summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
AgeCommit message (Collapse)Author
2025-06-04memcg: always call cond_resched() after fn()Breno Leitao
commit 06717a7b6c86514dbd6ab322e8083ffaa4db5712 upstream. I am seeing soft lockup on certain machine types when a cgroup OOMs. This is happening because killing the process in certain machine might be very slow, which causes the soft lockup and RCU stalls. This happens usually when the cgroup has MANY processes and memory.oom.group is set. Example I am seeing in real production: [462012.244552] Memory cgroup out of memory: Killed process 3370438 (crosvm) .... .... [462037.318059] Memory cgroup out of memory: Killed process 4171372 (adb) .... [462037.348314] watchdog: BUG: soft lockup - CPU#64 stuck for 26s! [stat_manager-ag:1618982] .... Quick look at why this is so slow, it seems to be related to serial flush for certain machine types. For all the crashes I saw, the target CPU was at console_flush_all(). In the case above, there are thousands of processes in the cgroup, and it is soft locking up before it reaches the 1024 limit in the code (which would call the cond_resched()). So, cond_resched() in 1024 blocks is not sufficient. Remove the counter-based conditional rescheduling logic and call cond_resched() unconditionally after each task iteration, after fn() is called. This avoids the lockup independently of how slow fn() is. Link: https://lkml.kernel.org/r/20250523-memcg_fix-v1-1-ad3eafb60477@debian.org Fixes: ade81479c7dd ("memcg: fix soft lockup in the OOM process") Signed-off-by: Breno Leitao <leitao@debian.org> Suggested-by: Rik van Riel <riel@surriel.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Michael van der Westhuizen <rmikey@meta.com> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Chen Ridong <chenridong@huawei.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13memcg: fix soft lockup in the OOM processChen Ridong
[ Upstream commit ade81479c7dda1ce3eedb215c78bc615bbd04f06 ] A soft lockup issue was found in the product with about 56,000 tasks were in the OOM cgroup, it was traversing them when the soft lockup was triggered. watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066] CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G Hardware name: Huawei Cloud OpenStack Nova, BIOS RIP: 0010:console_unlock+0x343/0x540 RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247 RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040 R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0 R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vprintk_emit+0x193/0x280 printk+0x52/0x6e dump_task+0x114/0x130 mem_cgroup_scan_tasks+0x76/0x100 dump_header+0x1fe/0x210 oom_kill_process+0xd1/0x100 out_of_memory+0x125/0x570 mem_cgroup_out_of_memory+0xb5/0xd0 try_charge+0x720/0x770 mem_cgroup_try_charge+0x86/0x180 mem_cgroup_try_charge_delay+0x1c/0x40 do_anonymous_page+0xb5/0x390 handle_mm_fault+0xc4/0x1f0 This is because thousands of processes are in the OOM cgroup, it takes a long time to traverse all of them. As a result, this lead to soft lockup in the OOM process. To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks' function per 1000 iterations. For global OOM, call 'touch_softlockup_watchdog' per 1000 iterations to avoid this issue. Link: https://lkml.kernel.org/r/20241224025238.3768787-1-chenridong@huaweicloud.com Fixes: 9cbb78bb3143 ("mm, memcg: introduce own oom handler to iterate only over its own threads") Signed-off-by: Chen Ridong <chenridong@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-09-04memcg_write_event_control(): fix a user-triggerable oopsAl Viro
commit 046667c4d3196938e992fba0dfcde570aa85cd0e upstream. we are *not* guaranteed that anything past the terminating NUL is mapped (let alone initialized with anything sane). Fixes: 0dea116876ee ("cgroup: implement eventfd-based generic API for notifications") Cc: stable@vger.kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-03-01memcg: add refcnt for pcpu stock to avoid UAF problem in drain_all_stock()GONG, Ruiqi
commit 1a3e1f40962c445b997151a542314f3c6097f8c3 upstream. NOTE: This is a partial backport since we only need the refcnt between memcg and stock to fix the problem stated below, and in this way multiple versions use the same code and align with each other. There was a kernel panic happened on an in-house environment running 3.10, and the same problem was reproduced on 4.19: general protection fault: 0000 [#1] SMP PTI CPU: 1 PID: 2085 Comm: bash Kdump: loaded Tainted: G L 4.19.90+ #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010 drain_all_stock+0xad/0x140 Code: 00 00 4d 85 ff 74 2c 45 85 c9 74 27 4d 39 fc 74 42 41 80 bc 24 28 04 00 00 00 74 17 49 8b 04 24 49 8b 17 48 8b 88 90 02 00 00 <48> 39 8a 90 02 00 00 74 02 eb 86 48 63 88 3c 01 00 00 39 8a 3c 01 RSP: 0018:ffffa7efc5813d70 EFLAGS: 00010202 RAX: ffff8cb185548800 RBX: ffff8cb89f420160 RCX: ffff8cb1867b6000 RDX: babababababababa RSI: 0000000000000001 RDI: 0000000000231876 RBP: 0000000000000000 R08: 0000000000000415 R09: 0000000000000002 R10: 0000000000000000 R11: 0000000000000001 R12: ffff8cb186f89040 R13: 0000000000020160 R14: 0000000000000001 R15: ffff8cb186b27040 FS: 00007f4a308d3740(0000) GS:ffff8cb89f440000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe4d634a68 CR3: 000000010b022000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mem_cgroup_force_empty_write+0x31/0xb0 cgroup_file_write+0x60/0x140 ? __check_object_size+0x136/0x147 kernfs_fop_write+0x10e/0x190 __vfs_write+0x37/0x1b0 ? selinux_file_permission+0xe8/0x130 ? security_file_permission+0x2e/0xb0 vfs_write+0xb6/0x1a0 ksys_write+0x57/0xd0 do_syscall_64+0x63/0x250 ? async_page_fault+0x8/0x30 entry_SYSCALL_64_after_hwframe+0x5c/0xc1 Modules linked in: ... It is found that in case of stock->nr_pages == 0, the memcg on stock->cached could be freed due to its refcnt decreased to 0, which made stock->cached become a dangling pointer. It could cause a UAF problem in drain_all_stock() in the following concurrent scenario. Note that drain_all_stock() doesn't disable irq but only preemption. CPU1 CPU2 ============================================================================== stock->cached = memcgA (freed) drain_all_stock(memcgB) rcu_read_lock() memcg = CPU1's stock->cached (memcgA) (interrupted) refill_stock(memcgC) drain_stock(memcgA) stock->cached = memcgC stock->nr_pages += xxx (> 0) stock->nr_pages > 0 mem_cgroup_is_descendant(memcgA, memcgB) [UAF] rcu_read_unlock() This problem is, unintentionally, fixed at 5.9, where commit 1a3e1f40962c ("mm: memcontrol: decouple reference counting from page accounting") adds memcg refcnt for stock. Therefore affected LTS versions include 4.19 and 5.4. For 4.19, memcg's css offline process doesn't call drain_all_stock(). so it's easier for the released memcg to be left on the stock. For 5.4, although mem_cgroup_css_offline() does call drain_all_stock(), but the flushing could be skipped when stock->nr_pages happens to be 0, and besides the async draining could be delayed and take place after the UAF problem has happened. Fix this problem by adding (and decreasing) memcg's refcnt when memcg is put onto (and removed from) stock, just like how commit 1a3e1f40962c ("mm: memcontrol: decouple reference counting from page accounting") does. After all, "being on the stock" is a kind of reference with regards to memcg. As such, it's guaranteed that a css on stock would not be freed. It's good to mention that refill_stock() is executed in an irq-disabled context, so the drain_stock() patched with css_put() would not actually free memcgA until the end of refill_stock(), since css_put() is an RCU free and it's still in grace period. For CPU2, the access to CPU1's stock->cached is protected by rcu_read_lock(), so in this case it gets either NULL from stock->cached or a memcgA that is still good. Cc: stable@vger.kernel.org # 4.19 5.4 Fixes: cdec2e4265df ("memcg: coalesce charging via percpu storage") Signed-off-by: GONG, Ruiqi <gongruiqi1@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-09treewide: Remove uninitialized_var() usageKees Cook
commit 3f649ab728cda8038259d8f14492fe400fbab911 upstream. Using uninitialized_var() is dangerous as it papers over real bugs[1] (or can in the future), and suppresses unrelated compiler warnings (e.g. "unused variable"). If the compiler thinks it is uninitialized, either simply initialize the variable or make compiler changes. In preparation for removing[2] the[3] macro[4], remove all remaining needless uses with the following script: git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \ xargs perl -pi -e \ 's/\buninitialized_var\(([^\)]+)\)/\1/g; s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;' drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid pathological white-space. No outstanding warnings were found building allmodconfig with GCC 9.3.0 for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64, alpha, and m68k. [1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/ [2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/ [3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/ [4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/ Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5 Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11mm: memcontrol: deprecate charge movingJohannes Weiner
commit da34a8484d162585e22ed8c1e4114aa2f60e3567 upstream. Charge moving mode in cgroup1 allows memory to follow tasks as they migrate between cgroups. This is, and always has been, a questionable thing to do - for several reasons. First, it's expensive. Pages need to be identified, locked and isolated from various MM operations, and reassigned, one by one. Second, it's unreliable. Once pages are charged to a cgroup, there isn't always a clear owner task anymore. Cache isn't moved at all, for example. Mapped memory is moved - but if trylocking or isolating a page fails, it's arbitrarily left behind. Frequent moving between domains may leave a task's memory scattered all over the place. Third, it isn't really needed. Launcher tasks can kick off workload tasks directly in their target cgroup. Using dedicated per-workload groups allows fine-grained policy adjustments - no need to move tasks and their physical pages between control domains. The feature was never forward-ported to cgroup2, and it hasn't been missed. Despite it being a niche usecase, the maintenance overhead of supporting it is enormous. Because pages are moved while they are live and subject to various MM operations, the synchronization rules are complicated. There are lock_page_memcg() in MM and FS code, which non-cgroup people don't understand. In some cases we've been able to shift code and cgroup API calls around such that we can rely on native locking as much as possible. But that's fragile, and sometimes we need to hold MM locks for longer than we otherwise would (pte lock e.g.). Mark the feature deprecated. Hopefully we can remove it soon. And backport into -stable kernels so that people who develop against earlier kernels are warned about this deprecation as early as possible. [akpm@linux-foundation.org: fix memory.rst underlining] Link: https://lkml.kernel.org/r/Y5COd+qXwk/S+n8N@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-14memcg: fix possible use-after-free in memcg_write_event_control()Tejun Heo
commit 4a7ba45b1a435e7097ca0f79a847d0949d0eb088 upstream. memcg_write_event_control() accesses the dentry->d_name of the specified control fd to route the write call. As a cgroup interface file can't be renamed, it's safe to access d_name as long as the specified file is a regular cgroup file. Also, as these cgroup interface files can't be removed before the directory, it's safe to access the parent too. Prior to 347c4a874710 ("memcg: remove cgroup_event->cft"), there was a call to __file_cft() which verified that the specified file is a regular cgroupfs file before further accesses. The cftype pointer returned from __file_cft() was no longer necessary and the commit inadvertently dropped the file type check with it allowing any file to slip through. With the invarients broken, the d_name and parent accesses can now race against renames and removals of arbitrary files and cause use-after-free's. Fix the bug by resurrecting the file type check in __file_cft(). Now that cgroupfs is implemented through kernfs, checking the file operations needs to go through a layer of indirection. Instead, let's check the superblock and dentry type. Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org Fixes: 347c4a874710 ("memcg: remove cgroup_event->cft") Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jann Horn <jannh@google.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> [3.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-15mm/memcontrol: return 1 from cgroup.memory __setup() handlerRandy Dunlap
commit 460a79e18842caca6fa0c415de4a3ac1e671ac50 upstream. __setup() handlers should return 1 if the command line option is handled and 0 if not (or maybe never return 0; it just pollutes init's environment). The only reason that this particular __setup handler does not pollute init's environment is that the setup string contains a '.', as in "cgroup.memory". This causes init/main.c::unknown_boottoption() to consider it to be an "Unused module parameter" and ignore it. (This is for parsing of loadable module parameters any time after kernel init.) Otherwise the string "cgroup.memory=whatever" would be added to init's environment strings. Instead of relying on this '.' quirk, just return 1 to indicate that the boot option has been handled. Note that there is no warning message if someone enters: cgroup.memory=anything_invalid Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org Fixes: f7e1cb6ec51b0 ("mm: memcontrol: account socket memory in unified hierarchy memory controller") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru> Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-26mm, memcg: avoid stale protection values when cgroup is above protectionYafang Shao
[ Upstream commit 22f7496f0b901249f23c5251eb8a10aae126b909 ] Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4. This series contains a fix for a edge case in my earlier protection calculation patches, and a patch to make the area overall a little more robust to hopefully help avoid this in future. This patch (of 2): A cgroup can have both memory protection and a memory limit to isolate it from its siblings in both directions - for example, to prevent it from being shrunk below 2G under high pressure from outside, but also from growing beyond 4G under low pressure. Commit 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") implemented proportional scan pressure so that multiple siblings in excess of their protection settings don't get reclaimed equally but instead in accordance to their unprotected portion. During limit reclaim, this proportionality shouldn't apply of course: there is no competition, all pressure is from within the cgroup and should be applied as such. Reclaim should operate at full efficiency. However, mem_cgroup_protected() never expected anybody to look at the effective protection values when it indicated that the cgroup is above its protection. As a result, a query during limit reclaim may return stale protection values that were calculated by a previous reclaim cycle in which the cgroup did have siblings. When this happens, reclaim is unnecessarily hesitant and potentially slow to meet the desired limit. In theory this could lead to premature OOM kills, although it's not obvious this has occurred in practice. Workaround the problem by special casing reclaim roots in mem_cgroup_protection. These memcgs are never participating in the reclaim protection because the reclaim is internal. We have to ignore effective protection values for reclaim roots because mem_cgroup_protected might be called from racing reclaim contexts with different roots. Calculation is relying on root -> leaf tree traversal therefore top-down reclaim protection invariants should hold. The only exception is the reclaim root which should have effective protection set to 0 but that would be problematic for the following setup: Let's have global and A's reclaim in parallel: | A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) |\ | C (low = 1G, usage = 2.5G) B (low = 1G, usage = 0.5G) for A reclaim we have B.elow = B.low C.elow = C.low For the global reclaim A.elow = A.low B.elow = min(B.usage, B.low) because children_low_usage <= A.elow C.elow = min(C.usage, C.low) With the effective values resetting we have A reclaim A.elow = 0 B.elow = B.low C.elow = C.low and global reclaim could see the above and then B.elow = C.elow = 0 because children_low_usage > A.elow Which means that protected memcgs would get reclaimed. In future we would like to make mem_cgroup_protected more robust against racing reclaim contexts but that is likely more complex solution than this simple workaround. [hannes@cmpxchg.org - large part of the changelog] [mhocko@suse.com - workaround explanation] [chris@chrisdown.name - retitle] Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-24mm: memcg/slab: fix root memcg vmstatsMuchun Song
commit 8faeb1ffd79593c9cd8a2a80ecdda371e3b826cb upstream. If we reparent the slab objects to the root memcg, when we free the slab object, we need to update the per-memcg vmstats to keep it correct for the root memcg. Now this at least affects the vmstat of NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is smaller than the PAGE_SIZE. David said: "I assume that without this fix that the root memcg's vmstat would always be inflated if we reparented" Fixes: ec9f02384f60 ("mm: workingset: fix vmstat counters for shadow nodes") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christopher Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Roman Gushchin <guro@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Cc: <stable@vger.kernel.org> [5.3+] Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-29mm/memcg: fix device private memcg accountingRalph Campbell
[ Upstream commit 9a137153fc8798a89d8fce895cd0a06ea5b8e37c ] The code in mc_handle_swap_pte() checks for non_swap_entry() and returns NULL before checking is_device_private_entry() so device private pages are never handled. Fix this by checking for non_swap_entry() after handling device private swap PTEs. I assume the memory cgroup accounting would be off somehow when moving a process to another memory cgroup. Currently, the device private page is charged like a normal anonymous page when allocated and is uncharged when the page is freed so I think that path is OK. Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com xFixes: c733a82874a7 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01mm: memcontrol: fix stat-corrupting race in charge movingJohannes Weiner
[ Upstream commit abb242f57196dbaa108271575353a0453f6834ef ] The move_lock is a per-memcg lock, but the VM accounting code that needs to acquire it comes from the page and follows page->mem_cgroup under RCU protection. That means that the page becomes unlocked not when we drop the move_lock, but when we update page->mem_cgroup. And that assignment doesn't imply any memory ordering. If that pointer write gets reordered against the reads of the page state - page_mapped, PageDirty etc. the state may change while we rely on it being stable and we can end up corrupting the counters. Place an SMP memory barrier to make sure we're done with all page state by the time the new page->mem_cgroup becomes visible. Also replace the open-coded move_lock with a lock_page_memcg() to make it more obvious what we're serializing against. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-29mm/memcg: fix refcount error while moving and swappingHugh Dickins
commit 8d22a9351035ef2ff12ef163a1091b8b8cf1e49c upstream. It was hard to keep a test running, moving tasks between memcgs with move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s refcount is discovered to be 0 (supposedly impossible), so it is then forced to REFCOUNT_SATURATED, and after thousands of warnings in quick succession, the test is at last put out of misery by being OOM killed. This is because of the way moved_swap accounting was saved up until the task move gets completed in __mem_cgroup_clear_mc(), deferred from when mem_cgroup_move_swap_account() actually exchanged old and new ids. Concurrent activity can free up swap quicker than the task is scanned, bringing id refcount down 0 (which should only be possible when offlining). Just skip that optimization: do that part of the accounting immediately. Fixes: 615d66c37c75 ("mm: memcontrol: fix memcg id ref counter on swap charge move") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007071431050.4726@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30mm/memcontrol.c: add missed css_put()Muchun Song
commit 3a98990ae2150277ed34d3b248c60e68bf2244b2 upstream. We should put the css reference when memory allocation failed. Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com Fixes: f0a3a24b532d ("mm: memcg/slab: rework non-root kmem_cache lifecycle management") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-14mm, memcg: fix error return value of mem_cgroup_css_alloc()Yafang Shao
commit 11d6761218d19ca06ae5387f4e3692c4fa9e7493 upstream. When I run my memcg testcase which creates lots of memcgs, I found there're unexpected out of memory logs while there're still enough available free memory. The error log is mkdir: cannot create directory 'foo.65533': Cannot allocate memory The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs, an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right errno should be -ENOSPC "No space left on device", which is an appropriate errno for userspace's failed mkdir. As the errno really misled me, we should make it right. After this patch, the error log will be mkdir: cannot create directory 'foo.65533': No space left on device [akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal] [akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal] Fixes: 73f576c04b94 ("mm: memcontrol: fix cgroup creation failure after many small jobs") Suggested-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17mm, memcg: do not high throttle allocators based on wraparoundJakub Kicinski
commit 9b8b17541f13809d06f6f873325305ddbb760e3e upstream. If a cgroup violates its memory.high constraints, we may end up unduly penalising it. For example, for the following hierarchy: A: max high, 20 usage A/B: 9 high, 10 usage A/C: max high, 10 usage We would end up doing the following calculation below when calculating high delay for A/B: A/B: 10 - 9 = 1... A: 20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21. This gets worse with higher disparities in usage in the parent. I have no idea how this disappeared from the final version of the patch, but it is certainly Not Good(tm). This wasn't obvious in testing because, for a simple cgroup hierarchy with only one child, the result is usually roughly the same. It's only in more complex hierarchies that things go really awry (although still, the effects are limited to a maximum of 2 seconds in schedule_timeout_killable at a maximum). [chris@chrisdown.name: changelog] Fixes: e26733e0d0ec ("mm, memcg: throttle allocators based on ancestral memory.high") Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [5.4.x] Link: http://lkml.kernel.org/r/20200331152424.GA1019937@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-01mm: fork: fix kernel_stack memcg stats for various stack implementationsRoman Gushchin
commit 8380ce479010f2f779587b462a9b4681934297c3 upstream. Depending on CONFIG_VMAP_STACK and the THREAD_SIZE / PAGE_SIZE ratio the space for task stacks can be allocated using __vmalloc_node_range(), alloc_pages_node() and kmem_cache_alloc_node(). In the first and the second cases page->mem_cgroup pointer is set, but in the third it's not: memcg membership of a slab page should be determined using the memcg_from_slab_page() function, which looks at page->slab_cache->memcg_params.memcg . In this case, using mod_memcg_page_state() (as in account_kernel_stack()) is incorrect: page->mem_cgroup pointer is NULL even for pages charged to a non-root memory cgroup. It can lead to kernel_stack per-memcg counters permanently showing 0 on some architectures (depending on the configuration). In order to fix it, let's introduce a mod_memcg_obj_state() helper, which takes a pointer to a kernel object as a first argument, uses mem_cgroup_from_obj() to get a RCU-protected memcg pointer and calls mod_memcg_state(). It allows to handle all possible configurations (CONFIG_VMAP_STACK and various THREAD_SIZE/PAGE_SIZE values) without spilling any memcg/kmem specifics into fork.c . Note: This is a special version of the patch created for stable backports. It contains code from the following two patches: - mm: memcg/slab: introduce mem_cgroup_from_obj() - mm: fork: fix kernel_stack memcg stats for various stack implementations [guro@fb.com: introduce mem_cgroup_from_obj()] Link: http://lkml.kernel.org/r/20200324004221.GA36662@carbon.dhcp.thefacebook.com Fixes: 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200303233550.251375-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25mm, memcg: throttle allocators based on ancestral memory.highChris Down
commit e26733e0d0ec6798eca93daa300bc3f43616127f upstream. Prior to this commit, we only directly check the affected cgroup's memory.high against its usage. However, it's possible that we are being reclaimed as a result of hitting an ancestor memory.high and should be penalised based on that, instead. This patch changes memory.high overage throttling to use the largest overage in its ancestors when considering how many penalty jiffies to charge. This makes sure that we penalise poorly behaving cgroups in the same way regardless of at what level of the hierarchy memory.high was breached. Fixes: 0e4b01df8659 ("mm, memcg: throttle allocators when failing reclaim over memory.high") Reported-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> [5.4.x+] Link: http://lkml.kernel.org/r/8cd132f84bd7e16cdb8fde3378cdbf05ba00d387.1584036142.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25mm, memcg: fix corruption on 64-bit divisor in memory.high throttlingChris Down
commit d397a45fc741c80c32a14e2de008441e9976f50c upstream. Commit 0e4b01df8659 had a bunch of fixups to use the right division method. However, it seems that after all that it still wasn't right -- div_u64 takes a 32-bit divisor. The headroom is still large (2^32 pages), so on mundane systems you won't hit this, but this should definitely be fixed. Fixes: 0e4b01df8659 ("mm, memcg: throttle allocators when failing reclaim over memory.high") Reported-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: <stable@vger.kernel.org> [5.4.x+] Link: http://lkml.kernel.org/r/80780887060514967d414b3cd91f9a316a16ab98.1584036142.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25memcg: fix NULL pointer dereference in __mem_cgroup_usage_unregister_eventChunguang Xu
commit 7d36665a5886c27ca4c4d0afd3ecc50b400f3587 upstream. An eventfd monitors multiple memory thresholds of the cgroup, closes them, the kernel deletes all events related to this eventfd. Before all events are deleted, another eventfd monitors the memory threshold of this cgroup, leading to a crash: BUG: kernel NULL pointer dereference, address: 0000000000000004 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0 Oops: 0002 [#1] SMP PTI CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3 Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014 Workqueue: events memcg_event_remove RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190 RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001 RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001 RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010 R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880 R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000 FS:  0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0 Call Trace: memcg_event_remove+0x32/0x90 process_one_work+0x172/0x380 worker_thread+0x49/0x3f0 kthread+0xf8/0x130 ret_from_fork+0x35/0x40 CR2: 0000000000000004 We can reproduce this problem in the following ways: 1. We create a new cgroup subdirectory and a new eventfd, and then we monitor multiple memory thresholds of the cgroup through this eventfd. 2. closing this eventfd, and __mem_cgroup_usage_unregister_event () will be called multiple times to delete all events related to this eventfd. The first time __mem_cgroup_usage_unregister_event() is called, the kernel will clear all items related to this eventfd in thresholds-> primary. Since there is currently only one eventfd, thresholds-> primary becomes empty, so the kernel will set thresholds-> primary and hresholds-> spare to NULL. If at this time, the user creates a new eventfd and monitor the memory threshold of this cgroup, kernel will re-initialize thresholds-> primary. Then when __mem_cgroup_usage_unregister_event () is called for the second time, because thresholds-> primary is not empty, the system will access thresholds-> spare, but thresholds-> spare is NULL, which will trigger a crash. In general, the longer it takes to delete all events related to this eventfd, the easier it is to trigger this problem. The solution is to check whether the thresholds associated with the eventfd has been cleared when deleting the event. If so, we do nothing. [akpm@linux-foundation.org: fix comment, per Kirill] Fixes: 907860ed381a ("cgroups: make cftype.unregister_event() void-returning") Signed-off-by: Chunguang Xu <brookxu@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18net: memcg: late association of sock to memcgShakeel Butt
[ Upstream commit d752a4986532cb6305dfd5290a614cde8072769d ] If a TCP socket is allocated in IRQ context or cloned from unassociated (i.e. not associated to a memcg) in IRQ context then it will remain unassociated for its whole life. Almost half of the TCPs created on the system are created in IRQ context, so, memory used by such sockets will not be accounted by the memcg. This issue is more widespread in cgroup v1 where network memory accounting is opt-in but it can happen in cgroup v2 if the source socket for the cloning was created in root memcg. To fix the issue, just do the association of the sockets at the accept() time in the process context and then force charge the memory buffer already used and reserved by the socket. Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18cgroup: memcg: net: do not associate sock with unrelated cgroupShakeel Butt
[ Upstream commit e876ecc67db80dfdb8e237f71e5b43bb88ae549c ] We are testing network memory accounting in our setup and noticed inconsistent network memory usage and often unrelated cgroups network usage correlates with testing workload. On further inspection, it seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in irq context specially for cgroup v1. mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context and kind of assumes that this can only happen from sk_clone_lock() and the source sock object has already associated cgroup. However in cgroup v1, where network memory accounting is opt-in, the source sock can be unassociated with any cgroup and the new cloned sock can get associated with unrelated interrupted cgroup. Cgroup v2 can also suffer if the source sock object was created by process in the root cgroup or if sk_alloc() is called in irq context. The fix is to just do nothing in interrupt. WARNING: Please note that about half of the TCP sockets are allocated from the IRQ context, so, memory used by such sockets will not be accouted by the memcg. The stack trace of mem_cgroup_sk_alloc() from IRQ-context: CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1 Hardware name: ... Call Trace: <IRQ> dump_stack+0x57/0x75 mem_cgroup_sk_alloc+0xe9/0xf0 sk_clone_lock+0x2a7/0x420 inet_csk_clone_lock+0x1b/0x110 tcp_create_openreq_child+0x23/0x3b0 tcp_v6_syn_recv_sock+0x88/0x730 tcp_check_req+0x429/0x560 tcp_v6_rcv+0x72d/0xa40 ip6_protocol_deliver_rcu+0xc9/0x400 ip6_input+0x44/0xd0 ? ip6_protocol_deliver_rcu+0x400/0x400 ip6_rcv_finish+0x71/0x80 ipv6_rcv+0x5b/0xe0 ? ip6_sublist_rcv+0x2e0/0x2e0 process_backlog+0x108/0x1e0 net_rx_action+0x26b/0x460 __do_softirq+0x104/0x2a6 do_softirq_own_stack+0x2a/0x40 </IRQ> do_softirq.part.19+0x40/0x50 __local_bh_enable_ip+0x51/0x60 ip6_finish_output2+0x23d/0x520 ? ip6table_mangle_hook+0x55/0x160 __ip6_finish_output+0xa1/0x100 ip6_finish_output+0x30/0xd0 ip6_output+0x73/0x120 ? __ip6_finish_output+0x100/0x100 ip6_xmit+0x2e3/0x600 ? ipv6_anycast_cleanup+0x50/0x50 ? inet6_csk_route_socket+0x136/0x1e0 ? skb_free_head+0x1e/0x30 inet6_csk_xmit+0x95/0xf0 __tcp_transmit_skb+0x5b4/0xb20 __tcp_send_ack.part.60+0xa3/0x110 tcp_send_ack+0x1d/0x20 tcp_rcv_state_process+0xe64/0xe80 ? tcp_v6_connect+0x5d1/0x5f0 tcp_v6_do_rcv+0x1b1/0x3f0 ? tcp_v6_do_rcv+0x1b1/0x3f0 __release_sock+0x7f/0xd0 release_sock+0x30/0xa0 __inet_stream_connect+0x1c3/0x3b0 ? prepare_to_wait+0xb0/0xb0 inet_stream_connect+0x3b/0x60 __sys_connect+0x101/0x120 ? __sys_getsockopt+0x11b/0x140 __x64_sys_connect+0x1a/0x20 do_syscall_64+0x51/0x200 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The stack trace of mem_cgroup_sk_alloc() from IRQ-context: Fixes: 2d7580738345 ("mm: memcontrol: consolidate cgroup socket tracking") Fixes: d979a39d7242 ("cgroup: duplicate cgroup reference when cloning sockets") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28mm/memcontrol.c: lost css_put in memcg_expand_shrinker_maps()Vasily Averin
commit 75866af62b439859d5146b7093ceb6b482852683 upstream. for_each_mem_cgroup() increases css reference counter for memory cgroup and requires to use mem_cgroup_iter_break() if the walk is cancelled. Link: http://lkml.kernel.org/r/c98414fb-7e1f-da0f-867a-9340ec4bd30b@virtuozzo.com Fixes: 0a4465d34028 ("mm, memcg: assign memcg-aware shrinkers bitmap to memcg") Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11mm: thp: don't need care deferred split queue in memcg charge move pathWei Yang
commit fac0516b5534897bf4c4a88daa06a8cfa5611b23 upstream. If compound is true, this means it is a PMD mapped THP. Which implies the page is not linked to any defer list. So the first code chunk will not be executed. Also with this reason, it would not be proper to add this page to a defer list. So the second code chunk is not correct. Based on this, we should remove the defer list related code. [yang.shi@linux.alibaba.com: better patch title] Link: http://lkml.kernel.org/r/20200117233836.3434-1-richardw.yang@linux.intel.com Fixes: 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware") Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [5.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23mm: memcg/slab: fix percpu slab vmstats flushingRoman Gushchin
commit 4a87e2a25dc27131c3cce5e94421622193305638 upstream. Currently slab percpu vmstats are flushed twice: during the memcg offlining and just before freeing the memcg structure. Each time percpu counters are summed, added to the atomic counterparts and propagated up by the cgroup tree. The second flushing is required due to how recursive vmstats are implemented: counters are batched in percpu variables on a local level, and once a percpu value is crossing some predefined threshold, it spills over to atomic values on the local and each ascendant levels. It means that without flushing some numbers cached in percpu variables will be dropped on floor each time a cgroup is destroyed. And with uptime the error on upper levels might become noticeable. The first flushing aims to make counters on ancestor levels more precise. Dying cgroups may resume in the dying state for a long time. After kmem_cache reparenting which is performed during the offlining slab counters of the dying cgroup don't have any chances to be updated, because any slab operations will be performed on the parent level. It means that the inaccuracy caused by percpu batching will not decrease up to the final destruction of the cgroup. By the original idea flushing slab counters during the offlining should minimize the visible inaccuracy of slab counters on the parent level. The problem is that percpu counters are not zeroed after the first flushing. So every cached percpu value is summed twice. It creates a small error (up to 32 pages per cpu, but usually less) which accumulates on parent cgroup level. After creating and destroying of thousands of child cgroups, slab counter on parent level can be way off the real value. For now, let's just stop flushing slab counters on memcg offlining. It can't be done correctly without scheduling a work on each cpu: reading and zeroing it during css offlining can race with an asynchronous update, which doesn't expect values to be changed underneath. With this change, slab counters on parent level will become eventually consistent. Once all dying children are gone, values are correct. And if not, the error is capped by 32 * NR_CPUS pages per dying cgroup. It's not perfect, as slab are reparented, so any updates after the reparenting will happen on the parent level. It means that if a slab page was allocated, a counter on child level was bumped, then the page was reparented and freed, the annihilation of positive and negative counter values will not happen until the child cgroup is released. It makes slab counters different from others, and it might want us to implement flushing in a correct form again. But it's also a question of performance: scheduling a work on each cpu isn't free, and it's an open question if the benefit of having more accurate counters is worth it. We might also consider flushing all counters on offlining, not only slab counters. So let's fix the main problem now: make the slab counters eventually consistent, so at least the error won't grow with uptime (or more precisely the number of created and destroyed cgroups). And think about the accuracy of counters separately. Link: http://lkml.kernel.org/r/20191220042728.1045881-1-guro@fb.com Fixes: bee07b33db78 ("mm: memcontrol: flush percpu slab vmstats on kmem offlining") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-15mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()Roman Gushchin
We've encountered a rcu stall in get_mem_cgroup_from_mm(): rcu: INFO: rcu_sched self-detected stall on CPU rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017 (t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33 <...> RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90 <...> __memcg_kmem_charge+0x55/0x140 __alloc_pages_nodemask+0x267/0x320 pipe_write+0x1ad/0x400 new_sync_write+0x127/0x1c0 __kernel_write+0x4f/0xf0 dump_emit+0x91/0xc0 writenote+0xa0/0xc0 elf_core_dump+0x11af/0x1430 do_coredump+0xc65/0xee0 get_signal+0x132/0x7c0 do_signal+0x36/0x640 exit_to_usermode_loop+0x61/0xd0 do_syscall_64+0xd4/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The problem is caused by an exiting task which is associated with an offline memcg. We're iterating over and over in the do {} while (!css_tryget_online()) loop, but obviously the memcg won't become online and the exiting task won't be migrated to a live memcg. Let's fix it by switching from css_tryget_online() to css_tryget(). As css_tryget_online() cannot guarantee that the memcg won't go offline, the check is usually useless, except some rare cases when for example it determines if something should be presented to a user. A similar problem is described by commit 18fa84a2db0e ("cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()"). Johannes: : The bug aside, it doesn't matter whether the cgroup is online for the : callers. It used to matter when offlining needed to evacuate all charges : from the memcg, and so needed to prevent new ones from showing up, but we : don't care now. Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Shakeel Butt <shakeeb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06mm: memcontrol: fix network errors from failing __GFP_ATOMIC chargesJohannes Weiner
While upgrading from 4.16 to 5.2, we noticed these allocation errors in the log of the new kernel: SLUB: Unable to allocate memory on node -1, gfp=0xa20(GFP_ATOMIC) cache: tw_sock_TCPv6(960:helper-logs), object size: 232, buffer size: 240, default order: 1, min order: 0 node 0: slabs: 5, objs: 170, free: 0 slab_out_of_memory+1 ___slab_alloc+969 __slab_alloc+14 kmem_cache_alloc+346 inet_twsk_alloc+60 tcp_time_wait+46 tcp_fin+206 tcp_data_queue+2034 tcp_rcv_state_process+784 tcp_v6_do_rcv+405 __release_sock+118 tcp_close+385 inet_release+46 __sock_release+55 sock_close+17 __fput+170 task_work_run+127 exit_to_usermode_loop+191 do_syscall_64+212 entry_SYSCALL_64_after_hwframe+68 accompanied by an increase in machines going completely radio silent under memory pressure. One thing that changed since 4.16 is e699e2c6a654 ("net, mm: account sock objects to kmemcg"), which made these slab caches subject to cgroup memory accounting and control. The problem with that is that cgroups, unlike the page allocator, do not maintain dedicated atomic reserves. As a cgroup's usage hovers at its limit, atomic allocations - such as done during network rx - can fail consistently for extended periods of time. The kernel is not able to operate under these conditions. We don't want to revert the culprit patch, because it indeed tracks a potentially substantial amount of memory used by a cgroup. We also don't want to implement dedicated atomic reserves for cgroups. There is no point in keeping a fixed margin of unused bytes in the cgroup's memory budget to accomodate a consumer that is impossible to predict - we'd be wasting memory and get into configuration headaches, not unlike what we have going with min_free_kbytes. We do this for physical mem because we have to, but cgroups are an accounting game. Instead, account these privileged allocations to the cgroup, but let them bypass the configured limit if they have to. This way, we get the benefits of accounting the consumed memory and have it exert pressure on the rest of the cgroup, but like with the page allocator, we shift the burden of reclaimining on behalf of atomic allocations onto the regular allocations that can block. Link: http://lkml.kernel.org/r/20191022233708.365764-1-hannes@cmpxchg.org Fixes: e699e2c6a654 ("net, mm: account sock objects to kmemcg") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> [4.18+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06mm: slab: make page_cgroup_ino() to recognize non-compound slab pages properlyRoman Gushchin
page_cgroup_ino() doesn't return a valid memcg pointer for non-compound slab pages, because it depends on PgHead AND PgSlab flags to be set to determine the memory cgroup from the kmem_cache. It's correct for compound pages, but not for generic small pages. Those don't have PgHead set, so it ends up returning zero. Fix this by replacing the condition to PageSlab() && !PageTail(). Before this patch: [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab 0x0000000000000080 38 0 _______S___________________________________ slab After this patch: [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab 0x0000000000000080 147 0 _______S___________________________________ slab Also, hwpoison_filter_task() uses output of page_cgroup_ino() in order to filter error injection events based on memcg. So if page_cgroup_ino() fails to return memcg pointer, we just fail to inject memory error. Considering that hwpoison filter is for testing, affected users are limited and the impact should be marginal. [n-horiguchi@ah.jp.nec.com: changelog additions] Link: http://lkml.kernel.org/r/20191031012151.2722280-1-guro@fb.com Fixes: 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06mm: memcontrol: fix NULL-ptr deref in percpu stats flushShakeel Butt
__mem_cgroup_free() can be called on the failure path in mem_cgroup_alloc(). However memcg_flush_percpu_vmstats() and memcg_flush_percpu_vmevents() which are called from __mem_cgroup_free() access the fields of memcg which can potentially be null if called from failure path from mem_cgroup_alloc(). Indeed syzbot has reported the following crash: kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 30393 Comm: syz-executor.1 Not tainted 5.4.0-rc2+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:memcg_flush_percpu_vmstats+0x4ae/0x930 mm/memcontrol.c:3436 Code: 05 41 89 c0 41 0f b6 04 24 41 38 c7 7c 08 84 c0 0f 85 5d 03 00 00 44 3b 05 33 d5 12 08 0f 83 e2 00 00 00 4c 89 f0 48 c1 e8 03 <42> 80 3c 28 00 0f 85 91 03 00 00 48 8b 85 10 fe ff ff 48 8b b0 90 RSP: 0018:ffff888095c27980 EFLAGS: 00010206 RAX: 0000000000000012 RBX: ffff888095c27b28 RCX: ffffc90008192000 RDX: 0000000000040000 RSI: ffffffff8340fae7 RDI: 0000000000000007 RBP: ffff888095c27be0 R08: 0000000000000000 R09: ffffed1013f0da33 R10: ffffed1013f0da32 R11: ffff88809f86d197 R12: fffffbfff138b760 R13: dffffc0000000000 R14: 0000000000000090 R15: 0000000000000007 FS: 00007f5027170700(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000710158 CR3: 00000000a7b18000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __mem_cgroup_free+0x1a/0x190 mm/memcontrol.c:5021 mem_cgroup_free mm/memcontrol.c:5033 [inline] mem_cgroup_css_alloc+0x3a1/0x1ae0 mm/memcontrol.c:5160 css_create kernel/cgroup/cgroup.c:5156 [inline] cgroup_apply_control_enable+0x44d/0xc40 kernel/cgroup/cgroup.c:3119 cgroup_mkdir+0x899/0x11b0 kernel/cgroup/cgroup.c:5401 kernfs_iop_mkdir+0x14d/0x1d0 fs/kernfs/dir.c:1124 vfs_mkdir+0x42e/0x670 fs/namei.c:3807 do_mkdirat+0x234/0x2a0 fs/namei.c:3830 __do_sys_mkdir fs/namei.c:3846 [inline] __se_sys_mkdir fs/namei.c:3844 [inline] __x64_sys_mkdir+0x5c/0x80 fs/namei.c:3844 do_syscall_64+0xfa/0x760 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Fixing this by moving the flush to mem_cgroup_free as there is no need to flush anything if we see failure in mem_cgroup_alloc(). Link: http://lkml.kernel.org/r/20191018165231.249872-1-shakeelb@google.com Fixes: bb65f89b7d3d ("mm: memcontrol: flush percpu vmevents before releasing memcg") Fixes: c350a99ea2b1 ("mm: memcontrol: flush percpu vmstats before releasing memcg") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: syzbot+515d5bcfe179cdf049b2@syzkaller.appspotmail.com Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19mm/memcontrol: update lruvec counters in mem_cgroup_move_accountKonstantin Khlebnikov
Mapped, dirty and writeback pages are also counted in per-lruvec stats. These counters needs update when page is moved between cgroups. Currently is nobody *consuming* the lruvec versions of these counters and that there is no user-visible effect. Link: http://lkml.kernel.org/r/157112699975.7360.1062614888388489788.stgit@buzz Fixes: 00f3ca2c2d66 ("mm: memcontrol: per-lruvec stats infrastructure") Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07mm, memcg: proportional memory.{low,min} reclaimChris Down
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-25memcg, kmem: do not fail __GFP_NOFAIL chargesMichal Hocko
Thomas has noticed the following NULL ptr dereference when using cgroup v1 kmem limit: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42 Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015 RIP: 0010:create_empty_buffers+0x24/0x100 Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149 RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00 RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000 FS: 00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0 Call Trace: create_page_buffers+0x4d/0x60 __block_write_begin_int+0x8e/0x5a0 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0 ? jbd2__journal_start+0xd7/0x1f0 ext4_da_write_begin+0x112/0x3d0 generic_perform_write+0xf1/0x1b0 ? file_update_time+0x70/0x140 __generic_file_write_iter+0x141/0x1a0 ext4_file_write_iter+0xef/0x3b0 __vfs_write+0x17e/0x1e0 vfs_write+0xa5/0x1a0 ksys_write+0x57/0xd0 do_syscall_64+0x55/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg fails __GFP_NOFAIL charge when the kmem limit is reached. This is a wrong behavior because nofail allocations are not allowed to fail. Normal charge path simply forces the charge even if that means to cross the limit. Kmem accounting should be doing the same. Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com> Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm: thp: make deferred split shrinker memcg awareYang Shi
Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm: shrinker: make shrinker not depend on memcg kmemYang Shi
Currently shrinker is just allocated and can work when memcg kmem is enabled. But, THP deferred split shrinker is not slab shrinker, it doesn't make too much sense to have such shrinker depend on memcg kmem. It should be able to reclaim THP even though memcg kmem is disabled. Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker. When memcg kmem is disabled, just such shrinkers can be called in shrinking memcg slab. [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24memcg, kmem: deprecate kmem.limit_in_bytesMichal Hocko
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users which turned out to be really a bad idea because there are paths which cannot shrink the kernel memory usage enough to get below the limit (e.g. because the accounted memory is not reclaimable). There are cases when the failure is even not allowed (e.g. __GFP_NOFAIL). This means that the kmem limit is in excess to the hard limit without any way to shrink and thus completely useless. OOM killer cannot be invoked to handle the situation because that would lead to a premature oom killing. As a result many places might see ENOMEM returning from kmalloc and result in unexpected errors. E.g. a global OOM killer when there is a lot of free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and therefore pagefault_out_of_memory would result in OOM killer. Please note that the kernel memory is still accounted to the overall limit along with the user memory so removing the kmem specific limit should still allow to contain kernel memory consumption. Unlike the kmem one, though, it invokes memory reclaim and targeted memcg oom killing if necessary. Start the deprecation process by crying to the kernel log. Let's see whether there are relevant usecases and simply return to EINVAL in the second stage if nobody complains in few releases. [akpm@linux-foundation.org: tweak documentation text] Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm/memcontrol.c: fix a -Wunused-function warningQian Cai
mem_cgroup_id_get() was introduced in commit 73f576c04b94 ("mm:memcontrol: fix cgroup creation failure after many small jobs"). Later, it no longer has any user since the commits, 1f47b61fb407 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup") 58fa2a5512d9 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put") so safe to remove it. Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm: memcontrol: switch to rcu protection in drain_all_stock()Roman Gushchin
Commit 72f0184c8a00 ("mm, memcg: remove hotplug locking from try_charge") introduced css_tryget()/css_put() calls in drain_all_stock(), which are supposed to protect the target memory cgroup from being released during the mem_cgroup_is_descendant() call. However, it's not completely safe. In theory, memcg can go away between reading stock->cached pointer and calling css_tryget(). This can happen if drain_all_stock() races with drain_local_stock() performed on the remote cpu as a result of a work, scheduled by the previous invocation of drain_all_stock(). The race is a bit theoretical and there are few chances to trigger it, but the current code looks a bit confusing, so it makes sense to fix it anyway. The code looks like as if css_tryget() and css_put() are used to protect stocks drainage. It's not necessary because stocked pages are holding references to the cached cgroup. And it obviously won't work for works, scheduled on other cpus. So, let's read the stock->cached pointer and evaluate the memory cgroup inside a rcu read section, and get rid of css_tryget()/css_put() calls. Link: http://lkml.kernel.org/r/20190802192241.3253165-1-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm, memcg: throttle allocators when failing reclaim over memory.highChris Down
We're trying to use memory.high to limit workloads, but have found that containment can frequently fail completely and cause OOM situations outside of the cgroup. This happens especially with swap space -- either when none is configured, or swap is full. These failures often also don't have enough warning to allow one to react, whether for a human or for a daemon monitoring PSI. Here is output from a simple program showing how long it takes in usec (column 2) to allocate a megabyte of anonymous memory (column 1) when a cgroup is already beyond its memory high setting, and no swap is available: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1035 96 1038 97 1000 98 1036 99 1048 100 1590 101 1968 102 1776 103 1863 104 1757 105 1921 106 1893 107 1760 108 1748 109 1843 110 1716 111 1924 112 1776 113 1831 114 1766 115 1836 116 1588 117 1912 118 1802 119 1857 120 1731 [...] [System OOM in 2-3 seconds] The delay does go up extremely marginally past the 100MB memory.high threshold, as now we spend time scanning before returning to usermode, but it's nowhere near enough to contain growth. It also doesn't get worse the more pages you have, since it only considers nr_pages. The current situation goes against both the expectations of users of memory.high, and our intentions as cgroup v2 developers. In cgroup-v2.txt, we claim that we will throttle and only under "extreme conditions" will memory.high protection be breached. Likewise, cgroup v2 users generally also expect that memory.high should throttle workloads as they exceed their high threshold. However, as seen above, this isn't always how it works in practice -- even on banal setups like those with no swap, or where swap has become exhausted, we can end up with memory.high being breached and us having no weapons left in our arsenal to combat runaway growth with, since reclaim is futile. It's also hard for system monitoring software or users to tell how bad the situation is, as "high" events for the memcg may in some cases be benign, and in others be catastrophic. The current status quo is that we fail containment in a way that doesn't provide any advance warning that things are about to go horribly wrong (for example, we are about to invoke the kernel OOM killer). This patch introduces explicit throttling when reclaim is failing to keep memcg size contained at the memory.high setting. It does so by applying an exponential delay curve derived from the memcg's overage compared to memory.high. In the normal case where the memcg is either below or only marginally over its memory.high setting, no throttling will be performed. This composes well with system health monitoring and remediation, as these allocator delays are factored into PSI's memory pressure calculations. This both creates a mechanism system administrators or applications consuming the PSI interface to trivially see that the memcg in question is struggling and use that to make more reasonable decisions, and permits them enough time to act. Either of these can act with significantly more nuance than that we can provide using the system OOM killer. This is a similar idea to memory.oom_control in cgroup v1 which would put the cgroup to sleep if the threshold was violated, but it's also significantly improved as it results in visible memory pressure, and also doesn't schedule indefinitely, which previously made tracing and other introspection difficult (ie. it's clamped at 2*HZ per allocation through MEMCG_MAX_HIGH_DELAY_JIFFIES). Contrast the previous results with a kernel with this patch: [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > --wait -t timeout 300 /root/mdf [...] 95 1002 96 1000 97 1002 98 1003 99 1000 100 1043 101 84724 102 330628 103 610511 104 1016265 105 1503969 106 2391692 107 2872061 108 3248003 109 4791904 110 5759832 111 6912509 112 8127818 113 9472203 114 12287622 115 12480079 116 14144008 117 15808029 118 16384500 119 16383242 120 16384979 [...] As you can see, in the normal case, memory allocation takes around 1000 usec. However, as we exceed our memory.high, things start to increase exponentially, but fairly leniently at first. Our first megabyte over memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the next is almost an entire second. This gets worse until we reach our eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte. However, this is still making forward progress, so permits tracing or further analysis with programs like GDB. We use an exponential curve for our delay penalty for a few reasons: 1. We run mem_cgroup_handle_over_high to potentially do reclaim after we've already performed allocations, which means that temporarily going over memory.high by a small amount may be perfectly legitimate, even for compliant workloads. We don't want to unduly penalise such cases. 2. An exponential curve (as opposed to a static or linear delay) allows ramping up memory pressure stats more gradually, which can be useful to work out that you have set memory.high too low, without destroying application performance entirely. This patch expands on earlier work by Johannes Weiner. Thanks! [akpm@linux-foundation.org: fix max() warning] [akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit] [akpm@linux-foundation.org: fix it even more] [chris@chrisdown.name: fix 64-bit divide even more] Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24mm: introduce compound_nr()Matthew Wilcox (Oracle)
Replace 1 << compound_order(page) with compound_nr(page). Minor improvements in readability. Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-21Merge tag 'for-linus-hmm' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull hmm updates from Jason Gunthorpe: "This is more cleanup and consolidation of the hmm APIs and the very strongly related mmu_notifier interfaces. Many places across the tree using these interfaces are touched in the process. Beyond that a cleanup to the page walker API and a few memremap related changes round out the series: - General improvement of hmm_range_fault() and related APIs, more documentation, bug fixes from testing, API simplification & consolidation, and unused API removal - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and make them internal kconfig selects - Hoist a lot of code related to mmu notifier attachment out of drivers by using a refcount get/put attachment idiom and remove the convoluted mmu_notifier_unregister_no_release() and related APIs. - General API improvement for the migrate_vma API and revision of its only user in nouveau - Annotate mmu_notifiers with lockdep and sleeping region debugging Two series unrelated to HMM or mmu_notifiers came along due to dependencies: - Allow pagemap's memremap_pages family of APIs to work without providing a struct device - Make walk_page_range() and related use a constant structure for function pointers" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits) libnvdimm: Enable unit test infrastructure compile checks mm, notifier: Catch sleeping/blocking for !blockable kernel.h: Add non_block_start/end() drm/radeon: guard against calling an unpaired radeon_mn_unregister() csky: add missing brackets in a macro for tlb.h pagewalk: use lockdep_assert_held for locking validation pagewalk: separate function pointers from iterator data mm: split out a new pagewalk.h header from mm.h mm/mmu_notifiers: annotate with might_sleep() mm/mmu_notifiers: prime lockdep mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports mm/hmm: hmm_range_fault() infinite loop mm/hmm: hmm_range_fault() NULL pointer bug mm/hmm: fix hmm_range_fault()'s handling of swapped out pages mm/mmu_notifiers: remove unregister_no_release RDMA/odp: remove ib_ucontext from ib_umem RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm' RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr RDMA/mlx5: Use ib_umem_start instead of umem.address ...
2019-09-17Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block updates from Jens Axboe: - Two NVMe pull requests: - ana log parse fix from Anton - nvme quirks support for Apple devices from Ben - fix missing bio completion tracing for multipath stack devices from Hannes and Mikhail - IP TOS settings for nvme rdma and tcp transports from Israel - rq_dma_dir cleanups from Israel - tracing for Get LBA Status command from Minwoo - Some nvme-tcp cleanups from Minwoo, Potnuri and Myself - Some consolidation between the fabrics transports for handling the CAP register - reset race with ns scanning fix for fabrics (move fabrics commands to a dedicated request queue with a different lifetime from the admin request queue)." - controller reset and namespace scan races fixes - nvme discovery log change uevent support - naming improvements from Keith - multiple discovery controllers reject fix from James - some regular cleanups from various people - Series fixing (and re-fixing) null_blk debug printing and nr_devices checks (André) - A few pull requests from Song, with fixes from Andy, Guoqing, Guilherme, Neil, Nigel, and Yufen. - REQ_OP_ZONE_RESET_ALL support (Chaitanya) - Bio merge handling unification (Christoph) - Pick default elevator correctly for devices with special needs (Damien) - Block stats fixes (Hou) - Timeout and support devices nbd fixes (Mike) - Series fixing races around elevator switching and device add/remove (Ming) - sed-opal cleanups (Revanth) - Per device weight support for BFQ (Fam) - Support for blk-iocost, a new model that can properly account cost of IO workloads. (Tejun) - blk-cgroup writeback fixes (Tejun) - paride queue init fixes (zhengbin) - blk_set_runtime_active() cleanup (Stanley) - Block segment mapping optimizations (Bart) - lightnvm fixes (Hans/Minwoo/YueHaibing) - Various little fixes and cleanups * tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits) null_blk: format pr_* logs with pr_fmt null_blk: match the type of parameter nr_devices null_blk: do not fail the module load with zero devices block: also check RQF_STATS in blk_mq_need_time_stamp() block: make rq sector size accessible for block stats bfq: Fix bfq linkage error raid5: use bio_end_sector in r5_next_bio raid5: remove STRIPE_OPS_REQ_PENDING md: add feature flag MD_FEATURE_RAID0_LAYOUT md/raid0: avoid RAID0 data corruption due to layout confusion. raid5: don't set STRIPE_HANDLE to stripe which is in batch list raid5: don't increment read_errors on EILSEQ return nvmet: fix a wrong error status returned in error log page nvme: send discovery log page change events to userspace nvme: add uevent variables for controller devices nvme: enable aen regardless of the presence of I/O queues nvme-fabrics: allow discovery subsystems accept a kato nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery() nvme: Remove redundant assignment of cq vector nvme: Assign subsys instance from first ctrl ...
2019-09-07pagewalk: separate function pointers from iterator dataChristoph Hellwig
The mm_walk structure currently mixed data and code. Split out the operations vectors into a new mm_walk_ops structure, and while we are changing the API also declare the mm_walk structure inside the walk_page_range and walk_page_vma functions. Based on patch from Linus Torvalds. Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Steven Price <steven.price@arm.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07mm: split out a new pagewalk.h header from mm.hChristoph Hellwig
Add a new header for the two handful of users of the walk_page_range / walk_page_vma interface instead of polluting all users of mm.h with it. Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Steven Price <steven.price@arm.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-30mm: memcontrol: fix percpu vmstats and vmevents flushShakeel Butt
Instead of using raw_cpu_read() use per_cpu() to read the actual data of the corresponding cpu otherwise we will be reading the data of the current cpu for the number of online CPUs. Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com Fixes: bb65f89b7d3d ("mm: memcontrol: flush percpu vmevents before releasing memcg") Fixes: c350a99ea2b1 ("mm: memcontrol: flush percpu vmstats before releasing memcg") Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30mm, memcg: partially revert "mm/memcontrol.c: keep local VM counters in sync ↵Roman Gushchin
with the hierarchical ones" Commit 766a4c19d880 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones") effectively decreased the precision of per-memcg vmstats_local and per-memcg-per-node lruvec percpu counters. That's good for displaying in memory.stat, but brings a serious regression into the reclaim process. One issue I've discovered and debugged is the following: lruvec_lru_size() can return 0 instead of the actual number of pages in the lru list, preventing the kernel to reclaim last remaining pages. Result is yet another dying memory cgroups flooding. The opposite is also happening: scanning an empty lru list is the waste of cpu time. Also, inactive_list_is_low() can return incorrect values, preventing the active lru from being scanned and freed. It can fail both because the size of active and inactive lists are inaccurate, and because the number of workingset refaults isn't precise. In other words, the result is pretty random. I'm not sure, if using the approximate number of slab pages in count_shadow_number() is acceptable, but issues described above are enough to partially revert the patch. Let's keep per-memcg vmstat_local batched (they are only used for displaying stats to the userspace), but keep lruvec stats precise. This change fixes the dead memcg flooding on my setup. Link: http://lkml.kernel.org/r/20190817004726.2530670-1-guro@fb.com Fixes: 766a4c19d880 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30mm: memcontrol: flush percpu slab vmstats on kmem offliningRoman Gushchin
I've noticed that the "slab" value in memory.stat is sometimes 0, even if some children memory cgroups have a non-zero "slab" value. The following investigation showed that this is the result of the kmem_cache reparenting in combination with the per-cpu batching of slab vmstats. At the offlining some vmstat value may leave in the percpu cache, not being propagated upwards by the cgroup hierarchy. It means that stats on ancestor levels are lower than actual. Later when slab pages are released, the precise number of pages is substracted on the parent level, making the value negative. We don't show negative values, 0 is printed instead. To fix this issue, let's flush percpu slab memcg and lruvec stats on memcg offlining. This guarantees that numbers on all ancestor levels are accurate and match the actual number of outstanding slab pages. Link: http://lkml.kernel.org/r/20190819202338.363363-3-guro@fb.com Fixes: fb2f2b0adb98 ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal") Signed-off-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30writeback: add tracepoints for cgroup foreign writebacksTejun Heo
cgroup foreign inode handling has quite a bit of heuristics and internal states which sometimes makes it difficult to understand what's going on. Add tracepoints to improve visibility. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-27writeback, memcg: Implement foreign dirty flushingTejun Heo
There's an inherent mismatch between memcg and writeback. The former trackes ownership per-page while the latter per-inode. This was a deliberate design decision because honoring per-page ownership in the writeback path is complicated, may lead to higher CPU and IO overheads and deemed unnecessary given that write-sharing an inode across different cgroups isn't a common use-case. Combined with inode majority-writer ownership switching, this works well enough in most cases but there are some pathological cases. For example, let's say there are two cgroups A and B which keep writing to different but confined parts of the same inode. B owns the inode and A's memory is limited far below B's. A's dirty ratio can rise enough to trigger balance_dirty_pages() sleeps but B's can be low enough to avoid triggering background writeback. A will be slowed down without a way to make writeback of the dirty pages happen. This patch implements foreign dirty recording and foreign mechanism so that when a memcg encounters a condition as above it can trigger flushes on bdi_writebacks which can clean its pages. Please see the comment on top of mem_cgroup_track_foreign_dirty_slowpath() for details. A reproducer follows. write-range.c:: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> static const char *usage = "write-range FILE START SIZE\n"; int main(int argc, char **argv) { int fd; unsigned long start, size, end, pos; char *endp; char buf[4096]; if (argc < 4) { fprintf(stderr, usage); return 1; } fd = open(argv[1], O_WRONLY); if (fd < 0) { perror("open"); return 1; } start = strtoul(argv[2], &endp, 0); if (*endp != '\0') { fprintf(stderr, usage); return 1; } size = strtoul(argv[3], &endp, 0); if (*endp != '\0') { fprintf(stderr, usage); return 1; } end = start + size; while (1) { for (pos = start; pos < end; ) { long bread, bwritten = 0; if (lseek(fd, pos, SEEK_SET) < 0) { perror("lseek"); return 1; } bread = read(0, buf, sizeof(buf) < end - pos ? sizeof(buf) : end - pos); if (bread < 0) { perror("read"); return 1; } if (bread == 0) return 0; while (bwritten < bread) { long this; this = write(fd, buf + bwritten, bread - bwritten); if (this < 0) { perror("write"); return 1; } bwritten += this; pos += bwritten; } } } } repro.sh:: #!/bin/bash set -e set -x sysctl -w vm.dirty_expire_centisecs=300000 sysctl -w vm.dirty_writeback_centisecs=300000 sysctl -w vm.dirtytime_expire_seconds=300000 echo 3 > /proc/sys/vm/drop_caches TEST=/sys/fs/cgroup/test A=$TEST/A B=$TEST/B mkdir -p $A $B echo "+memory +io" > $TEST/cgroup.subtree_control echo $((1<<30)) > $A/memory.high echo $((32<<30)) > $B/memory.high rm -f testfile touch testfile fallocate -l 4G testfile echo "Starting B" (echo $BASHPID > $B/cgroup.procs pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) & echo "Waiting 10s to ensure B claims the testfile inode" sleep 5 sync sleep 5 sync echo "Starting A" (echo $BASHPID > $A/cgroup.procs pv < /dev/urandom | ./write-range testfile 0 $((2<<30))) v2: Added comments explaining why the specific intervals are being used. v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort flushing while avoding possible livelocks. v4: Use get_jiffies_64() and time_before/after64() instead of raw jiffies_64 and arthimetic comparisons as suggested by Jan. Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-24mm: memcontrol: flush percpu vmevents before releasing memcgRoman Gushchin
Similar to vmstats, percpu caching of local vmevents leads to an accumulation of errors on non-leaf levels. This happens because some leftovers may remain in percpu caches, so that they are never propagated up by the cgroup tree and just disappear into nonexistence with on releasing of the memory cgroup. To fix this issue let's accumulate and propagate percpu vmevents values before releasing the memory cgroup similar to what we're doing with vmstats. Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate only over online cpus. Link: http://lkml.kernel.org/r/20190819202338.363363-4-guro@fb.com Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-24mm: memcontrol: flush percpu vmstats before releasing memcgRoman Gushchin
Percpu caching of local vmstats with the conditional propagation by the cgroup tree leads to an accumulation of errors on non-leaf levels. Let's imagine two nested memory cgroups A and A/B. Say, a process belonging to A/B allocates 100 pagecache pages on the CPU 0. The percpu cache will spill 3 times, so that 32*3=96 pages will be accounted to A/B and A atomic vmstat counters, 4 pages will remain in the percpu cache. Imagine A/B is nearby memory.max, so that every following allocation triggers a direct reclaim on the local CPU. Say, each such attempt will free 16 pages on a new cpu. That means every percpu cache will have -16 pages, except the first one, which will have 4 - 16 = -12. A/B and A atomic counters will not be touched at all. Now a user removes A/B. All percpu caches are freed and corresponding vmstat numbers are forgotten. A has 96 pages more than expected. As memory cgroups are created and destroyed, errors do accumulate. Even 1-2 pages differences can accumulate into large numbers. To fix this issue let's accumulate and propagate percpu vmstat values before releasing the memory cgroup. At this point these numbers are stable and cannot be changed. Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate only over online cpus. Link: http://lkml.kernel.org/r/20190819202338.363363-2-guro@fb.com Fixes: 42a300353577 ("mm: memcontrol: fix recursive statistics correctness & scalabilty") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>