_ratelimit; sleep(pause); } On every 200ms, update bdi->dirty_ratelimit =========================================== bdi_update_dirty_ratelimit() { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate; bdi->dirty_ratelimit = balanced_dirty_ratelimit } Estimation of balanced bdi->dirty_ratelimit =========================================== balanced task_ratelimit ----------------------- balance_dirty_pages() needs to throttle tasks dirtying pages such that the total amount of dirty pages stays below the specified dirty limit in order to avoid memory deadlocks. Furthermore we desire fairness in that tasks get throttled proportionally to the amount of pages they dirty. IOW we want to throttle tasks such that we match the dirty rate to the writeout bandwidth, this yields a stable amount of dirty pages: dirty_rate == write_bw (1) The fairness requirement gives us: task_ratelimit = balanced_dirty_ratelimit == write_bw / N (2) where N is the number of dd tasks. We don't know N beforehand, but still can estimate balanced_dirty_ratelimit within 200ms. Start by throttling each dd task at rate task_ratelimit = task_ratelimit_0 (3) (any non-zero initial value is OK) After 200ms, we measured dirty_rate = # of pages dirtied by all dd's / 200ms write_bw = # of pages written to the disk / 200ms For the aggressive dd dirtiers, the equality holds dirty_rate == N * task_rate == N * task_ratelimit_0 (4) Or task_ratelimit_0 == dirty_rate / N (5) Now we conclude that the balanced task ratelimit can be estimated by write_bw balanced_dirty_ratelimit = task_ratelimit_0 * ---------- (6) dirty_rate Because with (4) and (5) we can get the desired equality (1): write_bw balanced_dirty_ratelimit == (dirty_rate / N) * ---------- dirty_rate == write_bw / N Then using the balanced task ratelimit we can compute task pause times like: task_pause = task->nr_dirtied / task_ratelimit task_ratelimit with position control ------------------------------------ However, while the above gives us means of matching the dirty rate to the writeout bandwidth, it at best provides us with a stable dirty page count (assuming a static system). In order to control the dirty page count such that it is high enough to provide performance, but does not exceed the specified limit we need another control. The dirty position control works by extending (2) to task_ratelimit = balanced_dirty_ratelimit * pos_ratio (7) where pos_ratio is a negative feedback function that subjects to 1) f(setpoint) = 1.0 2) df/dx < 0 That is, if the dirty pages are ABOVE the setpoint, we throttle each task a bit more HEAVY than balanced_dirty_ratelimit, so that the dirty pages are created less fast than they are cleaned, thus DROP to the setpoints (and the reverse). Based on (7) and the assumption that both dirty_ratelimit and pos_ratio remains CONSTANT for the past 200ms, we get task_ratelimit_0 = balanced_dirty_ratelimit * pos_ratio (8) Putting (8) into (6), we get the formula used in bdi_update_dirty_ratelimit(): write_bw balanced_dirty_ratelimit *= pos_ratio * ---------- (9) dirty_rate Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: add bg_threshold parameter to __bdi_update_bandwidth()Wu Fengguang
No behavior change. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty position controlWu Fengguang
bdi_position_ratio() provides a scale factor to bdi->dirty_ratelimit, so that the resulted task rate limit can drive the dirty pages back to the global/bdi setpoints. Old scheme is, | free run area | throttle area ----------------------------------------+----------------------------> thresh^ dirty pages New scheme is, ^ task rate limit | | * | * | * |[free run] * [smooth throttled] | * | * | * ..bdi->dirty_ratelimit..........* | . * | . * | . * | . * | . * +-------------------------------.-----------------------*------------> setpoint^ limit^ dirty pages The slope of the bdi control line should be 1) large enough to pull the dirty pages to setpoint reasonably fast 2) small enough to avoid big fluctuations in the resulted pos_ratio and hence task ratelimit Since the fluctuation range of the bdi dirty pages is typically observed to be within 1-second worth of data, the bdi control line's slope is selected to be a linear function of bdi write bandwidth, so that it can adapt to slow/fast storage devices well. Assume the bdi control line pos_ratio = 1.0 + k * (dirty - bdi_setpoint) where k is the negative slope. If targeting for 12.5% fluctuation range in pos_ratio when dirty pages are fluctuating in range [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2], we get slope k = - 1 / (8 * write_bw) Let pos_ratio(x_intercept) = 0, we get the parameter used in code: x_intercept = bdi_setpoint + 8 * write_bw The global/bdi slopes are nicely complementing each other when the system has only one major bdi (indicated by bdi_thresh ~= thresh): 1) slope of global control line => scaling to the control scope size 2) slope of main bdi control line => scaling to the writeout bandwidth so that - in memory tight systems, (1) becomes strong enough to squeeze dirty pages inside the control scope - in large memory systems where the "gravity" of (1) for pulling the dirty pages to setpoint is too weak, (2) can back (1) up and drive dirty pages to bdi_setpoint ~= setpoint reasonably fast. Unfortunately in JBOD setups, the fluctuation range of bdi threshold is related to memory size due to the interferences between disks. In this case, the bdi slope will be weighted sum of write_bw and bdi_thresh. Given equations span = x_intercept - bdi_setpoint k = df/dx = - 1 / span and the extremum values span = bdi_thresh dx = bdi_thresh we get df = - dx / span = - 1.0 That means, when bdi_dirty deviates bdi_thresh up, pos_ratio and hence task ratelimit will fluctuate by -100%. peter: use 3rd order polynomial for the global control line CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: account per-bdi accumulated dirtied pagesWu Fengguang
Introduce the BDI_DIRTIED counter. It will be used for estimating the bdi's dirty bandwidth. CC: Jan Kara <jack@suse.cz> CC: Michael Rubin <mrubin@google.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-09-27slub: Discard slab page when node partial > minimum partial numberAlex Shi
Discarding slab should be done when node partial > min_partial. Otherwise, node partial slab may eat up all memory. Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-09-27slub: correct comments error for per cpu partialAlex Shi
Correct comment errors, that mistake cpu partial objects number as pages number, may make reader misunderstand. Signed-off-by: Alex Shi <alex.shi@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-09-27mm: restrict access to slab files under procfs and sysfsVasiliy Kulikov
Historically /proc/slabinfo and files under /sys/kernel/slab/* have world read permissions and are accessible to the world. slabinfo contains rather private information related both to the kernel and userspace tasks. Depending on the situation, it might reveal either private information per se or information useful to make another targeted attack. Some examples of what can be learned by reading/watching for /proc/slabinfo entries: 1) dentry (and different *inode*) number might reveal other processes fs activity. The number of dentry "active objects" doesn't strictly show file count opened/touched by a process, however, there is a good correlation between them. The patch "proc: force dcache drop on unauthorized access" relies on the privacy of dentry count. 2) different inode entries might reveal the same information as (1), but these are more fine granted counters. If a filesystem is mounted in a private mount point (or even a private namespace) and fs type differs from other mounted fs types, fs activity in this mount point/namespace is revealed. If there is a single ecryptfs mount point, the whole fs activity of a single user is revealed. Number of files in ecryptfs mount point is a private information per se. 3) fuse_* reveals number of files / fs activity of a user in a user private mount point. It is approx. the same severity as ecryptfs infoleak in (2). 4) sysfs_dir_cache similar to (2) reveals devices' addition/removal, which can be otherwise hidden by "chmod 0700 /sys/". With 0444 slabinfo the precise number of sysfs files is known to the world. 5) buffer_head might reveal some kernel activity. With other information leaks an attacker might identify what specific kernel routines generate buffer_head activity. 6) *kmalloc* infoleaks are very situational. Attacker should watch for the specific kmalloc size entry and filter the noise related to the unrelated kernel activity. If an attacker has relatively silent victim system, he might get rather precise counters. Additional information sources might significantly increase the slabinfo infoleak benefits. E.g. if an attacker knows that the processes activity on the system is very low (only core daemons like syslog and cron), he may run setxid binaries / trigger local daemon activity / trigger network services activity / await sporadic cron jobs activity / etc. and get rather precise counters for fs and network activity of these privileged tasks, which is unknown otherwise. Also hiding slabinfo and /sys/kernel/slab/* is a one step to complicate exploitation of kernel heap overflows (and possibly, other bugs). The related discussion: http://thread.gmane.org/gmane.linux.kernel/1108378 To keep compatibility with old permission model where non-root monitoring daemon could watch for kernel memleaks though slabinfo one should do: groupadd slabinfo usermod -a -G slabinfo $MONITOR_USER And add the following commands to init scripts (to mountall.conf in Ubuntu's upstart case): chmod g+r /proc/slabinfo /sys/kernel/slab/*/* chgrp slabinfo /proc/slabinfo /sys/kernel/slab/*/* Signed-off-by: Vasiliy Kulikov <segoon@openwall.com> Reviewed-by: Kees Cook <kees@ubuntu.com> Reviewed-by: Dave Hansen <dave@linux.vnet.ibm.com> Acked-by: Christoph Lameter <cl@gentwo.org> Acked-by: David Rientjes <rientjes@google.com> CC: Valdis.Kletnieks@vt.edu CC: Linus Torvalds <torvalds@linux-foundation.org> CC: Alan Cox <alan@linux.intel.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-09-21Merge branch 'for-linus' of git://git.kernel.dk/linux-blockLinus Torvalds
* 'for-linus' of git://git.kernel.dk/linux-block: floppy: use del_timer_sync() in init cleanup blk-cgroup: be able to remove the record of unplugged device block: Don't check QUEUE_FLAG_SAME_COMP in __blk_complete_request mm: Add comment explaining task state setting in bdi_forker_thread() mm: Cleanup clearing of BDI_pending bit in bdi_forker_thread() block: simplify force plug flush code a little bit block: change force plug flush call order block: Fix queue_flag update when rq_affinity goes from 2 to 1 block: separate priority boosting from REQ_META block: remove READ_META and WRITE_META xen-blkback: fixed indentation and comments xen-blkback: Don't disconnect backend until state switched to XenbusStateClosed.
2011-09-19Merge branch 'slab/urgent' of git://github.com/penberg/linuxLinus Torvalds
* 'slab/urgent' of git://github.com/penberg/linux: slub: add slab with one free object to partial list tail
2011-09-19Merge branch 'slab/urgent' into slab/nextPekka Enberg
2011-09-15Merge branch 'master' into for-nextJiri Kosina
Fast-forward merge with Linus to be able to merge patches based on more recent version of the tree.
2011-09-15mm: Convert vmalloc/memset to vzallocJoe Perches
Signed-off-by: Joe Perches <joe@perches.com> Acked-by: Paul Menage <menage@google.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-09-14mm: account skipped entries to avoid looping in find_get_pagesShaohua Li
The found entries by find_get_pages() could be all swap entries. In this case we skip the entries, but make sure the skipped entries are accounted, so we don't keep looping. Using nr_found > nr_skip to simplify code as suggested by Eric. Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14mm: sync vmalloc address space page tables in alloc_vm_area()David Vrabel
Xen backend drivers (e.g., blkback and netback) would sometimes fail to map grant pages into the vmalloc address space allocated with alloc_vm_area(). The GNTTABOP_map_grant_ref would fail because Xen could not find the page (in the L2 table) containing the PTEs it needed to update. (XEN) mm.c:3846:d0 Could not find L1 PTE for address fbb42000 netback and blkback were making the hypercall from a kernel thread where task->active_mm != &init_mm and alloc_vm_area() was only updating the page tables for init_mm. The usual method of deferring the update to the page tables of other processes (i.e., after taking a fault) doesn't work as a fault cannot occur during the hypercall. This would work on some systems depending on what else was using vmalloc. Fix this by reverting ef691947d8a3 ("vmalloc: remove vmalloc_sync_all() from alloc_vm_area()") and add a comment to explain why it's needed. Signed-off-by: David Vrabel <david.vrabel@citrix.com> Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Keir Fraser <keir.xen@gmail.com> Cc: <stable@kernel.org> [3.0.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14memcg: Revert "memcg: add memory.vmscan_stat"Johannes Weiner
Revert the post-3.0 commit 82f9d486e59f5 ("memcg: add memory.vmscan_stat"). The implementation of per-memcg reclaim statistics violates how memcg hierarchies usually behave: hierarchically. The reclaim statistics are accounted to child memcgs and the parent hitting the limit, but not to hierarchy levels in between. Usually, hierarchical statistics are perfectly recursive, with each level representing the sum of itself and all its children. Since this exports statistics to userspace, this may lead to confusion and problems with changing things after the release, so revert it now, we can try again later. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14mm: vmscan: fix force-scanning small targets without swapJohannes Weiner
Without swap, anonymous pages are not scanned. As such, they should not count when considering force-scanning a small target if there is no swap. Otherwise, targets are not force-scanned even when their effective scan number is zero and the other conditions--kswapd/memcg--apply. This fixes 246e87a93934 ("memcg: fix get_scan_count() for small targets"). [akpm@linux-foundation.org: fix comment] Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Ying Han <yinghan@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14numa: fix NUMA compile error when sysfs and procfs are disabledDavid Rientjes
The vmstat_text array is only defined for CONFIG_SYSFS or CONFIG_PROC_FS, yet it is referenced for per-node vmstat with CONFIG_NUMA: drivers/built-in.o: In function `node_read_vmstat': node.c:(.text+0x1106df): undefined reference to `vmstat_text' Introduced in commit fa25c503dfa2 ("mm: per-node vmstat: show proper vmstats"). Define the array for CONFIG_NUMA as well. [akpm@linux-foundation.org: remove unneeded ifdefs] Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Cong Wang <amwang@redhat.com> Acked-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14mm/mempolicy.c: make copy_from_user() provably correctKAMEZAWA Hiroyuki
When compiling mm/mempolicy.c with struct user copy checks the following warning is shown: In file included from arch/x86/include/asm/uaccess.h:572, from include/linux/uaccess.h:5, from include/linux/highmem.h:7, from include/linux/pagemap.h:10, from include/linux/mempolicy.h:70, from mm/mempolicy.c:68: In function `copy_from_user', inlined from `compat_sys_get_mempolicy' at mm/mempolicy.c:1415: arch/x86/include/asm/uaccess_64.h:64: warning: call to `copy_from_user_overflow' declared with attribute warning: copy_from_user() buffer size is not provably correct LD mm/built-in.o Fix this by passing correct buffer size value. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-14mm/mempolicy.c: fix pgoff in mbind vma mergeCaspar Zhang
commit 9d8cebd4bcd7 ("mm: fix mbind vma merge problem") didn't really fix the mbind vma merge problem due to wrong pgoff value passing to vma_merge(), which made vma_merge() always return NULL. Before the patch applied, we are getting a result like: addr = 0x7fa58f00c000 [snip] 7fa58f00c000-7fa58f00d000 rw-p 00000000 00:00 0 7fa58f00d000-7fa58f00e000 rw-p 00000000 00:00 0 7fa58f00e000-7fa58f00f000 rw-p 00000000 00:00 0 here 7fa58f00c000->7fa58f00f000 we get 3 VMAs which are expected to be merged described as described in commit 9d8cebd. Re-testing the patched kernel with the reproducer provided in commit 9d8cebd, we get the correct result: addr = 0x7ffa5aaa2000 [snip] 7ffa5aaa2000-7ffa5aaa6000 rw-p 00000000 00:00 0 7fffd556f000-7fffd5584000 rw-p 00000000 00:00 0 [stack] Signed-off-by: Caspar Zhang <caspar@casparzhang.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-09-13slub: Code optimization in get_partial_node()Alex,Shi
I find a way to reduce a variable in get_partial_node(). That is also helpful for code understanding. Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Alex Shi <alex.shi@intel.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-09-02mm: Add comment explaining task state setting in bdi_forker_thread()Jan Kara
CC: Wu Fengguang <fengguang.wu@intel.com> CC: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-09-02mm: Cleanup clearing of BDI_pending bit in bdi_forker_thread()Jan Kara
bdi_forker_thread() clears BDI_pending bit at the end of the main loop. However clearing of this bit must not be done in some cases which is handled by calling 'continue' from switch statement. That's kind of unusual construct and without a good reason so change the function into more intuitive code flow. CC: Wu Fengguang <fengguang.wu@intel.com> CC: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-27slub: explicitly document position of inserting slab to partial listShaohua Li
Adding slab to partial list head/tail is sensitive to performance. So explicitly uses DEACTIVATE_TO_TAIL/DEACTIVATE_TO_HEAD to document it to avoid we get it wrong. Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Shaohua Li <shli@kernel.org> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-08-27slub: add slab with one free object to partial list tailShaohua Li
The slab has just one free object, adding it to partial list head doesn't make sense. And it can cause lock contentation. For example, 1. CPU takes the slab from partial list 2. fetch an object 3. switch to another slab 4. free an object, then the slab is added to partial list again In this way n->list_lock will be heavily contended. In fact, Alex had a hackbench regression. 3.1-rc1 performance drops about 70% against 3.0. This patch fixes it. Acked-by: Christoph Lameter <cl@linux.com> Reported-by: Alex Shi <alex.shi@intel.com> Signed-off-by: Shaohua Li <shli@kernel.org> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-08-25memcg: fix hierarchical oom lockingJohannes Weiner
Commit 79dfdaccd1d5 ("memcg: make oom_lock 0 and 1 based rather than counter") tried to oom lock the hierarchy and roll back upon encountering an already locked memcg. The code is confused when it comes to detecting a locked memcg, though, so it would fail and rollback after locking one memcg and encountering an unlocked second one. The result is that oom-locking hierarchies fails unconditionally and that every oom killer invocation simply goes to sleep on the oom waitqueue forever. The tasks practically hang forever without anyone intervening, possibly holding locks that trip up unrelated tasks, too. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25vmscan: clear ZONE_CONGESTED for zone with good watermarkShaohua Li
ZONE_CONGESTED is only cleared in kswapd, but pages can be freed in any task. It's possible ZONE_CONGESTED isn't cleared in some cases: 1. the zone is already balanced just entering balance_pgdat() for order-0 because concurrent tasks free memory. In this case, later check will skip the zone as it's balanced so the flag isn't cleared. 2. high order balance fallbacks to order-0. quote from Mel: At the end of balance_pgdat(), kswapd uses the following logic; If reclaiming at high order { for each zone { if all_unreclaimable skip if watermark is not met order = 0 loop again /* watermark is met */ clear congested } } i.e. it clears ZONE_CONGESTED if it the zone is balanced. if not, it restarts balancing at order-0. However, if the higher zones are balanced for order-0, kswapd will miss clearing ZONE_CONGESTED as that only happens after a zone is shrunk. This can mean that wait_iff_congested() stalls unnecessarily. This patch makes kswapd clear ZONE_CONGESTED during its initial highmem->dma scan for zones that are already balanced. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25mm: fix a vmscan warningShaohua Li
I get the below warning: BUG: using smp_processor_id() in preemptible [00000000] code: bash/746 caller is native_sched_clock+0x37/0x6e Pid: 746, comm: bash Tainted: G W 3.0.0+ #254 Call Trace: [<ffffffff813435c6>] debug_smp_processor_id+0xc2/0xdc [<ffffffff8104158d>] native_sched_clock+0x37/0x6e [<ffffffff81116219>] try_to_free_mem_cgroup_pages+0x7d/0x270 [<ffffffff8114f1f8>] mem_cgroup_force_empty+0x24b/0x27a [<ffffffff8114ff21>] ? sys_close+0x38/0x138 [<ffffffff8114ff21>] ? sys_close+0x38/0x138 [<ffffffff8114f257>] mem_cgroup_force_empty_write+0x17/0x19 [<ffffffff810c72fb>] cgroup_file_write+0xa8/0xba [<ffffffff811522d2>] vfs_write+0xb3/0x138 [<ffffffff8115241a>] sys_write+0x4a/0x71 [<ffffffff8114ffd9>] ? sys_close+0xf0/0x138 [<ffffffff8176deab>] system_call_fastpath+0x16/0x1b sched_clock() can't be used with preempt enabled. And we don't need fast approach to get clock here, so let's use ktime API. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25memcg: pin execution to current cpu while draining stockJohannes Weiner
Commit d1a05b6973c7 ("memcg do not try to drain per-cpu caches without pages") added a drain_local_stock() call to a preemptible section. The draining task looks up the cpu-local stock twice to set the draining-flag, then to drain the stock and clear the flag again. If the task is migrated to a different CPU in between, noone will clear the flag on the first stock and it will be forever undrainable. Its charge can not be recovered and the cgroup can not be deleted anymore. Properly pin the task to the executing CPU while draining stocks. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-25Merge branch 'urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback * 'urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback: squeeze max-pause area and drop pass-good area
2011-08-24mm/vmscan.c: fix a typo in a comment "relaimed" to "reclaimed"Justin P. Mattock
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-19slub: per cpu cache for partial pagesChristoph Lameter
Allow filling out the rest of the kmem_cache_cpu cacheline with pointers to partial pages. The partial page list is used in slab_free() to avoid per node lock taking. In __slab_alloc() we can then take multiple partial pages off the per node partial list in one go reducing node lock pressure. We can also use the per cpu partial list in slab_alloc() to avoid scanning partial lists for pages with free objects. The main effect of a per cpu partial list is that the per node list_lock is taken for batches of partial pages instead of individual ones. Potential future enhancements: 1. The pickup from the partial list could be perhaps be done without disabling interrupts with some work. The free path already puts the page into the per cpu partial list without disabling interrupts. 2. __slab_free() may have some code paths that could use optimization. Performance: Before After ./hackbench 100 process 200000 Time: 1953.047 1564.614 ./hackbench 100 process 20000 Time: 207.176 156.940 ./hackbench 100 process 20000 Time: 204.468 156.940 ./hackbench 100 process 20000 Time: 204.879 158.772 ./hackbench 10 process 20000 Time: 20.153 15.853 ./hackbench 10 process 20000 Time: 20.153 15.986 ./hackbench 10 process 20000 Time: 19.363 16.111 ./hackbench 1 process 20000 Time: 2.518 2.307 ./hackbench 1 process 20000 Time: 2.258 2.339 ./hackbench 1 process 20000 Time: 2.864 2.163 Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-08-19slub: return object pointer from get_partial() / new_slab().Christoph Lameter
There is no need anymore to return the pointer to a slab page from get_partial() since the page reference can be stored in the kmem_cache_cpu structures "page" field. Return an object pointer instead. That in turn allows a simplification of the spaghetti code in __slab_alloc(). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>