Age | Commit message (Collapse) | Author |
|
This helper existed to fix the circular header dependency issue but it is
no longer used since commit 0d40cfe63a2f ("fs: remove
folio_file_mapping()"), remove it.
Link: https://lkml.kernel.org/r/20250430181052.55698-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are no remaining users of folio_index() outside the mm subsystem.
Move it to mm/swap.h to co-locate it with swap_cache_index(), eliminating
a forward declaration, and a function call overhead.
Also remove the helper that was used to fix circular header dependency
issue.
Link: https://lkml.kernel.org/r/20250430181052.55698-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace cluster_swap_free_nr() with swap_entries_put_[map/cache]() to
remove repeat code and leverage batch-remove for entries with last flag.
After removing cluster_swap_free_nr, only functions with "_nr" suffix
could free entries spanning cross clusters. Add corresponding description
in comment of swap_entries_put_map_nr() as is first function with "_nr"
suffix and have a non-suffix variant function swap_entries_put_map().
Link: https://lkml.kernel.org/r/20250325162528.68385-9-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Factor out helper swap_entries_put_cache() from put_swap_folio() to serve
as a general-purpose routine for dropping cache flag of entries within a
single cluster.
Link: https://lkml.kernel.org/r/20250325162528.68385-8-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
1. Factor out general swap_entries_put_map() helper to drop entries
belonging to one cluster. If entries are last map, free entries in
batch, otherwise put entries with cluster lock acquired and released
only once.
2. Iterate and call swap_entries_put_map() for each cluster in
swap_entries_put_nr() to leverage batch-remove for last map belonging
to one cluster and reduce lock acquire/release in fallback case.
3. As swap_entries_put_nr() won't handle SWAP_HSA_CACHE drop, rename
it to swap_entries_put_map_nr().
4. As we won't drop each entry invidually with swap_entry_put() now,
do reclaim in free_swap_and_cache_nr() because
swap_entries_put_map_nr() is general routine to drop reference and the
relcaim work should only be done in free_swap_and_cache_nr(). Remove
stale comment accordingly.
Link: https://lkml.kernel.org/r/20250325162528.68385-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The SWAP_MAP_SHMEM indicates last map from shmem. Therefore we can drop
SWAP_MAP_SHMEM in batch in similar way to drop last ref count in batch.
Link: https://lkml.kernel.org/r/20250325162528.68385-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use swap_entries_free() to directly free swap entries when the swap
entries are not cached and referenced, without needing to set swap entries
to set intermediate SWAP_HAS_CACHE state.
Link: https://lkml.kernel.org/r/20250325162528.68385-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In swap_entry_put_locked(), we will set slot to SWAP_HAS_CACHE before
using swap_entries_free() to do actual swap entry freeing. This introduce
an unnecessary intermediate state. By using swap_entries_free() in
swap_entry_put_locked(), we can eliminate the need to set slot to
SWAP_HAS_CACHE. This change would make the behavior of
swap_entry_put_locked() more consistent with other put() operations which
will do actual free work after put last reference.
Link: https://lkml.kernel.org/r/20250325162528.68385-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The original VM_BUG_ON only allows swap_entry_range_free() to drop last
SWAP_HAS_CACHE ref. By allowing other kind of last ref in VM_BUG_ON,
swap_entry_range_free() could be a more general-purpose function able to
handle all kind of last ref. Following thi change, also rename
swap_entry_range_free() to swap_entries_free() and update it's comment
accordingly.
This is a preparation to use swap_entries_free() to drop more kind of last
ref other than SWAP_HAS_CACHE.
[shikemeng@huaweicloud.com: add __maybe_unused attribute for swap_is_last_ref() and update comment]
Link: https://lkml.kernel.org/r/20250410153908.612984-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250325162528.68385-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Tested-by: SeongJae Park <sj@kernel.org>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_[entry/entries]_put[_locked]
Patch series "Minor cleanups and improvements to swap freeing code", v4.
This series contains some cleanups and improvements which are made
during learning swapfile. Here is a summary of the changes:
1. Function naming improvments.
- Use "put" instead of "free" to name functions which only do actual
free when count drops to zero.
- Use "entry" to name function only frees one swap slot. Use
"entries" to name function could may free multi swap slots within one
cluster. Use "_nr" suffix to name function which could free multi
swap slots spanning cross multi clusters.
2. Eliminate the need to set swap slot to intermediate SWAP_HAS_CACHE
value before do actual free by using swap_entry_range_free()
3. Add helpers swap_entries_put_map() and swap_entries_put_cache() as
a general-purpose routine to free swap entries within a single cluster
which will try batch-remove first and fallback to put eatch entry
indvidually with cluster lock acquired/released only once. By using
these helpers, we could remove repeated code, levarage batch-remove in
more cases and aoivd to acquire/release cluster lock for each single
swap entry.
This patch (of 8):
In __swap_entry_free[_locked] and __swap_entries_free, we decrease count
first and only free swap entry if count drops to zero. This behavior is
more akin to a put() operation rather than a free() operation. Therefore,
rename these functions with "put" instead of "free". Additionally, add
"_nr" suffix to swap_entries_put to indicate the input range may span swap
clusters.
Link: https://lkml.kernel.org/r/20250325162528.68385-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250325162528.68385-2-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The !CONFIG_THP_SWAP check existed before just fine because slot cache
would reject high order allocation and let the caller split all folios and
try again.
But slot cache is gone, so large allocation will directly go to the
allocator, and the allocator should just fail silently to inform caller to
do the folio split, this is totally fine and expected.
Remove this meaningless warning.
Link: https://lkml.kernel.org/r/20250429094803.85518-1-ryncsn@gmail.com
Fixes: 0ff67f990bd4 ("mm, swap: remove swap slot cache")
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Heiko Carstens <hca@linux.ibm.com>
Closes: https://lore.kernel.org/linux-mm/20250428135252.25453B17-hca@linux.ibm.com/
Tested-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With slot cache gone, clean up the allocation helpers even more.
folio_alloc_swap will be the only entry for allocation and adding the
folio to swap cache (except suspend), making it opposite of
folio_free_swap.
Link: https://lkml.kernel.org/r/20250313165935.63303-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Slot cache is no longer needed now, removing it and all related code.
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
The performance changes are below noise level.
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
Similar to above, 64k mTHP case showed a slight improvement.
Link: https://lkml.kernel.org/r/20250313165935.63303-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current allocation workflow first traverses the plist with a global lock
held, after choosing a device, it uses the percpu cluster on that swap
device. This commit moves the percpu cluster variable out of being tied
to individual swap devices, making it a global percpu variable, and will
be used directly for allocation as a fast path.
The global percpu cluster variable will never point to a HDD device, and
allocations on a HDD device are still globally serialized.
This improves the allocator performance and prepares for removal of the
slot cache in later commits. There shouldn't be much observable behavior
change, except one thing: this changes how swap device allocation rotation
works.
Currently, each allocation will rotate the plist, and because of the
existence of slot cache (one order 0 allocation usually returns 64
entries), swap devices of the same priority are rotated for every 64 order
0 entries consumed. High order allocations are different, they will
bypass the slot cache, and so swap device is rotated for every 16K, 32K,
or up to 2M allocation.
The rotation rule was never clearly defined or documented, it was changed
several times without mentioning.
After this commit, and once slot cache is gone in later commits, swap
device rotation will happen for every consumed cluster. Ideally non-HDD
devices will be rotated if 2M space has been consumed for each order.
Fragmented clusters will rotate the device faster, which seems OK. HDD
devices is rotated for every allocation regardless of the allocation
order, which should be OK too and trivial.
This commit also slightly changes allocation behaviour for slot cache.
The new added cluster allocation fast path may allocate entries from
different device to the slot cache, this is not observable from user
space, only impact performance very slightly, and slot cache will be just
gone in next commit, so this can be ignored.
Link: https://lkml.kernel.org/r/20250313165935.63303-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The counter update before allocation design was useful to avoid
unnecessary scan when device is full, so it will abort early if the
counter indicates the device is full. But that is an uncommon case, and
now scanning of a full device is very fast, so the up-front update is not
helpful any more.
Remove it and simplify the slot allocation logic.
Link: https://lkml.kernel.org/r/20250313165935.63303-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This flag exists temporarily to allow the allocator to bypass the slot
cache during freeing, so reclaiming one slot will free the slot
immediately.
But now we have already removed slot cache usage on freeing, so this flag
has no effect now.
Link: https://lkml.kernel.org/r/20250313165935.63303-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: remove swap slot cache", v3.
Slot cache was initially introduced by commit 67afa38e012e ("mm/swap: add
cache for swap slots allocation") to reduce the lock contention of
si->lock.
Previous series "mm, swap: rework of swap allocator locks" [1] removed
swap slot cache for freeing path as freeing path no longer touches
si->lock in most cased. Allocation path also have slight to none
contention on si->lock since that series, but slot cache still helps to
reduce other overheads, like counters and the plist.
This series removes the slot cache from allocation path too, by using the
cluster as allocation fast path and also reduce other overheads.
Now slot cache is completely gone, the code is much simplified without
obvious feature or performance change, also clean up related workaround.
Also this should avoid other potential issues, e.g. the long pinning of
swap slots: swap slot cache pins swap slots with HAS_CACHE, causing
reclaim or allocation fail to use these slots on scanning.
The only behavior change is the swap device allocation rotation mechanism,
as explained in the patch "mm, swap: use percpu cluster as allocation fast
path".
Test results are looking good after deleting the swap slot cache:
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
The performance is unchanged, slightly better in some cases.
[1] https://lore.kernel.org/linux-mm/20250113175732.48099-1-ryncsn@gmail.com/
This patch (of 7):
Swap allocator will do swap cache reclaim to recycle HAS_CACHE slots for
allocation. It initiates the reclaim from the offset to be reclaimed and
looks up the corresponding folio. The lookup process is lockless, so it's
possible the folio will be removed from the swap cache and given a
different swap entry before the reclaim locks the folio. If it happens,
the reclaim will end up reclaiming an irrelevant folio, and return wrong
return value.
This shouldn't cause any problem with correctness or stability, but it is
indeed confusing and unexpected, and will increase fragmentation, decrease
performance.
Fix this by checking whether the folio is still pointing to the offset the
allocator want to reclaim before reclaiming it.
Link: https://lkml.kernel.org/r/20250313165935.63303-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250313165935.63303-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_reclaim_full_clusters() has no return value now, just remove the
stale comment which says swap_reclaim_full_clusters() wil return a bool
value.
Link: https://lkml.kernel.org/r/20250222160850.505274-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We will add si back to plist in swap_usage_sub(), just correct the wrong
comment which says we will remove si from plist in swap_usage_sub().
Link: https://lkml.kernel.org/r/20250222160850.505274-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Before alloc from a cluster, we will aqcuire cluster's lock and make sure
it is usable by cluster_is_usable(), so there is no need to set
SWAP_MAP_BAD for cluster to be discarded.
Link: https://lkml.kernel.org/r/20250222160850.505274-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's only called in scan_swap_map_slots().
And also remove the stale code comment in scan_swap_map_slots() because
it's not fit for the current cluster allocation mechanism.
Link: https://lkml.kernel.org/r/20250205092721.9395-13-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since commit eb085574a752 ("mm, swap: fix race between swapoff and some
swap operations"), the non_swap_entry() checking has been taken off from
function __swap_duplicate(). Hence, in the kernel-doc comment, the line
'swp_entry is migration entry -> EINVAL' is obsolete. Remove that line to
avoid misleading people.
Link: https://lkml.kernel.org/r/20250205092721.9395-12-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The new function name can reflect the real behaviour of the function more
clearly and more accurately. And the renaming avoids the confusion
between swap_swapcount() and swp_swapcount().
Link: https://lkml.kernel.org/r/20250205092721.9395-11-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In free_swap_and_cache_nr(), invocation of get_swap_device() has done the
checking if it's a swap entry. So remove the redundant checking here.
Link: https://lkml.kernel.org/r/20250205092721.9395-10-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the last 'for' loop inside setup_clusters(), using two local variable
'k' and 'j' are obvisouly redundant. Using 'j' is enough and simpler.
And also move macro SWAP_CLUSTER_COLS close to its only user
setup_clusters().
Link: https://lkml.kernel.org/r/20250205092721.9395-8-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now, swap_count_continued() has two callers, __swap_duplicate() and
__swap_entry_free_locked(), the relevant code comment is stale. Update it
to reflect the current situation.
[bhe@redhat.com: v2]
Link: https://lkml.kernel.org/r/Z6V0/UvG1fvkQ4t/@fedora
Link: https://lkml.kernel.org/r/20250205092721.9395-7-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are two predicates in the name of swap_is_has_cache() which is
confusing. Renaming it to remove the confusion and can better reflect its
functionality.
Link: https://lkml.kernel.org/r/20250205092721.9395-6-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since ci->lock has been taken when isolating cluster from
si->free_clusters or taking si->percpu_cluster->next[order], it's
unnecessary to scan and check the cluster range availability if i'ts empty
cluster, and this can accelerate the huge page swapping.
Link: https://lkml.kernel.org/r/20250205092721.9395-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It doesn't make sense to have a zero value of shift. Remove it to avoid
confusion.
Link: https://lkml.kernel.org/r/20250205092721.9395-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If allocation is racy with swapoff, we may call free_cluster for cluster
already in free list and trigger BUG_ON() as following:
Allocation Swapoff
cluster_alloc_swap_entry
...
/* may get a free cluster with offset */
offset = xxx;
if (offset)
ci = lock_cluster(si, offset);
...
del_from_avail_list(p, true);
si->flags &= ~SWP_WRITEOK;
alloc_swap_scan_cluster(si, ci, ...)
...
/* failed to alloc entry from free entry */
if (!cluster_alloc_range(...))
break;
...
/* add back a free cluster */
relocate_cluster(si, ci);
if (!ci->count)
free_cluster(si, ci);
VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
To prevent the BUG_ON(), call free_cluster() for free cluster to move the
cluster to tail of list.
Check cluster is not free before calling free_cluster() in
relocate_cluster() to avoid BUG_ON().
Link: https://lkml.kernel.org/r/20250222160850.505274-4-shikemeng@huaweicloud.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use correct step in loop to wait all clusters in wait_for_allocation().
If we miss some cluster in wait_for_allocation(), use after free may occur
as follows:
shmem_writepage swapoff
folio_alloc_swap
get_swap_pages
scan_swap_map_slots
cluster_alloc_swap_entry
alloc_swap_scan_cluster
cluster_alloc_range
/* SWP_WRITEOK is valid */
if (!(si->flags & SWP_WRITEOK))
...
del_from_avail_list(p, true);
...
/* miss the cluster in shmem_writepage */
wait_for_allocation()
...
try_to_unuse()
memset(si->swap_map + start, usage, nr_pages);
swap_range_alloc(si, nr_pages);
ci->count += nr_pages;
/* return a valid entry */
...
exit_swap_address_space(p->type);
...
...
add_to_swap_cache
/* dereference swap_address_space(entry) which is NULL */
xas_lock_irq(&xas);
Link: https://lkml.kernel.org/r/20250222160850.505274-3-shikemeng@huaweicloud.com
Fixes: 9a0ddeb79880 ("mm, swap: hold a reference during scan and cleanup flag usage")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If no swap cache is reclaimed, cluster taken off from full_clusters list
will not be put in any list and we can't reclaime HAS_CACHE slots
efficiently. Do relocate_cluster for such cluster to avoid inefficiency.
Link: https://lkml.kernel.org/r/20250224113910.522439-1-shikemeng@huaweicloud.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a NULL check on the return value of swp_swap_info in __swap_duplicate
to prevent crashes caused by NULL pointer dereference.
The reason why swp_swap_info() returns NULL is unclear; it may be due
to CPU cache issues or DDR bit flips. The probability of this issue is
very small - it has been observed to occur approximately 1 in 500,000
times per week. The stack info we encountered is as follows:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000058
[RB/E]rb_sreason_str_set: sreason_str set null_pointer
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
Data abort info:
ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=00000008a80e5000
[0000000000000058] pgd=0000000000000000, p4d=0000000000000000,
pud=0000000000000000
Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Skip md ftrace buffer dump for: 0x1609e0
...
pc : swap_duplicate+0x44/0x164
lr : copy_page_range+0x508/0x1e78
sp : ffffffc0f2a699e0
x29: ffffffc0f2a699e0 x28: ffffff8a5b28d388 x27: ffffff8b06603388
x26: ffffffdf7291fe70 x25: 0000000000000006 x24: 0000000000100073
x23: 00000000002d2d2f x22: 0000000000000008 x21: 0000000000000000
x20: 00000000002d2d2f x19: 18000000002d2d2f x18: ffffffdf726faec0
x17: 0000000000000000 x16: 0010000000000001 x15: 0040000000000001
x14: 0400000000000001 x13: ff7ffffffffffb7f x12: ffeffffffffffbff
x11: ffffff8a5c7e1898 x10: 0000000000000018 x9 : 0000000000000006
x8 : 1800000000000000 x7 : 0000000000000000 x6 : ffffff8057c01f10
x5 : 000000000000a318 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000006daf200000 x1 : 0000000000000001 x0 : 18000000002d2d2f
Call trace:
swap_duplicate+0x44/0x164
copy_page_range+0x508/0x1e78
copy_process+0x1278/0x21cc
kernel_clone+0x90/0x438
__arm64_sys_clone+0x5c/0x8c
invoke_syscall+0x58/0x110
do_el0_svc+0x8c/0xe0
el0_svc+0x38/0x9c
el0t_64_sync_handler+0x44/0xec
el0t_64_sync+0x1a8/0x1ac
Code: 9139c35a 71006f3f 54000568 f8797b55 (f9402ea8)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs
The patch seems to only provide a workaround, but there are no more
effective software solutions to handle the bit flips problem. This path
will change the issue from a system crash to a process exception, thereby
reducing the impact on the entire machine.
akpm: this is probably a kernel bug, but this patch keeps the system
running and doesn't reduce that bug's debuggability.
Link: https://lkml.kernel.org/r/e223b0e6ba2f4924984b1917cc717bd5@honor.com
Signed-off-by: gao xu <gaoxu2@honor.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is a code error that will cause the swap entry allocator to reclaim
and check the whole cluster with an unexpected tail offset instead of the
part that needs to be reclaimed. This may cause corruption of the swap
map, so fix it.
Link: https://lkml.kernel.org/r/20250130115131.37777-1-ryncsn@gmail.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chris Li <chrisl@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The slot cache for freeing path is mostly for reducing the overhead of
si->lock. As we have basically eliminated the si->lock usage for freeing
path, it can be removed.
This helps simplify the code, and avoids swap entries from being hold in
cache upon freeing. The delayed freeing of entries have been causing
trouble for further optimizations for zswap [1] and in theory will also
cause more fragmentation, and extra overhead.
Test with build linux kernel showed both performance and fragmentation is
better without the cache:
tiem make -j96 / 768M memcg, 4K pages, 10G ZRAM, avg of 4 test run::
Before:
Sys time: 36047.78, Real time: 472.43
After: (-7.6% sys time, -7.3% real time)
Sys time: 33314.76, Real time: 437.67
time make -j96 / 1152M memcg, 64K mTHP, 10G ZRAM, avg of 4 test run:
Before:
Sys time: 46859.04, Real time: 562.63
hugepages-64kB/stats/swpout: 1783392
hugepages-64kB/stats/swpout_fallback: 240875
After: (-23.3% sys time, -21.3% real time)
Sys time: 35958.87, Real time: 442.69
hugepages-64kB/stats/swpout: 1866267
hugepages-64kB/stats/swpout_fallback: 158330
Sequential SWAP should be also slightly faster, tests didn't show a
measurable difference though, at least no regression:
Swapin 4G zero page on ZRAM (time in us):
Before (avg. 1923756)
1912391 1927023 1927957 1916527 1918263 1914284 1934753 1940813 1921791
After (avg. 1922290):
1919101 1925743 1916810 1917007 1923930 1935152 1917403 1923549 1921913
Link: https://lore.kernel.org/all/CAMgjq7ACohT_uerSz8E_994ZZCv709Zor+43hdmesW_59W1BWw@mail.gmail.com/[1]
Link: https://lkml.kernel.org/r/20250113175732.48099-14-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Non-rotational devices (SSD / ZRAM) can tolerate fragmentation, so the
goal of the SWAP allocator is to avoid contention for clusters. It uses a
per-CPU cluster design, and each CPU will use a different cluster as much
as possible.
However, HDDs are very sensitive to fragmentation, contention is trivial
in comparison. Therefore, we use one global cluster instead. This
ensures that each order will be written to the same cluster as much as
possible, which helps make the I/O more continuous.
This ensures that the performance of the cluster allocator is as good as
that of the old allocator. Tests after this commit compared to those
before this series:
Tested using 'make -j32' with tinyconfig, a 1G memcg limit, and HDD swap:
make -j32 with tinyconfig, using 1G memcg limit and HDD swap:
Before this series:
114.44user 29.11system 39:42.90elapsed 6%CPU (0avgtext+0avgdata 157284maxresident)k
2901232inputs+0outputs (238877major+4227640minor)pagefaults
After this commit:
113.90user 23.81system 38:11.77elapsed 6%CPU (0avgtext+0avgdata 157260maxresident)k
2548728inputs+0outputs (235471major+4238110minor)pagefaults
[ryncsn@gmail.com: check kmalloc() return in setup_clusters]
Link: https://lkml.kernel.org/r/CAMgjq7Au+o04ckHyT=iU-wVx9az=t0B-ZiC5E0bDqNrAtNOP-g@mail.gmail.com
Link: https://lkml.kernel.org/r/20250113175732.48099-13-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's a common operation to retrieve the cluster info from offset,
introduce a helper for this.
Link: https://lkml.kernel.org/r/20250113175732.48099-12-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Instead of using a returning argument, we can simply store the next
cluster offset to the fixed percpu location, which reduce the stack usage
and simplify the function:
Object size:
./scripts/bloat-o-meter mm/swapfile.o mm/swapfile.o.new
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-271 (-271)
Function old new delta
get_swap_pages 2847 2733 -114
alloc_swap_scan_cluster 894 737 -157
Total: Before=30833, After=30562, chg -0.88%
Stack usage:
Before:
swapfile.c:1190:5:get_swap_pages 240 static
After:
swapfile.c:1185:5:get_swap_pages 216 static
Link: https://lkml.kernel.org/r/20250113175732.48099-11-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, swap locking is mainly composed of two locks: the cluster lock
(ci->lock) and the device lock (si->lock).
The cluster lock is much more fine-grained, so it is best to use ci->lock
instead of si->lock as much as possible.
We have cleaned up other hard dependencies on si->lock. Following the new
cluster allocator design, most operations don't need to touch si->lock at
all. In practice, we only need to take si->lock when moving clusters
between lists.
To achieve this, this commit reworks the locking pattern of all si->lock
and ci->lock users, eliminates all usage of ci->lock inside si->lock, and
introduces a new design to avoid touching si->lock unless needed.
For minimal contention and easier understanding of the system, two ideas
are introduced with the corresponding helpers: isolation and relocation.
- Clusters will be `isolated` from the list when iterating the list
to search for an allocatable cluster.
This ensures other CPUs won't walk into the same cluster easily,
and it releases si->lock after acquiring ci->lock, providing the
only place that handles the inversion of two locks, and avoids
contention.
Iterating the cluster list almost always moves the cluster
(free -> nonfull, nonfull -> frag, frag -> frag tail), but it
doesn't know where the cluster should be moved to until scanning
is done. So keeping the cluster off-list is a good option with
low overhead.
The off-list time window of a cluster is also minimal. In the worst
case, one CPU will return the cluster after scanning the 512 entries
on it, which we used to busy wait with a spin lock.
This is done with the new helper `isolate_lock_cluster`.
- Clusters will be `relocated` after allocation or freeing, according
to their usage count and status.
Allocations no longer hold si->lock now, and may drop ci->lock for
reclaim, so the cluster could be moved to any location while no lock
is held. Besides, isolation clears all flags when it takes the
cluster off the list (the flags must be in sync with the list status,
so cluster users don't need to touch si->lock for checking its list
status). So the cluster has to be relocated to the right list
according to its usage after allocation or freeing.
Relocation is optional, if the cluster flags indicate it's already
on the right list, it will skip touching the list or si->lock.
This is done with `relocate_cluster` after allocation or with
`[partial_]free_cluster` after freeing.
This handled usage of all kinds of clusters in a clean way.
Scanning and allocation by iterating the cluster list is handled by
"isolate - <scan / allocate> - relocate".
Scanning and allocation of per-CPU clusters will only involve
"<scan / allocate> - relocate", as it knows which cluster to lock
and use.
Freeing will only involve "relocate".
Each CPU will keep using its per-CPU cluster until the 512 entries
are all consumed. Freeing also has to free 512 entries to trigger
cluster movement in the best case, so si->lock is rarely touched.
Testing with building the Linux kernel with defconfig showed huge
improvement:
tiem make -j96 / 768M memcg, 4K pages, 10G ZRAM, on Intel 8255C:
Before:
Sys time: 73578.30, Real time: 864.05
After: (-50.7% sys time, -44.8% real time)
Sys time: 36227.49, Real time: 476.66
time make -j96 / 1152M memcg, 64K mTHP, 10G ZRAM, on Intel 8255C:
(avg of 4 test run)
Before:
Sys time: 74044.85, Real time: 846.51
hugepages-64kB/stats/swpout: 1735216
hugepages-64kB/stats/swpout_fallback: 430333
After: (-40.4% sys time, -37.1% real time)
Sys time: 44160.56, Real time: 532.07
hugepages-64kB/stats/swpout: 1786288
hugepages-64kB/stats/swpout_fallback: 243384
time make -j32 / 512M memcg, 4K pages, 5G ZRAM, on AMD 7K62:
Before:
Sys time: 8098.21, Real time: 401.3
After: (-22.6% sys time, -12.8% real time )
Sys time: 6265.02, Real time: 349.83
The allocation success rate also slightly improved as we sanitized the
usage of clusters with new defined helpers, previously dropping
si->lock or ci->lock during scan will cause cluster order shuffle.
Link: https://lkml.kernel.org/r/20250113175732.48099-10-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, we are only using flags to indicate which list the cluster is
on. Using one bit for each list type might be a waste, as the list type
grows, we will consume too many bits. Additionally, the current mixed
usage of '&' and '==' is a bit confusing.
Make it clean by using an enum to define all possible cluster statuses.
Only an off-list cluster will have the NONE (0) flag. And use a wrapper
to annotate and sanitize all flag settings and list movements.
Link: https://lkml.kernel.org/r/20250113175732.48099-9-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The flag SWP_SCANNING was used as an indicator of whether a device is
being scanned for allocation, and prevents swapoff. Combined with
SWP_WRITEOK, they work as a set of barriers for a clean swapoff:
1. Swapoff clears SWP_WRITEOK, allocation requests will see
~SWP_WRITEOK and abort as it's serialized by si->lock.
2. Swapoff unuses all allocated entries.
3. Swapoff waits for SWP_SCANNING flag to be cleared, so ongoing
allocations will stop, preventing UAF.
4. Now swapoff can free everything safely.
This will make the allocation path have a hard dependency on si->lock.
Allocation always have to acquire si->lock first for setting SWP_SCANNING
and checking SWP_WRITEOK.
This commit removes this flag, and just uses the existing per-CPU refcount
instead to prevent UAF in step 3, which serves well for such usage without
dependency on si->lock, and scales very well too. Just hold a reference
during the whole scan and allocation process. Swapoff will kill and wait
for the counter.
And for preventing any allocation from happening after step 1 so the unuse
in step 2 can ensure all slots are free, swapoff will acquire the ci->lock
of each cluster one by one to ensure all allocations see ~SWP_WRITEOK and
abort.
This way these dependences on si->lock are gone. And worth noting we
can't kill the refcount as the first step for swapoff as the unuse process
have to acquire the refcount.
Link: https://lkml.kernel.org/r/20250113175732.48099-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When the swap device is full (inuse_pages == pages), it should be removed
from the allocation available plist. If any slot is freed, the swap
device should be added back to the plist. Additionally, during swapon or
swapoff, the swap device is forcefully added or removed.
Currently, the condition (inuse_pages == pages) is checked after every
counter update, then remove or add the device accordingly. This is
serialized by si->lock.
This commit decouples it from the protection of si->lock and reworked
plist removal and adding, making it possible to get rid of the hard
dependency on si->lock in allocation path in later commits.
To achieve this, simply using another lock is not an optimal approach, as
the overhead is observable for a hot counter, and may cause complex
locking issues. Thus, this commit manages to make it a lock-free atomic
operation, by embedding the plist state into the second highest bit of the
atomic counter.
Simply making the counter an atomic will not work, if the update and plist
status check are not performed atomically, we may miss an addition or
removal. With the embedded info we can update the counter and check the
plist status with single atomic operations, and avoid any extra overheads:
If the counter is full (inuse_pages == pages) and the off-list bit is
unset, we attempt to remove it from the plist. If the counter is not full
(inuse_pages != pages) and the off-list bit is set, we attempt to add it
to the plist. Removing, adding and bit update is serialized with a lock,
which is a cold path. Ordinary counter updates will be lock-free.
Link: https://lkml.kernel.org/r/20250113175732.48099-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove highest_bit and lowest_bit. After the HDD allocation path has been
removed, the only purpose of these two fields is to determine whether the
device is full or not, which can instead be determined by checking the
inuse_pages.
Link: https://lkml.kernel.org/r/20250113175732.48099-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Cluster lock (ci->lock) was introduced to reduce contention for certain
operations. Using cluster lock for HDD is not helpful as HDD have a poor
performance, so locking isn't the bottleneck. But having different set of
locks for HDD / non-HDD prevents further rework of device lock (si->lock).
This commit just changed all lock_cluster_or_swap_info to lock_cluster,
which is a safe and straight conversion since cluster info is always
allocated now, also removed all cluster_info related checks.
Link: https://lkml.kernel.org/r/20250113175732.48099-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We are currently using different swap allocation algorithm for HDD and
non-HDD. This leads to the existence of a different set of locks, and the
code path is heavily bloated, causing difficulties for further
optimization and maintenance.
This commit removes all HDD swap allocation and related dead code, and
uses the cluster allocation algorithm instead.
The performance may drop temporarily, but this should be negligible: The
main advantage of the legacy HDD allocation algorithm is that it tends to
use continuous slots, but swap device gets fragmented quickly anyway, and
the attempt to use continuous slots will fail easily.
This commit also enables mTHP swap on HDD, which is expected to be
beneficial, and following commits will adapt and optimize the cluster
allocator for HDD.
Link: https://lkml.kernel.org/r/20250113175732.48099-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Suggested-by: "Huang, Ying" <ying.huang@linux.alibaba.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The name of the function is confusing, and the code is much easier to
follow after folding, also rename the confusing naming "p" to more
meaningful "si".
Link: https://lkml.kernel.org/r/20250113175732.48099-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: rework of swap allocator locks", v4.
This series greatly improved swap performance by reworking the locking
design and simplify a lot of code path. Test showed a up to 400%
vm-scalability improvement with pmem as SWAP, and up to 37% reduce of
kernel compile real time with ZRAM as SWAP (up to 60% improvement in
system time).
This is part of the new swap allocator discussed during the "Swap
Abstraction" discussion at LSF/MM 2024, and "mTHP and swap allocator"
discussion at LPC 2024.
This is a follow up of previous swap cluster allocator series:
https://lore.kernel.org/linux-mm/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org/
Also enables further optimizations which will come later.
Previous series introduced a fully cluster based allocator, this series
completely get rid of the old allocator and makes the new allocator avoid
touching the si->lock unless needed. This bring huge performance gain and
get rid of slot cache for freeing path.
Currently, swap locking is mainly composed of two locks, cluster lock
(ci->lock) and device lock (si->lock). The device lock is widely used to
protect many things, causing it to be the main bottleneck for SWAP.
Cluster lock is much more fine-grained, so it will be best to use ci->lock
instead of si->lock as much as possible.
`perf lock' indicates this issue clearly. Doing linux kernel build using
tmpfs and ZRAM with limited memory (make -j64 with 1G memcg and 4k pages),
result of "perf lock contention -ab sleep 3" shows:
contended total wait max wait avg wait type caller
34948 53.63 s 7.11 ms 1.53 ms spinlock free_swap_and_cache_nr+0x350
16569 40.05 s 6.45 ms 2.42 ms spinlock get_swap_pages+0x231
11191 28.41 s 7.03 ms 2.54 ms spinlock swapcache_free_entries+0x59
4147 22.78 s 122.66 ms 5.49 ms spinlock page_vma_mapped_walk+0x6f3
4595 7.17 s 6.79 ms 1.56 ms spinlock swapcache_free_entries+0x59
406027 2.74 s 2.59 ms 6.74 us spinlock list_lru_add+0x39
...snip...
The top 5 caller are all users of si->lock, total wait time sums to
several minutes in the 3 seconds time window.
Following the new allocator design, many operation doesn't need to touch
si->lock at all. We only need to take si->lock when doing operations
across multiple clusters (changing the cluster list). So ideally
allocator should always take ci->lock first, then take si->lock only if
needed. But due to historical reasons, ci->lock is used inside si->lock
critical section, causing lock inversion if we simply try to acquire
si->lock after acquiring ci->lock.
This series audited all si->lock usage, clean up legacy codes, eliminate
usage of si->lock as much as possible by introducing new designs based on
the new cluster allocator.
Old HDD allocation codes are removed, cluster allocator is adapted with
small changes for HDD usage, test is looking OK.
And this also removed slot cache for freeing path. The performance is
even better without it now, and this enables other clean up and
optimizations as discussed before:
https://lore.kernel.org/all/CAMgjq7ACohT_uerSz8E_994ZZCv709Zor+43hdmesW_59W1BWw@mail.gmail.com/
After this series, lock contention on si->lock is nearly unobservable
with `perf lock` with the same test above:
contended total wait max wait avg wait type caller
... snip ...
52 127.12 us 3.82 us 2.44 us spinlock move_cluster+0x2c
56 120.77 us 12.41 us 2.16 us spinlock move_cluster+0x2c
... snip ...
10 21.96 us 2.78 us 2.20 us spinlock isolate_lock_cluster+0x20
... snip ...
9 19.27 us 2.70 us 2.14 us spinlock move_cluster+0x2c
... snip ...
5 11.07 us 2.70 us 2.21 us spinlock isolate_lock_cluster+0x20
`move_cluster' and `isolate_lock_cluster' (two new introduced helper) are
basically the only users of si->lock now, performance gain is huge, and
LOC is reduced.
Tests Results:
vm-scalability
==============
Running `usemem --init-time -O -y -x -R -31 1G` from vm-scalability in a
12G memory cgroup using simulated pmem as SWAP backend (32G pmem, 32
CPUs).
Using 4K folio by default, 64k mTHP and sequential access (!-R) results
are also provided. 6 test runs for each case, Total Throughput:
Test Before (KB/s) (stdev) After (KB/s) (stdev) Delta
---------------------------------------------------------------------------
Random (4K): 69937.11 (16449.77) 369816.17 (24476.68) +428.78%
Random (64k): 123442.83 (13207.51) 216379.00 (25024.83) +75.28%
Sequential (4K): 6313909.83 (148856.12) 6419860.66 (183563.38) +1.7%
Sequential access will cause lower stress for the allocator so the gain is
limited, but with random access (which is much closer to real workloads)
the performance gain is huge.
Build kernel with defconfig on tmpfs with ZRAM
==============================================
Below results shows a test matrix using different memory cgroup limit and
job numbets, and scaled up progressive for a intuitive result. Done on a
48c96t system.
6 test run for each case, it can be seen clearly that as concurrent job
number goes higher the performance gain is higher, but even -j6 is showing
slight improvement.
make -j<NR> | System Time (seconds) | Total Time (seconds)
(NR / Mem / ZRAM) | (Before / After / Delta) | (Before / After / Delta)
With 4k pages only:
6 / 192M / 3G | 1533 / 1522 / -0.7% | 1420 / 1414 / -0.3%
12 / 256M / 4G | 2275 / 2226 / -2.2% | 758 / 742 / -2.1%
24 / 384M / 5G | 3596 / 3154 / -12.3% | 476 / 422 / -11.3%
48 / 768M / 7G | 8159 / 3605 / -55.8% | 330 / 221 / -33.0%
96 / 1.5G / 10G | 18541 / 6462 / -65.1% | 283 / 180 / -36.4%
With 64k mTHP:
24 / 512M / 5G | 3585 / 3469 / -3.2% | 293 / 290 / -0.1%
48 / 1G / 7G | 8173 / 3607 / -55.9% | 251 / 158 / -37.0%
96 / 2G / 10G | 16305 / 7791 / -52.2% | 226 / 144 / -36.3%
The fragmentation are reduced too:
With: make -j96 / 1152M memcg, 64K mTHP:
(avg of 4 test run)
Before:
hugepages-64kB/stats/swpout: 1696184
hugepages-64kB/stats/swpout_fallback: 414318
After: (-63.2% mTHP swapout failure)
hugepages-64kB/stats/swpout: 1866267
hugepages-64kB/stats/swpout_fallback: 158330
There is a up to 65.1% improvement in sys time for build kernel test,
and lower fragmentation rate.
Build kernel with tinyconfig on tmpfs with HDD as swap:
=======================================================
This test is similar to above, but HDD test is very noisy and slow, the
deviation is huge, so just use tinyconfig instead and take the median test
result of 3 test run, which looks OK:
Before this series:
114.44user 29.11system 39:42.90elapsed 6%CPU
2901232inputs+0outputs (238877major+4227640minor)pagefaults
After this commit:
113.90user 23.81system 38:11.77elapsed 6%CPU
2548728inputs+0outputs (235471major+4238110minor)pagefaults
Single thread SWAP:
===================
Sequential SWAP should also be slightly faster as we removed a lot of
unnecessary parts. Test using micro benchmark for swapout/in 4G
zero memory using ZRAM, 10 test runs:
Swapout Before (avg. 3359304):
3353796 3358551 3371305 3356043 3367524 3355303 3355924 3354513 3360776
Swapin Before (avg. 1928698):
1920283 1927183 1934105 1921373 1926562 1938261 1927726 1928636 1934155
Swapout After (avg. 3347511, -0.4%):
3337863 3347948 3355235 3339081 3333134 3353006 3354917 3346055 3360359
Swapin After (avg. 1922290, -0.3%):
1919101 1925743 1916810 1917007 1923930 1935152 1917403 1923549 1921913
The gain is limited at noise level but seems slightly better.
This patch (of 13):
Direct reclaim can skip the whole folio after reclaimed a set of folio
based slots. Also simplify the code for allocation, reduce indention.
Link: https://lkml.kernel.org/r/20250113175732.48099-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250113175732.48099-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org> (Google)
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are two flags used to synchronize allocation and scanning with
swapoff: SWP_WRITEOK and SWP_SCANNING.
SWP_WRITEOK: Swapoff will first unset this flag, at this point any further
swap allocation or scanning on this device should just abort so no more
new entries will be referencing this device. Swapoff will then unuse all
existing swap entries.
SWP_SCANNING: This flag is set when device is being scanned. Swapoff will
wait for all scanner to stop before the final release of the swap device
structures to avoid UAF. Note this flag is the highest used bit of
si->flags so it could be added up arithmetically, if there are multiple
scanner.
commit 5f843a9a3a1e ("mm: swap: separate SSD allocation from
scan_swap_map_slots()") ignored SWP_SCANNING and SWP_WRITEOK flags while
separating cluster allocation path from the old allocation path. Add the
flags back to fix swapoff race. The race is hard to trigger as si->lock
prevents most parallel operations, but si->lock could be dropped for
reclaim or discard. This issue is found during code review.
This commit fixes this problem. For SWP_SCANNING, Just like before, set
the flag before scan and remove it afterwards.
For SWP_WRITEOK, there are several places where si->lock could be dropped,
it will be error-prone and make the code hard to follow if we try to cover
these places one by one. So just do one check before the real allocation,
which is also very similar like before. With new cluster allocator it may
waste a bit of time iterating the clusters but won't take long, and
swapoff is not performance sensitive.
Link: https://lkml.kernel.org/r/20241112083414.78174-1-ryncsn@gmail.com
Fixes: 5f843a9a3a1e ("mm: swap: separate SSD allocation from scan_swap_map_slots()")
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Closes: https://lore.kernel.org/linux-mm/87a5es3f1f.fsf@yhuang6-desk2.ccr.corp.intel.com/
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
syzbot and Daan report a NULL pointer crash in the new full swap cluster
reclaim work:
> Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
> KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
> CPU: 1 UID: 0 PID: 51 Comm: kworker/1:1 Not tainted 6.12.0-rc6-syzkaller #0
> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
> Workqueue: events swap_reclaim_work
> RIP: 0010:__list_del_entry_valid_or_report+0x20/0x1c0 lib/list_debug.c:49
> Code: 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 48 89 fe 48 83 c7 08 48 83 ec 18 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 19 01 00 00 48 89 f2 48 8b 4e 08 48 b8 00 00 00
> RSP: 0018:ffffc90000bb7c30 EFLAGS: 00010202
> RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff88807b9ae078
> RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000008
> RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
> R10: 0000000000000001 R11: 000000000000004f R12: dffffc0000000000
> R13: ffffffffffffffb8 R14: ffff88807b9ae000 R15: ffffc90003af1000
> FS: 0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00007fffaca68fb8 CR3: 00000000791c8000 CR4: 00000000003526f0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> Call Trace:
> <TASK>
> __list_del_entry_valid include/linux/list.h:124 [inline]
> __list_del_entry include/linux/list.h:215 [inline]
> list_move_tail include/linux/list.h:310 [inline]
> swap_reclaim_full_clusters+0x109/0x460 mm/swapfile.c:748
> swap_reclaim_work+0x2e/0x40 mm/swapfile.c:779
The syzbot console output indicates a virtual environment where swapfile
is on a rotational device. In this case, clusters aren't actually used,
and si->full_clusters is not initialized. Daan's report is from qemu, so
likely rotational too.
Make sure to only schedule the cluster reclaim work when clusters are
actually in use.
Link: https://lkml.kernel.org/r/20241107142335.GB1172372@cmpxchg.org
Link: https://lore.kernel.org/lkml/672ac50b.050a0220.2edce.1517.GAE@google.com/
Link: https://github.com/systemd/systemd/issues/35044
Fixes: 5168a68eb78f ("mm, swap: avoid over reclaim of full clusters")
Reported-by: syzbot+078be8bfa863cb9e0c6b@syzkaller.appspotmail.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When running low on usable slots, cluster allocator will try to reclaim
the full clusters aggressively to reclaim HAS_CACHE slots. This
guarantees that as long as there are any usable slots, HAS_CACHE or not,
the swap device will be usable and workload won't go OOM early.
Before the cluster allocator, swap allocator fails easily if device is
filled up with reclaimable HAS_CACHE slots. Which can be easily
reproduced with following simple program:
#include <stdio.h>
#include <string.h>
#include <linux/mman.h>
#include <sys/mman.h>
#define SIZE 8192UL * 1024UL * 1024UL
int main(int argc, char **argv) {
long tmp;
char *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
memset(p, 0, SIZE);
madvise(p, SIZE, MADV_PAGEOUT);
for (unsigned long i = 0; i < SIZE; ++i)
tmp += p[i];
getchar(); /* Pause */
return 0;
}
Setup an 8G non ramdisk swap, the first run of the program will swapout 8G
ram successfully. But run same program again after the first run paused,
the second run can't swapout all 8G memory as now half of the swap device
is pinned by HAS_CACHE. There was a random scan in the old allocator that
may reclaim part of the HAS_CACHE by luck, but it's unreliable.
The new allocator's added reclaim of full clusters when device is low on
usable slots. But when multiple CPUs are seeing the device is low on
usable slots at the same time, they ran into a thundering herd problem.
This is an observable problem on large machine with mass parallel
workload, as full cluster reclaim is slower on large swap device and
higher number of CPUs will also make things worse.
Testing using a 128G ZRAM on a 48c96t system. When the swap device is
very close to full (eg. 124G / 128G), running build linux kernel with
make -j96 in a 1G memory cgroup will hung (not a softlockup though)
spinning in full cluster reclaim for about ~5min before go OOM.
To solve this, split the full reclaim into two parts:
- Instead of do a synchronous aggressively reclaim when device is low,
do only one aggressively reclaim when device is strictly full with a
kworker. This still ensures in worst case the device won't be unusable
because of HAS_CACHE slots.
- To avoid allocation (especially higher order) suffer from HAS_CACHE
filling up clusters and kworker not responsive enough, do one synchronous
scan every time the free list is drained, and only scan one cluster. This
is kind of similar to the random reclaim before, keeps the full clusters
rotated and has a minimal latency. This should provide a fair reclaim
strategy suitable for most workloads.
Link: https://lkml.kernel.org/r/20241022175512.10398-1-ryncsn@gmail.com
Fixes: 2cacbdfdee65 ("mm: swap: add a adaptive full cluster cache reclaim")
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|