Age | Commit message (Collapse) | Author |
|
commit e48322abb061d75096fe52d71886b237e7ae7bfb upstream.
When the system boots up, in the dmesg logs we can see the memory
statistics along with total reserved as below. Memory: 458840k/458840k
available, 65448k reserved, 0K highmem
When CMA is enabled, still the total reserved memory remains the same.
However, the CMA memory is not considered as reserved. But, when we see
/proc/meminfo, the CMA memory is part of free memory. This creates
confusion. This patch corrects the problem by properly subtracting the
CMA reserved memory from the total reserved memory in dmesg logs.
Below is the dmesg snapshot from an arm based device with 512MB RAM and
12MB single CMA region.
Before this change:
Memory: 458840k/458840k available, 65448k reserved, 0K highmem
After this change:
Memory: 458840k/458840k available, 53160k reserved, 12288k cma-reserved, 0K highmem
Signed-off-by: Pintu Kumar <pintu.k@samsung.com>
Signed-off-by: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 75dddef32514f7aa58930bde6a1263253bc3d4ba upstream.
The RDMA subsystem can generate several thousand of these messages per
second eventually leading to a kernel crash. Ratelimit these messages
to prevent this crash.
Doug said:
"I've been carrying a version of this for several kernel versions. I
don't remember when they started, but we have one (and only one) class
of machines: Dell PE R730xd, that generate these errors. When it
happens, without a rate limit, we get rcu timeouts and kernel oopses.
With the rate limit, we just get a lot of annoying kernel messages but
the machine continues on, recovers, and eventually the memory
operations all succeed"
And:
"> Well... why are all these EBUSY's occurring? It sounds inefficient
> (at least) but if it is expected, normal and unavoidable then
> perhaps we should just remove that message altogether?
I don't have an answer to that question. To be honest, I haven't
looked real hard. We never had this at all, then it started out of the
blue, but only on our Dell 730xd machines (and it hits all of them),
but no other classes or brands of machines. And we have our 730xd
machines loaded up with different brands and models of cards (for
instance one dedicated to mlx4 hardware, one for qib, one for mlx5, an
ocrdma/cxgb4 combo, etc), so the fact that it hit all of the machines
meant it wasn't tied to any particular brand/model of RDMA hardware.
To me, it always smelled of a hardware oddity specific to maybe the
CPUs or mainboard chipsets in these machines, so given that I'm not an
mm expert anyway, I never chased it down.
A few other relevant details: it showed up somewhere around 4.8/4.9 or
thereabouts. It never happened before, but the prinkt has been there
since the 3.18 days, so possibly the test to trigger this message was
changed, or something else in the allocator changed such that the
situation started happening on these machines?
And, like I said, it is specific to our 730xd machines (but they are
all identical, so that could mean it's something like their specific
ram configuration is causing the allocator to hit this on these
machine but not on other machines in the cluster, I don't want to say
it's necessarily the model of chipset or CPU, there are other bits of
identicalness between these machines)"
Link: http://lkml.kernel.org/r/499c0f6cc10d6eb829a67f2a4d75b4228a9b356e.1501695897.git.jtoppins@redhat.com
Signed-off-by: Jonathan Toppins <jtoppins@redhat.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Tested-by: Doug Ledford <dledford@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f073bdc51771f5a5c7a8d1191bfc3ae371d44de7 ]
The VM_BUG_ON() check in move_freepages() checks whether the node id of
a page matches the node id of its zone. However, it does this before
having checked whether the struct page pointer refers to a valid struct
page to begin with. This is guaranteed in most cases, but may not be
the case if CONFIG_HOLES_IN_ZONE=y.
So reorder the VM_BUG_ON() with the pfn_valid_within() check.
Link: http://lkml.kernel.org/r/1481706707-6211-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Robert Richter <rrichter@cavium.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit adb1fe9ae2ee6ef6bc10f3d5a588020e7664dfa7 upstream.
Linus suggested we try to remove some of the low-hanging fruit related
to kernel address exposure in dmesg. The only leaks I see on my local
system are:
Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000)
Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000)
Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000)
Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000)
Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000)
Linus says:
"I suspect we should just remove [the addresses in the 'Freeing'
messages]. I'm sure they are useful in theory, but I suspect they
were more useful back when the whole "free init memory" was
originally done.
These days, if we have a use-after-free, I suspect the init-mem
situation is the easiest situation by far. Compared to all the dynamic
allocations which are much more likely to show it anyway. So having
debug output for that case is likely not all that productive."
With this patch the freeing messages now look like this:
Freeing SMP alternatives memory: 32K
Freeing initrd memory: 10588K
Freeing unused kernel memory: 3592K
Freeing unused kernel memory: 1352K
Freeing unused kernel memory: 632K
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 90cae1fe1c3540f791d5b8e025985fa5e699b2bb upstream.
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone. ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture. Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list. The core of the issue is:
if (i == ZONE_MOVABLE)
continue;
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero. This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].
Thie is low priority. To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum. As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.
I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel. This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (d91749c1dda71) and
powerpc being the odd architecture which initialises max_zone_pfn[] to
~0ul instead of 0 caused all of system memory to be placed into
ZONE_DEVICE at boot, followed a panic since device memory cannot be used
for kernel allocations. I've already submitted a patch to fix the
powerpc specific bits, but I figured this should be fixed too.
Link: http://lkml.kernel.org/r/1462435033-15601-1-git-send-email-oohall@gmail.com
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d9dddbf556674bf125ecd925b24e43a5cf2a568a ]
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.
Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
[ Upstream commit d00181b96eb86c914cb327d1de974a1b71366e1b ]
Let's try to be consistent about data type of page order.
[sfr@canb.auug.org.au: fix build (type of pageblock_order)]
[hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
[ Upstream commit d70ddd7a5d9aa335f9b4b0c3d879e1e70ee1e4e3 ]
__free_pages_bootmem prepares a page for release to the buddy allocator
and assumes that the struct page is initialised. Parallel initialisation
of struct pages defers initialisation and __free_pages_bootmem can be
called for struct pages that cannot yet map struct page to PFN. This
patch passes PFN to __free_pages_bootmem with no other functional change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
commit 99592d598eca62bdbbf62b59941c189176dfc614 upstream.
When studying page stealing, I noticed some weird looking decisions in
try_to_steal_freepages(). The first I assume is a bug (Patch 1), the
following two patches were driven by evaluation.
Testing was done with stress-highalloc of mmtests, using the
mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how
often page stealing occurs for individual migratetypes, and what
migratetypes are used for fallbacks. Arguably, the worst case of page
stealing is when UNMOVABLE allocation steals from MOVABLE pageblock.
RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal,
so the goal is to minimize these two cases.
The evaluation of v2 wasn't always clear win and Joonsoo questioned the
results. Here I used different baseline which includes RFC compaction
improvements from [1]. I found that the compaction improvements reduce
variability of stress-highalloc, so there's less noise in the data.
First, let's look at stress-highalloc configured to do sync compaction,
and how these patches reduce page stealing events during the test. First
column is after fresh reboot, other two are reiterations of test without
reboot. That was all accumulater over 5 re-iterations (so the benchmark
was run 5x3 times with 5 fresh restarts).
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-nothp-1 5-nothp-2 5-nothp-3
Page alloc extfrag event 10264225 8702233 10244125
Extfrag fragmenting 10263271 8701552 10243473
Extfrag fragmenting for unmovable 13595 17616 15960
Extfrag fragmenting unmovable placed with movable 7989 12193 8447
Extfrag fragmenting for reclaimable 658 1840 1817
Extfrag fragmenting reclaimable placed with movable 558 1677 1679
Extfrag fragmenting for movable 10249018 8682096 10225696
With Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-nothp-1 6-nothp-2 6-nothp-3
Page alloc extfrag event 11834954 9877523 9774860
Extfrag fragmenting 11833993 9876880 9774245
Extfrag fragmenting for unmovable 7342 16129 11712
Extfrag fragmenting unmovable placed with movable 4191 10547 6270
Extfrag fragmenting for reclaimable 373 1130 923
Extfrag fragmenting reclaimable placed with movable 302 906 738
Extfrag fragmenting for movable 11826278 9859621 9761610
With Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-nothp-1 7-nothp-2 7-nothp-3
Page alloc extfrag event 4725990 3668793 3807436
Extfrag fragmenting 4725104 3668252 3806898
Extfrag fragmenting for unmovable 6678 7974 7281
Extfrag fragmenting unmovable placed with movable 2051 3829 4017
Extfrag fragmenting for reclaimable 429 1208 1278
Extfrag fragmenting reclaimable placed with movable 369 976 1034
Extfrag fragmenting for movable 4717997 3659070 3798339
With Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-nothp-1 8-nothp-2 8-nothp-3
Page alloc extfrag event 5016183 4700142 3850633
Extfrag fragmenting 5015325 4699613 3850072
Extfrag fragmenting for unmovable 1312 3154 3088
Extfrag fragmenting unmovable placed with movable 1115 2777 2714
Extfrag fragmenting for reclaimable 437 1193 1097
Extfrag fragmenting reclaimable placed with movable 330 969 879
Extfrag fragmenting for movable 5013576 4695266 3845887
In v2 we've seen apparent regression with Patch 1 for unmovable events,
this is now gone, suggesting it was indeed noise. Here, each patch
improves the situation for unmovable events. Reclaimable is improved by
patch 1 and then either the same modulo noise, or perhaps sligtly worse -
a small price for unmovable improvements, IMHO. The number of movable
allocations falling back to other migratetypes is most noisy, but it's
reduced to half at Patch 2 nevertheless. These are least critical as
compaction can move them around.
If we look at success rates, the patches don't affect them, that didn't change.
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-nothp-1 5-nothp-2 5-nothp-3
Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%)
Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%)
Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%)
Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%)
Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%)
Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%)
Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%)
Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%)
Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%)
Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-nothp-1 6-nothp-2 6-nothp-3
Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%)
Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%)
Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%)
Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%)
Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%)
Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%)
Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%)
Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%)
Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%)
Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-nothp-1 7-nothp-2 7-nothp-3
Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%)
Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%)
Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%)
Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%)
Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%)
Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%)
Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%)
Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%)
Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%)
Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-nothp-1 8-nothp-2 8-nothp-3
Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%)
Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%)
Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%)
Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%)
Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%)
Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%)
Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%)
Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%)
Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%)
While there's no improvement here, I consider reduced fragmentation events
to be worth on its own. Patch 2 also seems to reduce scanning for free
pages, and migrations in compaction, suggesting it has somewhat less work
to do:
Patch 1:
Compaction stalls 4153 3959 3978
Compaction success 1523 1441 1446
Compaction failures 2630 2517 2531
Page migrate success 4600827 4943120 5104348
Page migrate failure 19763 16656 17806
Compaction pages isolated 9597640 10305617 10653541
Compaction migrate scanned 77828948 86533283 87137064
Compaction free scanned 517758295 521312840 521462251
Compaction cost 5503 5932 6110
Patch 2:
Compaction stalls 3800 3450 3518
Compaction success 1421 1316 1317
Compaction failures 2379 2134 2201
Page migrate success 4160421 4502708 4752148
Page migrate failure 19705 14340 14911
Compaction pages isolated 8731983 9382374 9910043
Compaction migrate scanned 98362797 96349194 98609686
Compaction free scanned 496512560 469502017 480442545
Compaction cost 5173 5526 5811
As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers
of unmovable and reclaimable pageblocks.
Configuring the benchmark to allocate like THP page fault (i.e. no sync
compaction) gives much noisier results for iterations 2 and 3 after
reboot. This is not so surprising given how [1] offers lower improvements
in this scenario due to less restarts after deferred compaction which
would change compaction pivot.
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-thp-1 5-thp-2 5-thp-3
Page alloc extfrag event 8148965 6227815 6646741
Extfrag fragmenting 8147872 6227130 6646117
Extfrag fragmenting for unmovable 10324 12942 15975
Extfrag fragmenting unmovable placed with movable 5972 8495 10907
Extfrag fragmenting for reclaimable 601 1707 2210
Extfrag fragmenting reclaimable placed with movable 520 1570 2000
Extfrag fragmenting for movable 8136947 6212481 6627932
Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-thp-1 6-thp-2 6-thp-3
Page alloc extfrag event 8345457 7574471 7020419
Extfrag fragmenting 8343546 7573777 7019718
Extfrag fragmenting for unmovable 10256 18535 30716
Extfrag fragmenting unmovable placed with movable 6893 11726 22181
Extfrag fragmenting for reclaimable 465 1208 1023
Extfrag fragmenting reclaimable placed with movable 353 996 843
Extfrag fragmenting for movable 8332825 7554034 6987979
Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-thp-1 7-thp-2 7-thp-3
Page alloc extfrag event 3512847 3020756 2891625
Extfrag fragmenting 3511940 3020185 2891059
Extfrag fragmenting for unmovable 9017 6892 6191
Extfrag fragmenting unmovable placed with movable 1524 3053 2435
Extfrag fragmenting for reclaimable 445 1081 1160
Extfrag fragmenting reclaimable placed with movable 375 918 986
Extfrag fragmenting for movable 3502478 3012212 2883708
Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-thp-1 8-thp-2 8-thp-3
Page alloc extfrag event 3181699 3082881 2674164
Extfrag fragmenting 3180812 3082303 2673611
Extfrag fragmenting for unmovable 1201 4031 4040
Extfrag fragmenting unmovable placed with movable 974 3611 3645
Extfrag fragmenting for reclaimable 478 1165 1294
Extfrag fragmenting reclaimable placed with movable 387 985 1030
Extfrag fragmenting for movable 3179133 3077107 2668277
The improvements for first iteration are clear, the rest is much noisier
and can appear like regression for Patch 1. Anyway, patch 2 rectifies it.
Allocation success rates are again unaffected so there's no point in
making this e-mail any longer.
[1] http://marc.info/?l=linux-mm&m=142166196321125&w=2
This patch (of 3):
When __rmqueue_fallback() is called to allocate a page of order X, it will
find a page of order Y >= X of a fallback migratetype, which is different
from the desired migratetype. With the help of try_to_steal_freepages(),
it may change the migratetype (to the desired one) also of:
1) all currently free pages in the pageblock containing the fallback page
2) the fallback pageblock itself
3) buddy pages created by splitting the fallback page (when Y > X)
These decisions take the order Y into account, as well as the desired
migratetype, with the goal of preventing multiple fallback allocations
that could e.g. distribute UNMOVABLE allocations among multiple
pageblocks.
Originally, decision for 1) has implied the decision for 3). Commit
47118af076f6 ("mm: mmzone: MIGRATE_CMA migration type added") changed that
(probably unintentionally) so that the buddy pages in case 3) are always
changed to the desired migratetype, except for CMA pageblocks.
Commit fef903efcf0c ("mm/page_allo.c: restructure free-page stealing code
and fix a bug") did some refactoring and added a comment that the case of
3) is intended. Commit 0cbef29a7821 ("mm: __rmqueue_fallback() should
respect pageblock type") removed the comment and tried to restore the
original behavior where 1) implies 3), but due to the previous
refactoring, the result is instead that only 2) implies 3) - and the
conditions for 2) are less frequently met than conditions for 1). This
may increase fragmentation in situations where the code decides to steal
all free pages from the pageblock (case 1)), but then gives back the buddy
pages produced by splitting.
This patch restores the original intended logic where 1) implies 3).
During testing with stress-highalloc from mmtests, this has shown to
decrease the number of events where UNMOVABLE and RECLAIMABLE allocations
steal from MOVABLE pageblocks, which can lead to permanent fragmentation.
In some cases it has increased the number of events when MOVABLE
allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are
fixable by sync compaction and thus less harmful.
Note that evaluation has shown that the behavior introduced by
47118af076f6 for buddy pages in case 3) is actually even better than the
original logic, so the following patch will introduce it properly once
again. For stable backports of this patch it makes thus sense to only fix
versions containing 0cbef29a7821.
[iamjoonsoo.kim@lge.com: tracepoint fix]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
One thing I did in this patch is fixing freepage accounting. If we
clear guard page and link it onto isolate buddy list, we should not
increase freepage count. This patch adds conditional branch to skip
counting in this case. Without this patch, this overcounting happens
frequently if guard order is set and CMA is used.
Another thing fixed in this patch is the target to reset order. In
__free_one_page(), we check the buddy page whether it is a guard page or
not. And, if so, we should clear guard attribute on the buddy page and
reset order of it to 0. But, current code resets original page's order
rather than buddy one's. Maybe, this doesn't have any problem, because
whole merged page's order will be re-assigned soon. But, it is better
to correct code.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Gioh Kim <gioh.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Having test_pages_isolated failure message as a warning confuses users
into thinking that it is more serious than it really is. In reality, if
called via CMA, allocation will be retried so a single
test_pages_isolated failure does not prevent allocation from succeeding.
Demote the warning message to an info message and reformat it such that
the text "failed" does not appear and instead a less worrying "PFNS
busy" is used.
This message is trivially reproducible on a 10GB x86 machine on 3.16.y
kernels configured with CONFIG_DMA_CMA.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Current pageblock isolation logic could isolate each pageblock
individually. This causes freepage accounting problem if freepage with
pageblock order on isolate pageblock is merged with other freepage on
normal pageblock. We can prevent merging by restricting max order of
merging to pageblock order if freepage is on isolate pageblock.
A side-effect of this change is that there could be non-merged buddy
freepage even if finishing pageblock isolation, because undoing
pageblock isolation is just to move freepage from isolate buddy list to
normal buddy list rather than to consider merging. So, the patch also
makes undoing pageblock isolation consider freepage merge. When
un-isolation, freepage with more than pageblock order and it's buddy are
checked. If they are on normal pageblock, instead of just moving, we
isolate the freepage and free it in order to get merged.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
All the caller of __free_one_page() has similar freepage counting logic,
so we can move it to __free_one_page(). This reduce line of code and
help future maintenance.
This is also preparation step for "mm/page_alloc: restrict max order of
merging on isolated pageblock" which fix the freepage counting problem
on freepage with more than pageblock order.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In free_pcppages_bulk(), we use cached migratetype of freepage to
determine type of buddy list where freepage will be added. This
information is stored when freepage is added to pcp list, so if
isolation of pageblock of this freepage begins after storing, this
cached information could be stale. In other words, it has original
migratetype rather than MIGRATE_ISOLATE.
There are two problems caused by this stale information.
One is that we can't keep these freepages from being allocated.
Although this pageblock is isolated, freepage will be added to normal
buddy list so that it could be allocated without any restriction. And
the other problem is incorrect freepage accounting. Freepages on
isolate pageblock should not be counted for number of freepage.
Following is the code snippet in free_pcppages_bulk().
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
__free_one_page(page, page_to_pfn(page), zone, 0, mt);
trace_mm_page_pcpu_drain(page, 0, mt);
if (likely(!is_migrate_isolate_page(page))) {
__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
if (is_migrate_cma(mt))
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
}
As you can see above snippet, current code already handle second
problem, incorrect freepage accounting, by re-fetching pageblock
migratetype through is_migrate_isolate_page(page).
But, because this re-fetched information isn't used for
__free_one_page(), first problem would not be solved. This patch try to
solve this situation to re-fetch pageblock migratetype before
__free_one_page() and to use it for __free_one_page().
In addition to move up position of this re-fetch, this patch use
optimization technique, re-fetching migratetype only if there is isolate
pageblock. Pageblock isolation is rare event, so we can avoid
re-fetching in common case with this optimization.
This patch also correct migratetype of the tracepoint output.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Before describing bugs itself, I first explain definition of freepage.
1. pages on buddy list are counted as freepage.
2. pages on isolate migratetype buddy list are *not* counted as freepage.
3. pages on cma buddy list are counted as CMA freepage, too.
Now, I describe problems and related patch.
Patch 1: There is race conditions on getting pageblock migratetype that
it results in misplacement of freepages on buddy list, incorrect
freepage count and un-availability of freepage.
Patch 2: Freepages on pcp list could have stale cached information to
determine migratetype of buddy list to go. This causes misplacement of
freepages on buddy list and incorrect freepage count.
Patch 4: Merging between freepages on different migratetype of
pageblocks will cause freepages accouting problem. This patch fixes it.
Without patchset [3], above problem doesn't happens on my CMA allocation
test, because CMA reserved pages aren't used at all. So there is no
chance for above race.
With patchset [3], I did simple CMA allocation test and get below
result:
- Virtual machine, 4 cpus, 1024 MB memory, 256 MB CMA reservation
- run kernel build (make -j16) on background
- 30 times CMA allocation(8MB * 30 = 240MB) attempts in 5 sec interval
- Result: more than 5000 freepage count are missed
With patchset [3] and this patchset, I found that no freepage count are
missed so that I conclude that problems are solved.
On my simple memory offlining test, these problems also occur on that
environment, too.
This patch (of 4):
There are two paths to reach core free function of buddy allocator,
__free_one_page(), one is free_one_page()->__free_one_page() and the
other is free_hot_cold_page()->free_pcppages_bulk()->__free_one_page().
Each paths has race condition causing serious problems. At first, this
patch is focused on first type of freepath. And then, following patch
will solve the problem in second type of freepath.
In the first type of freepath, we got migratetype of freeing page
without holding the zone lock, so it could be racy. There are two cases
of this race.
1. pages are added to isolate buddy list after restoring orignal
migratetype
CPU1 CPU2
get migratetype => return MIGRATE_ISOLATE
call free_one_page() with MIGRATE_ISOLATE
grab the zone lock
unisolate pageblock
release the zone lock
grab the zone lock
call __free_one_page() with MIGRATE_ISOLATE
freepage go into isolate buddy list,
although pageblock is already unisolated
This may cause two problems. One is that we can't use this page anymore
until next isolation attempt of this pageblock, because freepage is on
isolate buddy list. The other is that freepage accouting could be wrong
due to merging between different buddy list. Freepages on isolate buddy
list aren't counted as freepage, but ones on normal buddy list are
counted as freepage. If merge happens, buddy freepage on normal buddy
list is inevitably moved to isolate buddy list without any consideration
of freepage accouting so it could be incorrect.
2. pages are added to normal buddy list while pageblock is isolated.
It is similar with above case.
This also may cause two problems. One is that we can't keep these
freepages from being allocated. Although this pageblock is isolated,
freepage would be added to normal buddy list so that it could be
allocated without any restriction. And the other problem is same as
case 1, that it, incorrect freepage accouting.
This race condition would be prevented by checking migratetype again
with holding the zone lock. Because it is somewhat heavy operation and
it isn't needed in common case, we want to avoid rechecking as much as
possible. So this patch introduce new variable, nr_isolate_pageblock in
struct zone to check if there is isolated pageblock. With this, we can
avoid to re-check migratetype in common case and do it only if there is
isolated pageblock or migratetype is MIGRATE_ISOLATE. This solve above
mentioned problems.
Changes from v3:
Add one more check in free_one_page() that checks whether migratetype is
MIGRATE_ISOLATE or not. Without this, abovementioned case 1 could happens.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
PM freezer relies on having all tasks frozen by the time devices are
getting frozen so that no task will touch them while they are getting
frozen. But OOM killer is allowed to kill an already frozen task in
order to handle OOM situtation. In order to protect from late wake ups
OOM killer is disabled after all tasks are frozen. This, however, still
keeps a window open when a killed task didn't manage to die by the time
freeze_processes finishes.
Reduce the race window by checking all tasks after OOM killer has been
disabled. This is still not race free completely unfortunately because
oom_killer_disable cannot stop an already ongoing OOM killer so a task
might still wake up from the fridge and get killed without
freeze_processes noticing. Full synchronization of OOM and freezer is,
however, too heavy weight for this highly unlikely case.
Introduce and check oom_kills counter which gets incremented early when
the allocator enters __alloc_pages_may_oom path and only check all the
tasks if the counter changes during the freezing attempt. The counter
is updated so early to reduce the race window since allocator checked
oom_killer_disabled which is set by PM-freezing code. A false positive
will push the PM-freezer into a slow path but that is not a big deal.
Changes since v1
- push the re-check loop out of freeze_processes into
check_frozen_processes and invert the condition to make the code more
readable as per Rafael
Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring)
Cc: 3.2+ <stable@vger.kernel.org> # 3.2+
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
"This tree includes the following changes:
- fix memory hotplug
- fix hibernation bootup memory layout assumptions
- fix hyperv numa guest kernel messages
- remove dead code
- update documentation"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Update memory map description to list hypervisor-reserved area
x86/mm, hibernate: Do not assume the first e820 area to be RAM
x86/mm/numa: Drop dead code and rename setup_node_data() to setup_alloc_data()
x86/mm/hotplug: Modify PGD entry when removing memory
x86/mm/hotplug: Pass sync_global_pgds() a correct argument in remove_pagetable()
x86: Remove set_pmd_pfn
|
|
dump_page() and dump_vma() are not specific to page_alloc.c, move them out
so page_alloc.c won't turn into the unofficial debug repository.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Zones are allocated by the page allocator in either node or zone order.
Node ordering is preferred in terms of locality and is applied
automatically in one of three cases:
1. If a node has only low memory
2. If DMA/DMA32 is a high percentage of memory
3. If low memory on a single node is greater than 70% of the node size
Otherwise zone ordering is used to preserve low memory for devices that
require it. Unfortunately a consequence of this is that applications
running on a machine with balanced NUMA nodes will experience different
performance characteristics depending on which node they happen to start
from.
The point of zone ordering is to protect lower zones for devices that
require DMA/DMA32 memory. When NUMA was first introduced, this was
critical as 32-bit NUMA machines existed and exhausting low memory
triggered OOMs easily as so many allocations required low memory. On
64-bit machines the primary concern is devices that are 32-bit only which
is less severe than the low memory exhaustion problem on 32-bit NUMA. It
seems there are really few devices that depends on it.
AGP -- I assume this is getting more rare but even then I think the allocations
happen early in boot time where lowmem pressure is less of a problem
DRM -- If the device is 32-bit only then there may be low pressure. I didn't
evaluate these in detail but it looks like some of these are mobile
graphics card. Not many NUMA laptops out there. DRM folk should know
better though.
Some TV cards -- Much demand for 32-bit capable TV cards on NUMA machines?
B43 wireless card -- again not really a NUMA thing.
I cannot find a good reason to incur a performance penalty on all 64-bit NUMA
machines in case someone throws a brain damanged TV or graphics card in there.
This patch defaults to node-ordering on 64-bit NUMA machines. I was tempted
to make it default everywhere but I understand that some embedded arches may
be using 32-bit NUMA where I cannot predict the consequences.
The performance impact depends on the workload and the characteristics of the
machine and the machine I tested on had a large Normal zone on node 0 so the
impact is within the noise for the majority of tests. The allocation stats
show more allocation requests were from DMA32 and local node. Running SpecJBB
with multiple JVMs and automatic NUMA balancing disabled the results were
specjbb
3.17.0-rc2 3.17.0-rc2
vanilla nodeorder-v1r1
Min 1 29534.00 ( 0.00%) 30020.00 ( 1.65%)
Min 10 115717.00 ( 0.00%) 134038.00 ( 15.83%)
Min 19 109718.00 ( 0.00%) 114186.00 ( 4.07%)
Min 28 104459.00 ( 0.00%) 103639.00 ( -0.78%)
Min 37 98245.00 ( 0.00%) 103756.00 ( 5.61%)
Min 46 97198.00 ( 0.00%) 96197.00 ( -1.03%)
Mean 1 30953.25 ( 0.00%) 31917.75 ( 3.12%)
Mean 10 124432.50 ( 0.00%) 140904.00 ( 13.24%)
Mean 19 116033.50 ( 0.00%) 119294.75 ( 2.81%)
Mean 28 108365.25 ( 0.00%) 106879.50 ( -1.37%)
Mean 37 102984.75 ( 0.00%) 106924.25 ( 3.83%)
Mean 46 100783.25 ( 0.00%) 105368.50 ( 4.55%)
Stddev 1 1260.38 ( 0.00%) 1109.66 ( 11.96%)
Stddev 10 7434.03 ( 0.00%) 5171.91 ( 30.43%)
Stddev 19 8453.84 ( 0.00%) 5309.59 ( 37.19%)
Stddev 28 4184.55 ( 0.00%) 2906.63 ( 30.54%)
Stddev 37 5409.49 ( 0.00%) 3192.12 ( 40.99%)
Stddev 46 4521.95 ( 0.00%) 7392.52 (-63.48%)
Max 1 32738.00 ( 0.00%) 32719.00 ( -0.06%)
Max 10 136039.00 ( 0.00%) 148614.00 ( 9.24%)
Max 19 130566.00 ( 0.00%) 127418.00 ( -2.41%)
Max 28 115404.00 ( 0.00%) 111254.00 ( -3.60%)
Max 37 112118.00 ( 0.00%) 111732.00 ( -0.34%)
Max 46 108541.00 ( 0.00%) 116849.00 ( 7.65%)
TPut 1 123813.00 ( 0.00%) 127671.00 ( 3.12%)
TPut 10 497730.00 ( 0.00%) 563616.00 ( 13.24%)
TPut 19 464134.00 ( 0.00%) 477179.00 ( 2.81%)
TPut 28 433461.00 ( 0.00%) 427518.00 ( -1.37%)
TPut 37 411939.00 ( 0.00%) 427697.00 ( 3.83%)
TPut 46 403133.00 ( 0.00%) 421474.00 ( 4.55%)
3.17.0-rc2 3.17.0-rc2
vanillanodeorder-v1r1
DMA allocs 0 0
DMA32 allocs 57 1491992
Normal allocs 32543566 30026383
Movable allocs 0 0
Direct pages scanned 0 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 0 0
Kswapd efficiency 100% 100%
Kswapd velocity 0.000 0.000
Direct efficiency 100% 100%
Direct velocity 0.000 0.000
Percentage direct scans 0% 0%
Zone normal velocity 0.000 0.000
Zone dma32 velocity 0.000 0.000
Zone dma velocity 0.000 0.000
THP fault alloc 55164 52987
THP collapse alloc 139 147
THP splits 26 21
NUMA alloc hit 4169066 4250692
NUMA alloc miss 0 0
Note that there were more DMA32 allocations with the patch applied. In this
particular case there was no difference in numa_hit and numa_miss. The
expectation is that DMA32 was being used at the low watermark instead of
falling into the slow path. kswapd was not woken but it's not worken for
THP allocations.
On 32-bit, this patch defaults to zone-ordering as low memory depletion
can be a serious problem on 32-bit large memory machines. If the default
ordering was node then processes on node 0 will deplete the Normal zone
due to normal activity. The problem is worse if CONFIG_HIGHPTE is not
set. If combined with large amounts of dirty/writeback pages in Normal
zone then there is also a high risk of OOM. The heuristics are removed
as it's not clear they were ever important on 32-bit. They were only
relevant for setting node-ordering on 64-bit.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since 2.6.24 there has been a paranoid check in move_freepages that looks
up the zone of two pages. This is a very slow path and the only time I've
seen this bug trigger recently is when memory initialisation was broken
during patch development. Despite the fact it's a slow path, this patch
converts the check to a VM_BUG_ON anyway as it has served its purpose by
now.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually
sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the
reader through layers indirection just to track down a simple bit.
Remove all zone flag wrappers and just use bitops against zone->flags
directly. It's just as readable and the lines are barely any longer.
Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and
remove the zone_flags_t typedef.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When entering the page_alloc slowpath, we wakeup kswapd on every pgdat
according to the zonelist and high_zoneidx. However, this doesn't take
nodemask into account, and could prematurely wakeup kswapd on some
unintended nodes.
This patch uses for_each_zone_zonelist_nodemask() instead of
for_each_zone_zonelist() in wake_all_kswapds() to avoid the above
situation.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce a helper to dump information about a VMA, this also makes
dump_page_flags more generic and re-uses that so the output looks very
similar to dump_page:
[ 61.903437] vma ffff88070f88be00 start 00007fff25970000 end 00007fff25992000
[ 61.903437] next ffff88070facd600 prev ffff88070face400 mm ffff88070fade000
[ 61.903437] prot 8000000000000025 anon_vma ffff88070fa1e200 vm_ops (null)
[ 61.903437] pgoff 7ffffffdd file (null) private_data (null)
[ 61.909129] flags: 0x100173(read|write|mayread|maywrite|mayexec|growsdown|account)
[akpm@linux-foundation.org: make dump_vma() require CONFIG_DEBUG_VM]
[swarren@nvidia.com: fix dump_vma() compilation]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The page allocator has gfp flags (like __GFP_WAIT) and alloc flags (like
ALLOC_CPUSET) that have separate semantics.
The function allocflags_to_migratetype() actually takes gfp flags, not
alloc flags, and returns a migratetype. Rename it to
gfpflags_to_migratetype().
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The compact_stall vmstat counter counts the number of allocations stalled
by direct compaction. It does not count when all attempted zones had
deferred compaction, but it does count when all zones skipped compaction.
The skipping is decided based on very early check of
compaction_suitable(), based on watermarks and memory fragmentation.
Therefore it makes sense not to count skipped compactions as stalls.
Moreover, compact_success or compact_fail is also already not being
counted when compaction was skipped, so this patch changes the
compact_stall counting to match the other two.
Additionally, restructure __alloc_pages_direct_compact() code for better
readability.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The check for ALLOC_CMA in __alloc_pages_nodemask() derives migratetype
from gfp_mask in each retry pass, although the migratetype variable
already has the value determined and it does not change. Use the variable
and perform the check only once. Also convert #ifdef CONFIG_CMA to
IS_ENABLED.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Anton noticed (http://www.spinics.net/lists/linux-mm/msg67489.html) that
on ppc LPARs with memoryless nodes, a large amount of memory was consumed
by slabs and was marked unreclaimable. He tracked it down to slab
deactivations in the SLUB core when we allocate remotely, leading to poor
efficiency always when memoryless nodes are present.
After much discussion, Joonsoo provided a few patches that help
significantly. They don't resolve the problem altogether:
- memory hotplug still needs testing, that is when a memoryless node
becomes memory-ful, we want to dtrt
- there are other reasons for going off-node than memoryless nodes,
e.g., fully exhausted local nodes
Neither case is resolved with this series, but I don't think that should
block their acceptance, as they can be explored/resolved with follow-on
patches.
The series consists of:
[1/3] topology: add support for node_to_mem_node() to determine the
fallback node
[2/3] slub: fallback to node_to_mem_node() node if allocating on
memoryless node
- Joonsoo's patches to cache the nearest node with memory for each
NUMA node
[3/3] Partial revert of 81c98869faa5 (""kthread: ensure locality of
task_struct allocations")
- At Tejun's request, keep the knowledge of memoryless node fallback
to the allocator core.
This patch (of 3):
We need to determine the fallback node in slub allocator if the allocation
target node is memoryless node. Without it, the SLUB wrongly select the
node which has no memory and can't use a partial slab, because of node
mismatch. Introduced function, node_to_mem_node(X), will return a node Y
with memory that has the nearest distance. If X is memoryless node, it
will return nearest distance node, but, if X is normal node, it will
return itself.
We will use this function in following patch to determine the fallback
node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The zone allocation batches can easily underflow due to higher-order
allocations or spills to remote nodes. On SMP that's fine, because
underflows are expected from concurrency and dealt with by returning 0.
But on UP, zone_page_state will just return a wrapped unsigned long,
which will get past the <= 0 check and then consider the zone eligible
until its watermarks are hit.
Commit 3a025760fc15 ("mm: page_alloc: spill to remote nodes before
waking kswapd") already made the counter-resetting use
atomic_long_read() to accomodate underflows from remote spills, but it
didn't go all the way with it.
Make it clear that these batches are expected to go negative regardless
of concurrency, and use atomic_long_read() everywhere.
Fixes: 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy")
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Leon Romanovsky <leon@leon.nu>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The setup_node_data() function allocates a pg_data_t object,
inserts it into the node_data[] array and initializes the
following fields: node_id, node_start_pfn and
node_spanned_pages.
However, a few function calls later during the kernel boot,
free_area_init_node() re-initializes those fields, possibly with
setup_node_data() is not used.
This causes a small glitch when running Linux as a hyperv numa
guest:
SRAT: PXM 0 -> APIC 0x00 -> Node 0
SRAT: PXM 0 -> APIC 0x01 -> Node 0
SRAT: PXM 1 -> APIC 0x02 -> Node 1
SRAT: PXM 1 -> APIC 0x03 -> Node 1
SRAT: Node 0 PXM 0 [mem 0x00000000-0x7fffffff]
SRAT: Node 1 PXM 1 [mem 0x80200000-0xf7ffffff]
SRAT: Node 1 PXM 1 [mem 0x100000000-0x1081fffff]
NUMA: Node 1 [mem 0x80200000-0xf7ffffff] + [mem 0x100000000-0x1081fffff] -> [mem 0x80200000-0x1081fffff]
Initmem setup node 0 [mem 0x00000000-0x7fffffff]
NODE_DATA [mem 0x7ffdc000-0x7ffeffff]
Initmem setup node 1 [mem 0x80800000-0x1081fffff]
NODE_DATA [mem 0x1081ea000-0x1081fdfff]
crashkernel: memory value expected
[ffffea0000000000-ffffea0001ffffff] PMD -> [ffff88007de00000-ffff88007fdfffff] on node 0
[ffffea0002000000-ffffea00043fffff] PMD -> [ffff880105600000-ffff8801077fffff] on node 1
Zone ranges:
DMA [mem 0x00001000-0x00ffffff]
DMA32 [mem 0x01000000-0xffffffff]
Normal [mem 0x100000000-0x1081fffff]
Movable zone start for each node
Early memory node ranges
node 0: [mem 0x00001000-0x0009efff]
node 0: [mem 0x00100000-0x7ffeffff]
node 1: [mem 0x80200000-0xf7ffffff]
node 1: [mem 0x100000000-0x1081fffff]
On node 0 totalpages: 524174
DMA zone: 64 pages used for memmap
DMA zone: 21 pages reserved
DMA zone: 3998 pages, LIFO batch:0
DMA32 zone: 8128 pages used for memmap
DMA32 zone: 520176 pages, LIFO batch:31
On node 1 totalpages: 524288
DMA32 zone: 7672 pages used for memmap
DMA32 zone: 491008 pages, LIFO batch:31
Normal zone: 520 pages used for memmap
Normal zone: 33280 pages, LIFO batch:7
In this dmesg, the SRAT table reports that the memory range for
node 1 starts at 0x80200000. However, the line starting with
"Initmem" reports that node 1 memory range starts at 0x80800000.
The "Initmem" line is reported by setup_node_data() and is
wrong, because the kernel ends up using the range as reported in
the SRAT table.
This commit drops all that dead code from setup_node_data(),
renames it to alloc_node_data() and adds a printk() to
free_area_init_node() so that we report a node's memory range
accurately.
Here's the same dmesg section with this patch applied:
SRAT: PXM 0 -> APIC 0x00 -> Node 0
SRAT: PXM 0 -> APIC 0x01 -> Node 0
SRAT: PXM 1 -> APIC 0x02 -> Node 1
SRAT: PXM 1 -> APIC 0x03 -> Node 1
SRAT: Node 0 PXM 0 [mem 0x00000000-0x7fffffff]
SRAT: Node 1 PXM 1 [mem 0x80200000-0xf7ffffff]
SRAT: Node 1 PXM 1 [mem 0x100000000-0x1081fffff]
NUMA: Node 1 [mem 0x80200000-0xf7ffffff] + [mem 0x100000000-0x1081fffff] -> [mem 0x80200000-0x1081fffff]
NODE_DATA(0) allocated [mem 0x7ffdc000-0x7ffeffff]
NODE_DATA(1) allocated [mem 0x1081ea000-0x1081fdfff]
crashkernel: memory value expected
[ffffea0000000000-ffffea0001ffffff] PMD -> [ffff88007de00000-ffff88007fdfffff] on node 0
[ffffea0002000000-ffffea00043fffff] PMD -> [ffff880105600000-ffff8801077fffff] on node 1
Zone ranges:
DMA [mem 0x00001000-0x00ffffff]
DMA32 [mem 0x01000000-0xffffffff]
Normal [mem 0x100000000-0x1081fffff]
Movable zone start for each node
Early memory node ranges
node 0: [mem 0x00001000-0x0009efff]
node 0: [mem 0x00100000-0x7ffeffff]
node 1: [mem 0x80200000-0xf7ffffff]
node 1: [mem 0x100000000-0x1081fffff]
Initmem setup node 0 [mem 0x00001000-0x7ffeffff]
On node 0 totalpages: 524174
DMA zone: 64 pages used for memmap
DMA zone: 21 pages reserved
DMA zone: 3998 pages, LIFO batch:0
DMA32 zone: 8128 pages used for memmap
DMA32 zone: 520176 pages, LIFO batch:31
Initmem setup node 1 [mem 0x80200000-0x1081fffff]
On node 1 totalpages: 524288
DMA32 zone: 7672 pages used for memmap
DMA32 zone: 491008 pages, LIFO batch:31
Normal zone: 520 pages used for memmap
Normal zone: 33280 pages, LIFO batch:7
This commit was tested on a two node bare-metal NUMA machine and
Linux as a numa guest on hyperv and qemu/kvm.
PS: The wrong memory range reported by setup_node_data() seems to be
harmless in the current kernel because it's just not used. However,
that bad range is used in kernel 2.6.32 to initialize the old boot
memory allocator, which causes a crash during boot.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
__GFP_NO_KSWAPD, once the way to determine if an allocation was for thp
or not, has gained more users. Their use is not necessarily wrong, they
are trying to do a memory allocation that can easily fail without
disturbing kswapd, so the bit has gained additional usecases.
This restructures the check to determine whether MIGRATE_SYNC_LIGHT
should be used for memory compaction in the page allocator. Rather than
testing solely for __GFP_NO_KSWAPD, test for all bits that must be set
for thp allocations.
This also moves the check to be done only after the page allocator is
aborted for deferred or contended memory compaction since setting
migration_mode for this case is pointless.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_set_zonelist_oom() and clear_zonelist_oom() are not named properly
to imply that they require locking semantics to avoid out_of_memory()
being reordered.
zone_scan_lock is required for both functions to ensure that there is
proper locking synchronization.
Rename try_set_zonelist_oom() to oom_zonelist_trylock() and rename
clear_zonelist_oom() to oom_zonelist_unlock() to imply there is proper
locking semantics.
At the same time, convert oom_zonelist_trylock() to return bool instead
of int since only success and failure are tested.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The fair zone allocation policy round-robins allocations between zones
within a node to avoid age inversion problems during reclaim. If the
first allocation fails, the batch counts are reset and a second attempt
made before entering the slow path.
One assumption made with this scheme is that batches expire at roughly
the same time and the resets each time are justified. This assumption
does not hold when zones reach their low watermark as the batches will
be consumed at uneven rates. Allocation failure due to watermark
depletion result in additional zonelist scans for the reset and another
watermark check before hitting the slowpath.
On UMA, the benefit is negligible -- around 0.25%. On 4-socket NUMA
machine it's variable due to the variability of measuring overhead with
the vmstat changes. The system CPU overhead comparison looks like
3.16.0-rc3 3.16.0-rc3 3.16.0-rc3
vanilla vmstat-v5 lowercost-v5
User 746.94 774.56 802.00
System 65336.22 32847.27 40852.33
Elapsed 27553.52 27415.04 27368.46
However it is worth noting that the overall benchmark still completed
faster and intuitively it makes sense to take as few passes as possible
through the zonelists.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
encountered
The purpose of numa_zonelist_order=zone is to preserve lower zones for
use with 32-bit devices. If locality is preferred then the
numa_zonelist_order=node policy should be used.
Unfortunately, the fair zone allocation policy overrides this by
skipping zones on remote nodes until the lower one is found. While this
makes sense from a page aging and performance perspective, it breaks the
expected zonelist policy. This patch restores the expected behaviour
for zone-list ordering.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
zone->pages_scanned is a write-intensive cache line during page reclaim
and it's also updated during page free. Move the counter into vmstat to
take advantage of the per-cpu updates and do not update it in the free
paths unless necessary.
On a small UMA machine running tiobench the difference is marginal. On
a 4-node machine the overhead is more noticable. Note that automatic
NUMA balancing was disabled for this test as otherwise the system CPU
overhead is unpredictable.
3.16.0-rc3 3.16.0-rc3 3.16.0-rc3
vanillarearrange-v5 vmstat-v5
User 746.94 759.78 774.56
System 65336.22 58350.98 32847.27
Elapsed 27553.52 27282.02 27415.04
Note that the overhead reduction will vary depending on where exactly
pages are allocated and freed.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
reclaim lines
The arrangement of struct zone has changed over time and now it has
reached the point where there is some inappropriate sharing going on.
On x86-64 for example
o The zone->node field is shared with the zone lock and zone->node is
accessed frequently from the page allocator due to the fair zone
allocation policy.
o span_seqlock is almost never used by shares a line with free_area
o Some zone statistics share a cache line with the LRU lock so
reclaim-intensive and allocator-intensive workloads can bounce the cache
line on a stat update
This patch rearranges struct zone to put read-only and read-mostly
fields together and then splits the page allocator intensive fields, the
zone statistics and the page reclaim intensive fields into their own
cache lines. Note that the type of lowmem_reserve changes due to the
watermark calculations being signed and avoiding a signed/unsigned
conversion there.
On the test configuration I used the overall size of struct zone shrunk
by one cache line. On smaller machines, this is not likely to be
noticable. However, on a 4-node NUMA machine running tiobench the
system CPU overhead is reduced by this patch.
3.16.0-rc3 3.16.0-rc3
vanillarearrange-v5r9
User 746.94 759.78
System 65336.22 58350.98
Elapsed 27553.52 27282.02
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically, we exported shared pages to userspace via sysinfo(2)
sharedram and /proc/meminfo's "MemShared" fields. With the advent of
tmpfs, from kernel v2.4 onward, that old way for accounting shared mem
was deemed inaccurate and we started to export a hard-coded 0 for
sysinfo.sharedram. Later on, during the 2.6 timeframe, "MemShared" got
re-introduced to /proc/meminfo re-branded as "Shmem", but we're still
reporting sysinfo.sharedmem as that old hard-coded zero, which makes the
"shared memory" report inconsistent across interfaces.
This patch leverages the addition of explicit accounting for pages used
by shmem/tmpfs -- "4b02108 mm: oom analysis: add shmem vmstat" -- in
order to make the users of sysinfo(2) and si_meminfo*() friends aware of
that vmstat entry and make them report it consistently across the
interfaces, as well to make sysinfo(2) returned data consistent with our
current API documentation states.
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of open-coding getting minimal value of two, just use min macro.
That is why it is there for. While changing the function also change
type of batch local variable to match type of per_cpu_pages::batch
(which is int).
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It is only called by mm/page_cgroup.c whcih cannot be modular.
Reported-by: David Rientjes <rientjes@google.com>
Cc: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
alloc_pages_exact_nid() is only called by __meminit alloc_page_cgroup()
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The page allocator relies on __GFP_WAIT to determine if ALLOC_CPUSET
should be set in allocflags. ALLOC_CPUSET controls if a page allocation
should be restricted only to the set of allowed cpuset mems.
Transparent hugepages clears __GFP_WAIT when defrag is disabled to prevent
the fault path from using memory compaction or direct reclaim. Thus, it
is unfairly able to allocate outside of its cpuset mems restriction as a
side-effect.
This patch ensures that ALLOC_CPUSET is only cleared when the gfp mask is
truly GFP_ATOMIC by verifying it is also not a thp allocation.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Alex Thorlton <athorlton@sgi.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix kernel-doc warnings and function name in mm/page_alloc.c:
Warning(..//mm/page_alloc.c:6074): No description found for parameter 'pfn'
Warning(..//mm/page_alloc.c:6074): No description found for parameter 'mask'
Warning(..//mm/page_alloc.c:6074): Excess function parameter 'start_bitidx' description in 'get_pfnblock_flags_mask'
Warning(..//mm/page_alloc.c:6102): No description found for parameter 'pfn'
Warning(..//mm/page_alloc.c:6102): No description found for parameter 'mask'
Warning(..//mm/page_alloc.c:6102): Excess function parameter 'start_bitidx' description in 'set_pfnblock_flags_mask'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With a kernel configured with ARM64_64K_PAGES && !TRANSPARENT_HUGEPAGE,
the following is triggered at early boot:
SMP: Total of 8 processors activated.
devtmpfs: initialized
Unable to handle kernel NULL pointer dereference at virtual address 00000008
pgd = fffffe0000050000
[00000008] *pgd=00000043fba00003, *pmd=00000043fba00003, *pte=00e0000078010407
Internal error: Oops: 96000006 [#1] SMP
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.15.0-rc864k+ #44
task: fffffe03bc040000 ti: fffffe03bc080000 task.ti: fffffe03bc080000
PC is at __list_add+0x10/0xd4
LR is at free_one_page+0x270/0x638
...
Call trace:
__list_add+0x10/0xd4
free_one_page+0x26c/0x638
__free_pages_ok.part.52+0x84/0xbc
__free_pages+0x74/0xbc
init_cma_reserved_pageblock+0xe8/0x104
cma_init_reserved_areas+0x190/0x1e4
do_one_initcall+0xc4/0x154
kernel_init_freeable+0x204/0x2a8
kernel_init+0xc/0xd4
This happens because init_cma_reserved_pageblock() calls
__free_one_page() with pageblock_order as page order but it is bigger
than MAX_ORDER. This in turn causes accesses past zone->free_list[].
Fix the problem by changing init_cma_reserved_pageblock() such that it
splits pageblock into individual MAX_ORDER pages if pageblock is bigger
than a MAX_ORDER page.
In cases where !CONFIG_HUGETLB_PAGE_SIZE_VARIABLE, which is all
architectures expect for ia64, powerpc and tile at the moment, the
âpageblock_order > MAX_ORDERâ condition will be optimised out since both
sides of the operator are constants. In cases where pageblock size is
variable, the performance degradation should not be significant anyway
since init_cma_reserved_pageblock() is called only at boot time at most
MAX_CMA_AREAS times which by default is eight.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Reported-by: Mark Salter <msalter@redhat.com>
Tested-by: Mark Salter <msalter@redhat.com>
Tested-by: Christopher Covington <cov@codeaurora.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org> [3.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Oleg reports a division by zero error on zero-length write() to the
percpu_pagelist_fraction sysctl:
divide error: 0000 [#1] SMP DEBUG_PAGEALLOC
CPU: 1 PID: 9142 Comm: badarea_io Not tainted 3.15.0-rc2-vm-nfs+ #19
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
task: ffff8800d5aeb6e0 ti: ffff8800d87a2000 task.ti: ffff8800d87a2000
RIP: 0010: percpu_pagelist_fraction_sysctl_handler+0x84/0x120
RSP: 0018:ffff8800d87a3e78 EFLAGS: 00010246
RAX: 0000000000000f89 RBX: ffff88011f7fd000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000010
RBP: ffff8800d87a3e98 R08: ffffffff81d002c8 R09: ffff8800d87a3f50
R10: 000000000000000b R11: 0000000000000246 R12: 0000000000000060
R13: ffffffff81c3c3e0 R14: ffffffff81cfddf8 R15: ffff8801193b0800
FS: 00007f614f1e9740(0000) GS:ffff88011f440000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007f614f1fa000 CR3: 00000000d9291000 CR4: 00000000000006e0
Call Trace:
proc_sys_call_handler+0xb3/0xc0
proc_sys_write+0x14/0x20
vfs_write+0xba/0x1e0
SyS_write+0x46/0xb0
tracesys+0xe1/0xe6
However, if the percpu_pagelist_fraction sysctl is set by the user, it
is also impossible to restore it to the kernel default since the user
cannot write 0 to the sysctl.
This patch allows the user to write 0 to restore the default behavior.
It still requires a fraction equal to or larger than 8, however, as
stated by the documentation for sanity. If a value in the range [1, 7]
is written, the sysctl will return EINVAL.
This successfully solves the divide by zero issue at the same time.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Oleg Drokin <green@linuxhacker.ru>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
add_active_range() has been repalced by memblock_set_node(). Clean up the
comments to comply with that change.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is no need to calculate zone_idx(preferred_zone) multiple times
or use the pgdat to figure it out.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
cold is a bool, make it one. Make the likely case the "if" part of the
block instead of the else as according to the optimisation manual this is
preferred.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|