summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2024-10-16bpf: Add bpf_task_from_vpid() kfuncJuntong Deng
bpf_task_from_pid() that currently exists looks up the struct task_struct corresponding to the pid in the root pid namespace (init_pid_ns). This patch adds bpf_task_from_vpid() which looks up the struct task_struct corresponding to vpid in the pid namespace of the current process. This is useful for getting information about other processes in the same pid namespace. Signed-off-by: Juntong Deng <juntong.deng@outlook.com> Link: https://lore.kernel.org/r/AM6PR03MB5848E50DA58F79CDE65433C399442@AM6PR03MB5848.eurprd03.prod.outlook.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-16mm/bpf: Add bpf_get_kmem_cache() kfuncNamhyung Kim
The bpf_get_kmem_cache() is to get a slab cache information from a virtual address like virt_to_cache(). If the address is a pointer to a slab object, it'd return a valid kmem_cache pointer, otherwise NULL is returned. It doesn't grab a reference count of the kmem_cache so the caller is responsible to manage the access. The returned point is marked as PTR_UNTRUSTED. The intended use case for now is to symbolize locks in slab objects from the lock contention tracepoints. Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> (mm/*) Acked-by: Vlastimil Babka <vbabka@suse.cz> #mm/slab Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20241010232505.1339892-3-namhyung@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-15Merge tag 'sched_ext-for-6.12-rc3-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fixes from Tejun Heo: - More issues reported in the enable/disable paths on large machines with many tasks due to scx_tasks_lock being held too long. Break up the task iterations - Remove ops.select_cpu() dependency in bypass mode so that a misbehaving implementation can't live-lock the machine by pushing all tasks to few CPUs in bypass mode - Other misc fixes * tag 'sched_ext-for-6.12-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: Remove unnecessary cpu_relax() sched_ext: Don't hold scx_tasks_lock for too long sched_ext: Move scx_tasks_lock handling into scx_task_iter helpers sched_ext: bypass mode shouldn't depend on ops.select_cpu() sched_ext: Move scx_buildin_idle_enabled check to scx_bpf_select_cpu_dfl() sched_ext: Start schedulers with consistent p->scx.slice values Revert "sched_ext: Use shorter slice while bypassing" sched_ext: use correct function name in pick_task_scx() warning message selftests: sched_ext: Add sched_ext as proper selftest target
2024-10-15Merge tag 'trace-ringbuffer-v6.12-rc3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull ring-buffer fixes from Steven Rostedt: - Fix ref counter of buffers assigned at boot up A tracing instance can be created from the kernel command line. If it maps to memory, it is considered permanent and should not be deleted, or bad things can happen. If it is not mapped to memory, then the user is fine to delete it via rmdir from the instances directory. But the ref counts assumed 0 was free to remove and greater than zero was not. But this was not the case. When an instance is created, it should have the reference of 1, and if it should not be removed, it must be greater than 1. The boot up code set normal instances with a ref count of 0, which could get removed if something accessed it and then released it. And memory mapped instances had a ref count of 1 which meant it could be deleted, and bad things happen. Keep normal instances ref count as 1, and set memory mapped instances ref count to 2. - Protect sub buffer size (order) updates from other modifications When a ring buffer is changing the size of its sub-buffers, no other operations should be performed on the ring buffer. That includes reading it. But the locking only grabbed the buffer->mutex that keeps some operations from touching the ring buffer. It also must hold the cpu_buffer->reader_lock as well when updates happen as other paths use that to do some operations on the ring buffer. * tag 'trace-ringbuffer-v6.12-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Fix reader locking when changing the sub buffer order ring-buffer: Fix refcount setting of boot mapped buffers
2024-10-15bpf: Fix truncation bug in coerce_reg_to_size_sx()Dimitar Kanaliev
coerce_reg_to_size_sx() updates the register state after a sign-extension operation. However, there's a bug in the assignment order of the unsigned min/max values, leading to incorrect truncation: 0: (85) call bpf_get_prandom_u32#7 ; R0_w=scalar() 1: (57) r0 &= 1 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1,var_off=(0x0; 0x1)) 2: (07) r0 += 254 ; R0_w=scalar(smin=umin=smin32=umin32=254,smax=umax=smax32=umax32=255,var_off=(0xfe; 0x1)) 3: (bf) r0 = (s8)r0 ; R0_w=scalar(smin=smin32=-2,smax=smax32=-1,umin=umin32=0xfffffffe,umax=0xffffffff,var_off=(0xfffffffffffffffe; 0x1)) In the current implementation, the unsigned 32-bit min/max values (u32_min_value and u32_max_value) are assigned directly from the 64-bit signed min/max values (s64_min and s64_max): reg->umin_value = reg->u32_min_value = s64_min; reg->umax_value = reg->u32_max_value = s64_max; Due to the chain assigmnent, this is equivalent to: reg->u32_min_value = s64_min; // Unintended truncation reg->umin_value = reg->u32_min_value; reg->u32_max_value = s64_max; // Unintended truncation reg->umax_value = reg->u32_max_value; Fixes: 1f9a1ea821ff ("bpf: Support new sign-extension load insns") Reported-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Reported-by: Zac Ecob <zacecob@protonmail.com> Signed-off-by: Dimitar Kanaliev <dimitar.kanaliev@siteground.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Reviewed-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Link: https://lore.kernel.org/r/20241014121155.92887-2-dimitar.kanaliev@siteground.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-15ring-buffer: Fix reader locking when changing the sub buffer orderPetr Pavlu
The function ring_buffer_subbuf_order_set() updates each ring_buffer_per_cpu and installs new sub buffers that match the requested page order. This operation may be invoked concurrently with readers that rely on some of the modified data, such as the head bit (RB_PAGE_HEAD), or the ring_buffer_per_cpu.pages and reader_page pointers. However, no exclusive access is acquired by ring_buffer_subbuf_order_set(). Modifying the mentioned data while a reader also operates on them can then result in incorrect memory access and various crashes. Fix the problem by taking the reader_lock when updating a specific ring_buffer_per_cpu in ring_buffer_subbuf_order_set(). Link: https://lore.kernel.org/linux-trace-kernel/20240715145141.5528-1-petr.pavlu@suse.com/ Link: https://lore.kernel.org/linux-trace-kernel/20241010195849.2f77cc3f@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20241011112850.17212b25@gandalf.local.home/ Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20241015112440.26987-1-petr.pavlu@suse.com Fixes: 8e7b58c27b3c ("ring-buffer: Just update the subbuffers when changing their allocation order") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-14bpf: Add kmem_cache iteratorNamhyung Kim
The new "kmem_cache" iterator will traverse the list of slab caches and call attached BPF programs for each entry. It should check the argument (ctx.s) if it's NULL before using it. Now the iteration grabs the slab_mutex only if it traverse the list and releases the mutex when it runs the BPF program. The kmem_cache entry is protected by a refcount during the execution. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> #slab Link: https://lore.kernel.org/r/20241010232505.1339892-2-namhyung@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-14posix-clock: Fix missing timespec64 check in pc_clock_settime()Jinjie Ruan
As Andrew pointed out, it will make sense that the PTP core checked timespec64 struct's tv_sec and tv_nsec range before calling ptp->info->settime64(). As the man manual of clock_settime() said, if tp.tv_sec is negative or tp.tv_nsec is outside the range [0..999,999,999], it should return EINVAL, which include dynamic clocks which handles PTP clock, and the condition is consistent with timespec64_valid(). As Thomas suggested, timespec64_valid() only check the timespec is valid, but not ensure that the time is in a valid range, so check it ahead using timespec64_valid_strict() in pc_clock_settime() and return -EINVAL if not valid. There are some drivers that use tp->tv_sec and tp->tv_nsec directly to write registers without validity checks and assume that the higher layer has checked it, which is dangerous and will benefit from this, such as hclge_ptp_settime(), igb_ptp_settime_i210(), _rcar_gen4_ptp_settime(), and some drivers can remove the checks of itself. Cc: stable@vger.kernel.org Fixes: 0606f422b453 ("posix clocks: Introduce dynamic clocks") Acked-by: Richard Cochran <richardcochran@gmail.com> Suggested-by: Andrew Lunn <andrew@lunn.ch> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Link: https://patch.msgid.link/20241009072302.1754567-2-ruanjinjie@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-14sched_ext: Remove unnecessary cpu_relax()David Vernet
As described in commit b07996c7abac ("sched_ext: Don't hold scx_tasks_lock for too long"), we're doing a cond_resched() every 32 calls to scx_task_iter_next() to avoid RCU and other stalls. That commit also added a cpu_relax() to the codepath where we drop and reacquire the lock, but as Waiman described in [0], cpu_relax() should only be necessary in busy loops to avoid pounding on a cacheline (or to allow a hypertwin to more fully utilize a core). Let's remove the unnecessary cpu_relax(). [0]: https://lore.kernel.org/all/35b3889b-904a-4d26-981f-c8aa1557a7c7@redhat.com/ Cc: Waiman Long <llong@redhat.com> Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-10-14ring-buffer: Fix refcount setting of boot mapped buffersSteven Rostedt
A ring buffer which has its buffered mapped at boot up to fixed memory should not be freed. Other buffers can be. The ref counting setup was wrong for both. It made the not mapped buffers ref count have zero, and the boot mapped buffer a ref count of 1. But an normally allocated buffer should be 1, where it can be removed. Keep the ref count of a normal boot buffer with its setup ref count (do not decrement it), and increment the fixed memory boot mapped buffer's ref count. Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20241011165224.33dd2624@gandalf.local.home Fixes: e645535a954ad ("tracing: Add option to use memmapped memory for trace boot instance") Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-14sched/fair: Fix external p->on_rq usersPeter Zijlstra
Sean noted that ever since commit 152e11f6df29 ("sched/fair: Implement delayed dequeue") KVM's preemption notifiers have started mis-classifying preemption vs blocking. Notably p->on_rq is no longer sufficient to determine if a task is runnable or blocked -- the aforementioned commit introduces tasks that remain on the runqueue even through they will not run again, and should be considered blocked for many cases. Add the task_is_runnable() helper to classify things and audit all external users of the p->on_rq state. Also add a few comments. Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Reported-by: Sean Christopherson <seanjc@google.com> Tested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20241010091843.GK33184@noisy.programming.kicks-ass.net
2024-10-14sched/psi: Fix mistaken CPU pressure indication after corrupted task state bugJohannes Weiner
Since sched_delayed tasks remain queued even after blocking, the load balancer can migrate them between runqueues while PSI considers them to be asleep. As a result, it misreads the migration requeue followed by a wakeup as a double queue: psi: inconsistent task state! task=... cpu=... psi_flags=4 clear=. set=4 First, call psi_enqueue() after p->sched_class->enqueue_task(). A wakeup will clear p->se.sched_delayed while a migration will not, so psi can use that flag to tell them apart. Then teach psi to migrate any "sleep" state when delayed-dequeue tasks are being migrated. Delayed-dequeue tasks can be revived by ttwu_runnable(), which will call down with a new ENQUEUE_DELAYED. Instead of further complicating the wakeup conditional in enqueue_task(), identify migration contexts instead and default to wakeup handling for all other cases. It's not just the warning in dmesg, the task state corruption causes a permanent CPU pressure indication, which messes with workload/machine health monitoring. Debugged-by-and-original-fix-by: K Prateek Nayak <kprateek.nayak@amd.com> Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Closes: https://lore.kernel.org/lkml/20240830123458.3557-1-spasswolf@web.de/ Closes: https://lore.kernel.org/all/cd67fbcd-d659-4822-bb90-7e8fbb40a856@molgen.mpg.de/ Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lkml.kernel.org/r/20241010193712.GC181795@cmpxchg.org
2024-10-11Merge tag 'rcu.fixes.6.12-rc3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux Pull RCU fix from Neeraj Upadhyay: "Fix rcuog kthread wakeup invocation from softirq context on a CPU which has been marked offline. This can happen when new callbacks are enqueued from a softirq on an offline CPU before it calls rcutree_report_cpu_dead(). When this happens on NOCB configuration, the rcuog wake-up is deferred through an IPI to an online CPU. This is done to avoid call into the scheduler which can risk arming the RT-bandwidth after hrtimers have been migrated out and disabled. However, doing IPI call from softirq is not allowed: Fix this by forcing deferred rcuog wakeup through the NOCB timer when the CPU is offline" * tag 'rcu.fixes.6.12-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: rcu/nocb: Fix rcuog wake-up from offline softirq
2024-10-11sched/core: Dequeue PSI signals for blocked tasks that are delayedPeter Zijlstra
psi_dequeue() in for blocked task expects psi_sched_switch() to clear the TSK_.*RUNNING PSI flags and set the TSK_IOWAIT flags however psi_sched_switch() uses "!task_on_rq_queued(prev)" to detect if the task is blocked or still runnable which is no longer true with DELAY_DEQUEUE since a blocking task can be left queued on the runqueue. This can lead to PSI splats similar to: psi: inconsistent task state! task=... cpu=... psi_flags=4 clear=0 set=4 when the task is requeued since the TSK_RUNNING flag was not cleared when the task was blocked. Explicitly communicate that the task was blocked to psi_sched_switch() even if it was delayed and is still on the runqueue. [ prateek: Broke off the relevant part from [1], commit message ] Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Closes: https://lore.kernel.org/lkml/20240830123458.3557-1-spasswolf@web.de/ Closes: https://lore.kernel.org/all/cd67fbcd-d659-4822-bb90-7e8fbb40a856@molgen.mpg.de/ Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/lkml/20241004123506.GR18071@noisy.programming.kicks-ass.net/ [1]
2024-10-11sched: Fix delayed_dequeue vs switched_from_fair()Peter Zijlstra
Commit 2e0199df252a ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue") and its follow up fixes try to deal with a rather unfortunate situation where is task is enqueued in a new class, even though it shouldn't have been. Mostly because the existing ->switched_to/from() hooks are in the wrong place for this case. This all led to Paul being able to trigger failures at something like once per 10k CPU hours of RCU torture. For now, do the ugly thing and move the code to the right place by ignoring the switch hooks. Note: Clean up the whole sched_class::switch*_{to,from}() thing. Fixes: 2e0199df252a ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue") Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241003185037.GA5594@noisy.programming.kicks-ass.net
2024-10-11sched/core: Disable page allocation in task_tick_mm_cid()Waiman Long
With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat. [ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1 This problem is caused by the following call trace. sched_tick() [ acquire rq->__lock ] -> task_tick_mm_cid() -> task_work_add() -> __kasan_record_aux_stack() -> kasan_save_stack() -> stack_depot_save_flags() -> alloc_pages_mpol_noprof() -> __alloc_pages_noprof() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() -> __rmqueue_pcplist() -> rmqueue_bulk() -> rt_spin_lock() The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags(). The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") in v6.4 kernel. Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag. The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare. Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241010014432.194742-1-longman@redhat.com
2024-10-11sched/deadline: Use hrtick_enabled_dl() before start_hrtick_dl()Phil Auld
The deadline server code moved one of the start_hrtick_dl() calls but dropped the dl specific hrtick_enabled check. This causes hrticks to get armed even when sched_feat(HRTICK_DL) is false. Fix it. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20241004123729.460668-1-pauld@redhat.com
2024-10-10bpf: Fix unpopulated path_size when uprobe_multi fields unsetTyrone Wu
Previously when retrieving `bpf_link_info.uprobe_multi` with `path` and `path_size` fields unset, the `path_size` field is not populated (remains 0). This behavior was inconsistent with how other input/output string buffer fields work, as the field should be populated in cases when: - both buffer and length are set (currently works as expected) - both buffer and length are unset (not working as expected) This patch now fills the `path_size` field when `path` and `path_size` are unset. Fixes: e56fdbfb06e2 ("bpf: Add link_info support for uprobe multi link") Signed-off-by: Tyrone Wu <wudevelops@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241011000803.681190-1-wudevelops@gmail.com
2024-10-10sched_ext: Don't hold scx_tasks_lock for too longTejun Heo
While enabling and disabling a BPF scheduler, every task is iterated a couple times by walking scx_tasks. Except for one, all iterations keep holding scx_tasks_lock. On multi-socket systems under heavy rq lock contention and high number of threads, this can can lead to RCU and other stalls. The following is triggered on a 2 x AMD EPYC 7642 system (192 logical CPUs) running `stress-ng --workload 150 --workload-threads 10` with >400k idle threads and RCU stall period reduced to 5s: rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: rcu: 91-...!: (10 ticks this GP) idle=0754/1/0x4000000000000000 softirq=18204/18206 fqs=17 rcu: 186-...!: (17 ticks this GP) idle=ec54/1/0x4000000000000000 softirq=25863/25866 fqs=17 rcu: (detected by 80, t=10042 jiffies, g=89305, q=33 ncpus=192) Sending NMI from CPU 80 to CPUs 91: NMI backtrace for cpu 91 CPU: 91 UID: 0 PID: 284038 Comm: sched_ext_ops_h Kdump: loaded Not tainted 6.12.0-rc2-work-g6bf5681f7ee2-dirty #471 Hardware name: Supermicro Super Server/H11DSi, BIOS 2.8 12/14/2023 Sched_ext: simple (disabling+all) RIP: 0010:queued_spin_lock_slowpath+0x17b/0x2f0 Code: 02 c0 10 03 00 83 79 08 00 75 08 f3 90 83 79 08 00 74 f8 48 8b 11 48 85 d2 74 09 0f 0d 0a eb 0a 31 d2 eb 06 31 d2 eb 02 f3 90 <8b> 07 66 85 c0 75 f7 39 d8 75 0d be 01 00 00 00 89 d8 f0 0f b1 37 RSP: 0018:ffffc9000fadfcb8 EFLAGS: 00000002 RAX: 0000000001700001 RBX: 0000000001700000 RCX: ffff88bfcaaf10c0 RDX: 0000000000000000 RSI: 0000000000000101 RDI: ffff88bfca8f0080 RBP: 0000000001700000 R08: 0000000000000090 R09: ffffffffffffffff R10: ffff88a74761b268 R11: 0000000000000000 R12: ffff88a6b6765460 R13: ffffc9000fadfd60 R14: ffff88bfca8f0080 R15: ffff88bfcaac0000 FS: 0000000000000000(0000) GS:ffff88bfcaac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5c55f526a0 CR3: 0000000afd474000 CR4: 0000000000350eb0 Call Trace: <NMI> </NMI> <TASK> do_raw_spin_lock+0x9c/0xb0 task_rq_lock+0x50/0x190 scx_task_iter_next_locked+0x157/0x170 scx_ops_disable_workfn+0x2c2/0xbf0 kthread_worker_fn+0x108/0x2a0 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 </TASK> Sending NMI from CPU 80 to CPUs 186: NMI backtrace for cpu 186 CPU: 186 UID: 0 PID: 51248 Comm: fish Kdump: loaded Not tainted 6.12.0-rc2-work-g6bf5681f7ee2-dirty #471 scx_task_iter can safely drop locks while iterating. Make scx_task_iter_next() drop scx_tasks_lock every 32 iterations to avoid stalls. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-10sched_ext: Move scx_tasks_lock handling into scx_task_iter helpersTejun Heo
Iterating with scx_task_iter involves scx_tasks_lock and optionally the rq lock of the task being iterated. Both locks can be released during iteration and the iteration can be continued after re-grabbing scx_tasks_lock. Currently, all lock handling is pushed to the caller which is a bit cumbersome and makes it difficult to add lock-aware behaviors. Make the scx_task_iter helpers handle scx_tasks_lock. - scx_task_iter_init/scx_taks_iter_exit() now grabs and releases scx_task_lock, respectively. Renamed to scx_task_iter_start/scx_task_iter_stop() to more clearly indicate that there are non-trivial side-effects. - Add __ prefix to scx_task_iter_rq_unlock() to indicate that the function is internal. - Add scx_task_iter_unlock/relock(). The former drops both rq lock (if held) and scx_tasks_lock and the latter re-locks only scx_tasks_lock. This doesn't cause behavior changes and will be used to implement stall avoidance. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-10sched_ext: bypass mode shouldn't depend on ops.select_cpu()Tejun Heo
Bypass mode was depending on ops.select_cpu() which can't be trusted as with the rest of the BPF scheduler. Always enable and use scx_select_cpu_dfl() in bypass mode. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-10sched_ext: Move scx_buildin_idle_enabled check to scx_bpf_select_cpu_dfl()Tejun Heo
Move the sanity check from the inner function scx_select_cpu_dfl() to the exported kfunc scx_bpf_select_cpu_dfl(). This doesn't cause behavior differences and will allow using scx_select_cpu_dfl() in bypass mode regardless of scx_builtin_idle_enabled. Signed-off-by: Tejun Heo <tj@kernel.org>
2024-10-10sched_ext: Start schedulers with consistent p->scx.slice valuesTejun Heo
The disable path caps p->scx.slice to SCX_SLICE_DFL. As the field is already being ignored at this stage during disable, the only effect this has is that when the next BPF scheduler is loaded, it won't see unreasonable left-over slices. Ultimately, this shouldn't matter but it's better to start in a known state. Drop p->scx.slice capping from the disable path and instead reset it to SCX_SLICE_DFL in the enable path. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-10Revert "sched_ext: Use shorter slice while bypassing"Tejun Heo
This reverts commit 6f34d8d382d64e7d8e77f5a9ddfd06f4c04937b0. Slice length is ignored while bypassing and tasks are switched on every tick and thus the patch does not make any difference. The perceived difference was from test noise. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-10Merge tag 'trace-ringbuffer-v6.12-rc2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fix from Steven Rostedt: "Ring-buffer fix: do not have boot-mapped buffers use CPU hotplug callbacks When a ring buffer is mapped to memory assigned at boot, it also splits it up evenly between the possible CPUs. But the allocation code still attached a CPU notifier callback to this ring buffer. When a CPU is added, the callback will happen and another per-cpu buffer is created for the ring buffer. But for boot mapped buffers, there is no room to add another one (as they were all created already). The result of calling the CPU hotplug notifier on a boot mapped ring buffer is unpredictable and could lead to a system crash. If the ring buffer is boot mapped simply do not attach the CPU notifier to it" * tag 'trace-ringbuffer-v6.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Do not have boot mapped buffers hook to CPU hotplug
2024-10-10bpf: fix kfunc btf caching for modulesToke Høiland-Jørgensen
The verifier contains a cache for looking up module BTF objects when calling kfuncs defined in modules. This cache uses a 'struct bpf_kfunc_btf_tab', which contains a sorted list of BTF objects that were already seen in the current verifier run, and the BTF objects are looked up by the offset stored in the relocated call instruction using bsearch(). The first time a given offset is seen, the module BTF is loaded from the file descriptor passed in by libbpf, and stored into the cache. However, there's a bug in the code storing the new entry: it stores a pointer to the new cache entry, then calls sort() to keep the cache sorted for the next lookup using bsearch(), and then returns the entry that was just stored through the stored pointer. However, because sort() modifies the list of entries in place *by value*, the stored pointer may no longer point to the right entry, in which case the wrong BTF object will be returned. The end result of this is an intermittent bug where, if a BPF program calls two functions with the same signature in two different modules, the function from the wrong module may sometimes end up being called. Whether this happens depends on the order of the calls in the BPF program (as that affects whether sort() reorders the array of BTF objects), making it especially hard to track down. Simon, credited as reporter below, spent significant effort analysing and creating a reproducer for this issue. The reproducer is added as a selftest in a subsequent patch. The fix is straight forward: simply don't use the stored pointer after calling sort(). Since we already have an on-stack pointer to the BTF object itself at the point where the function return, just use that, and populate it from the cache entry in the branch where the lookup succeeds. Fixes: 2357672c54c3 ("bpf: Introduce BPF support for kernel module function calls") Reported-by: Simon Sundberg <simon.sundberg@kau.se> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/r/20241010-fix-kfunc-btf-caching-for-modules-v2-1-745af6c1af98@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-10rcu/nocb: Fix rcuog wake-up from offline softirqFrederic Weisbecker
After a CPU has set itself offline and before it eventually calls rcutree_report_cpu_dead(), there are still opportunities for callbacks to be enqueued, for example from a softirq. When that happens on NOCB, the rcuog wake-up is deferred through an IPI to an online CPU in order not to call into the scheduler and risk arming the RT-bandwidth after hrtimers have been migrated out and disabled. But performing a synchronized IPI from a softirq is buggy as reported in the following scenario: WARNING: CPU: 1 PID: 26 at kernel/smp.c:633 smp_call_function_single Modules linked in: rcutorture torture CPU: 1 UID: 0 PID: 26 Comm: migration/1 Not tainted 6.11.0-rc1-00012-g9139f93209d1 #1 Stopper: multi_cpu_stop+0x0/0x320 <- __stop_cpus+0xd0/0x120 RIP: 0010:smp_call_function_single <IRQ> swake_up_one_online __call_rcu_nocb_wake __call_rcu_common ? rcu_torture_one_read call_timer_fn __run_timers run_timer_softirq handle_softirqs irq_exit_rcu ? tick_handle_periodic sysvec_apic_timer_interrupt </IRQ> Fix this with forcing deferred rcuog wake up through the NOCB timer when the CPU is offline. The actual wake up will happen from rcutree_report_cpu_dead(). Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202409231644.4c55582d-lkp@intel.com Fixes: 9139f93209d1 ("rcu/nocb: Fix RT throttling hrtimer armed from offline CPU") Reviewed-by: "Joel Fernandes (Google)" <joel@joelfernandes.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-10-10sched_ext: use correct function name in pick_task_scx() warning messageHonglei Wang
pick_next_task_scx() was turned into pick_task_scx() since commit 753e2836d139 ("sched_ext: Unify regular and core-sched pick task paths"). Update the outdated message. Signed-off-by: Honglei Wang <jameshongleiwang@126.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-10-10bpf: fix argument type in bpf_loop documentationMatteo Croce
The `index` argument to bpf_loop() is threaded as an u64. This lead in a subtle verifier denial where clang cloned the argument in another register[1]. [1] https://github.com/systemd/systemd/pull/34650#issuecomment-2401092895 Signed-off-by: Matteo Croce <teknoraver@meta.com> Link: https://lore.kernel.org/r/20241010035652.17830-1-technoboy85@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-09bpf: fix unpopulated name_len field in perf_event link infoTyrone Wu
Previously when retrieving `bpf_link_info.perf_event` for kprobe/uprobe/tracepoint, the `name_len` field was not populated by the kernel, leaving it to reflect the value initially set by the user. This behavior was inconsistent with how other input/output string buffer fields function (e.g. `raw_tracepoint.tp_name_len`). This patch fills `name_len` with the actual size of the string name. Fixes: 1b715e1b0ec5 ("bpf: Support ->fill_link_info for perf_event") Signed-off-by: Tyrone Wu <wudevelops@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20241008164312.46269-1-wudevelops@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-09bpf: use kvzmalloc to allocate BPF verifier environmentRik van Riel
The kzmalloc call in bpf_check can fail when memory is very fragmented, which in turn can lead to an OOM kill. Use kvzmalloc to fall back to vmalloc when memory is too fragmented to allocate an order 3 sized bpf verifier environment. Admittedly this is not a very common case, and only happens on systems where memory has already been squeezed close to the limit, but this does not seem like much of a hot path, and it's a simple enough fix. Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Link: https://lore.kernel.org/r/20241008170735.16766766@imladris.surriel.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-09bpf: Check the remaining info_cnt before repeating btf fieldsHou Tao
When trying to repeat the btf fields for array of nested struct, it doesn't check the remaining info_cnt. The following splat will be reported when the value of ret * nelems is greater than BTF_FIELDS_MAX: ------------[ cut here ]------------ UBSAN: array-index-out-of-bounds in ../kernel/bpf/btf.c:3951:49 index 11 is out of range for type 'btf_field_info [11]' CPU: 6 UID: 0 PID: 411 Comm: test_progs ...... 6.11.0-rc4+ #1 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ... Call Trace: <TASK> dump_stack_lvl+0x57/0x70 dump_stack+0x10/0x20 ubsan_epilogue+0x9/0x40 __ubsan_handle_out_of_bounds+0x6f/0x80 ? kallsyms_lookup_name+0x48/0xb0 btf_parse_fields+0x992/0xce0 map_create+0x591/0x770 __sys_bpf+0x229/0x2410 __x64_sys_bpf+0x1f/0x30 x64_sys_call+0x199/0x9f0 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7fea56f2cc5d ...... </TASK> ---[ end trace ]--- Fix it by checking the remaining info_cnt in btf_repeat_fields() before repeating the btf fields. Fixes: 64e8ee814819 ("bpf: look into the types of the fields of a struct type recursively.") Signed-off-by: Hou Tao <houtao1@huawei.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241008071114.3718177-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-09Merge tag 'mm-hotfixes-stable-2024-10-09-15-46' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "12 hotfixes, 5 of which are c:stable. All singletons, about half of which are MM" * tag 'mm-hotfixes-stable-2024-10-09-15-46' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm: zswap: delete comments for "value" member of 'struct zswap_entry'. CREDITS: sort alphabetically by name secretmem: disable memfd_secret() if arch cannot set direct map .mailmap: update Fangrui's email mm/huge_memory: check pmd_special() only after pmd_present() resource, kunit: fix user-after-free in resource_test_region_intersects() fs/proc/kcore.c: allow translation of physical memory addresses selftests/mm: fix incorrect buffer->mirror size in hmm2 double_map test device-dax: correct pgoff align in dax_set_mapping() kthread: unpark only parked kthread Revert "mm: introduce PF_MEMALLOC_NORECLAIM, PF_MEMALLOC_NOWARN" bcachefs: do not use PF_MEMALLOC_NORECLAIM
2024-10-09resource, kunit: fix user-after-free in resource_test_region_intersects()Huang Ying
In resource_test_insert_resource(), the pointer is used in error message after kfree(). This is user-after-free. To fix this, we need to call kunit_add_action_or_reset() to schedule memory freeing after usage. But kunit_add_action_or_reset() itself may fail and free the memory. So, its return value should be checked and abort the test for failure. Then, we found that other usage of kunit_add_action_or_reset() in resource_test_region_intersects() needs to be fixed too. We fix all these user-after-free bugs in this patch. Link: https://lkml.kernel.org/r/20240930070611.353338-1-ying.huang@intel.com Fixes: 99185c10d5d9 ("resource, kunit: add test case for region_intersects()") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: Kees Bakker <kees@ijzerbout.nl> Closes: https://lore.kernel.org/lkml/87ldzaotcg.fsf@yhuang6-desk2.ccr.corp.intel.com/ Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-09kthread: unpark only parked kthreadFrederic Weisbecker
Calling into kthread unparking unconditionally is mostly harmless when the kthread is already unparked. The wake up is then simply ignored because the target is not in TASK_PARKED state. However if the kthread is per CPU, the wake up is preceded by a call to kthread_bind() which expects the task to be inactive and in TASK_PARKED state, which obviously isn't the case if it is unparked. As a result, calling kthread_stop() on an unparked per-cpu kthread triggers such a warning: WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525 <TASK> kthread_stop+0x17a/0x630 kernel/kthread.c:707 destroy_workqueue+0x136/0xc40 kernel/workqueue.c:5810 wg_destruct+0x1e2/0x2e0 drivers/net/wireguard/device.c:257 netdev_run_todo+0xe1a/0x1000 net/core/dev.c:10693 default_device_exit_batch+0xa14/0xa90 net/core/dev.c:11769 ops_exit_list net/core/net_namespace.c:178 [inline] cleanup_net+0x89d/0xcc0 net/core/net_namespace.c:640 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd70 kernel/workqueue.c:3393 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Fix this with skipping unecessary unparking while stopping a kthread. Link: https://lkml.kernel.org/r/20240913214634.12557-1-frederic@kernel.org Fixes: 5c25b5ff89f0 ("workqueue: Tag bound workers with KTHREAD_IS_PER_CPU") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reported-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com Tested-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com Suggested-by: Thomas Gleixner <tglx@linutronix.de> Cc: Hillf Danton <hdanton@sina.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-09ring-buffer: Do not have boot mapped buffers hook to CPU hotplugSteven Rostedt
The boot mapped ring buffer has its buffer mapped at a fixed location found at boot up. It is not dynamic. It cannot grow or be expanded when new CPUs come online. Do not hook fixed memory mapped ring buffers to the CPU hotplug callback, otherwise it can cause a crash when it tries to add the buffer to the memory that is already fully occupied. Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20241008143242.25e20801@gandalf.local.home Fixes: be68d63a139bd ("ring-buffer: Add ring_buffer_alloc_range()") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08Merge tag 'sched_ext-for-6.12-rc2-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fixes from Tejun Heo: - ops.enqueue() didn't have a way to tell whether select_task_rq_scx() and thus ops.select() were skipped. Some schedulers were incorrectly using SCX_ENQ_WAKEUP. Add SCX_ENQ_CPU_SELECTED and fix scx_qmap using it. - Remove a spurious WARN_ON_ONCE() in scx_cgroup_exit() - Fix error information clobbering during load - Add missing __weak markers to BPF helper declarations - Doc update * tag 'sched_ext-for-6.12-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: Documentation: Update instructions for running example schedulers sched_ext, scx_qmap: Add and use SCX_ENQ_CPU_SELECTED sched/core: Add ENQUEUE_RQ_SELECTED to indicate whether ->select_task_rq() was called sched/core: Make select_task_rq() take the pointer to wake_flags instead of value sched_ext: scx_cgroup_exit() may be called without successful scx_cgroup_init() sched_ext: Improve error reporting during loading sched_ext: Add __weak markers to BPF helper function decalarations
2024-10-08bpf, lsm: Remove bpf_lsm_key_free hookThomas Weißschuh
The key_free LSM hook has been removed. Remove the corresponding BPF hook. Avoid warnings during the build: BTFIDS vmlinux WARN: resolve_btfids: unresolved symbol bpf_lsm_key_free Fixes: 5f8d28f6d7d5 ("lsm: infrastructure management of the key security blob") Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/bpf/20241005-lsm-key_free-v1-1-42ea801dbd63@weissschuh.net
2024-10-07bpf: Fix memory leak in bpf_core_applyJiri Olsa
We need to free specs properly. Fixes: 3d2786d65aaa ("bpf: correctly handle malformed BPF_CORE_TYPE_ID_LOCAL relos") Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20241007160958.607434-1-jolsa@kernel.org
2024-10-07sched_ext, scx_qmap: Add and use SCX_ENQ_CPU_SELECTEDTejun Heo
scx_qmap and other schedulers in the SCX repo are using SCX_ENQ_WAKEUP to tell whether ops.select_cpu() was called. This is incorrect as ops.select_cpu() can be skipped in the wakeup path and leads to e.g. incorrectly skipping direct dispatch for tasks that are bound to a single CPU. sched core has been updated to specify ENQUEUE_RQ_SELECTED if ->select_task_rq() was called. Map it to SCX_ENQ_CPU_SELECTED and update scx_qmap to test it instead of SCX_ENQ_WAKEUP. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com> Cc: Daniel Hodges <hodges.daniel.scott@gmail.com> Cc: Changwoo Min <multics69@gmail.com> Cc: Andrea Righi <andrea.righi@linux.dev> Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
2024-10-07sched/core: Add ENQUEUE_RQ_SELECTED to indicate whether ->select_task_rq() ↵Tejun Heo
was called During ttwu, ->select_task_rq() can be skipped if only one CPU is allowed or migration is disabled. sched_ext schedulers may perform operations such as direct dispatch from ->select_task_rq() path and it is useful for them to know whether ->select_task_rq() was skipped in the ->enqueue_task() path. Currently, sched_ext schedulers are using ENQUEUE_WAKEUP for this purpose and end up assuming incorrectly that ->select_task_rq() was called for tasks that are bound to a single CPU or migration disabled. Make select_task_rq() indicate whether ->select_task_rq() was called by setting WF_RQ_SELECTED in *wake_flags and make ttwu_do_activate() map that to ENQUEUE_RQ_SELECTED for ->enqueue_task(). This will be used by sched_ext to fix ->select_task_rq() skip detection. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-07sched/core: Make select_task_rq() take the pointer to wake_flags instead of ↵Tejun Heo
value This will be used to allow select_task_rq() to indicate whether ->select_task_rq() was called by modifying *wake_flags. This makes try_to_wake_up() call all functions that take wake_flags with WF_TTWU set. Previously, only select_task_rq() was. Using the same flags is more consistent, and, as the flag is only tested by ->select_task_rq() implementations, it doesn't cause any behavior differences. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-10-07uprobes: fold xol_take_insn_slot() into xol_get_insn_slot()Oleg Nesterov
After the previous change xol_take_insn_slot() becomes trivial, kill it. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142503.GA13633@redhat.com
2024-10-07uprobes: kill xol_area->slot_countOleg Nesterov
Add the new helper, xol_get_slot_nr() which does find_first_zero_bit() + test_and_set_bit(). xol_take_insn_slot() can wait for the "xol_get_slot_nr() < UINSNS_PER_PAGE" event instead of "area->slot_count < UINSNS_PER_PAGE". So we can kill area->slot_count and avoid atomic_inc() + atomic_dec(), this simplifies the code and can slightly improve the performance. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142458.GA13629@redhat.com
2024-10-07uprobes: deny mremap(xol_vma)Oleg Nesterov
kernel/events/uprobes.c assumes that xol_area->vaddr is always correct but a malicious application can remap its "[uprobes]" vma to another adress to confuse the kernel. Introduce xol_mremap() to make this impossible. With this change utask->xol_vaddr in xol_free_insn_slot() can't be invalid, we can turn the offset check into WARN_ON_ONCE(offset >= PAGE_SIZE). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144258.GA9492@redhat.com
2024-10-07uprobes: pass utask to xol_get_insn_slot() and xol_free_insn_slot()Oleg Nesterov
Add the "struct uprobe_task *utask" argument to xol_get_insn_slot() and xol_free_insn_slot(), their callers already have it so we can avoid the unnecessary dereference and simplify the code. Kill the "tsk" argument of xol_free_insn_slot(), it is always current. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144253.GA9487@redhat.com
2024-10-07uprobes: move the initialization of utask->xol_vaddr from pre_ssout() to ↵Oleg Nesterov
xol_get_insn_slot() This simplifies the code and makes xol_get_insn_slot() symmetric with xol_free_insn_slot() which clears utask->xol_vaddr. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144248.GA9483@redhat.com
2024-10-07uprobes: simplify xol_take_insn_slot() and its callerOleg Nesterov
The do / while (slot_nr >= UINSNS_PER_PAGE) loop in xol_take_insn_slot() makes no sense, the checked condition is always true. Change this code to use the "for (;;)" loop, this way we do not need to change slot_nr if test_and_set_bit() fails. Also, kill the unnecessary xol_vaddr != NULL check in xol_get_insn_slot(), xol_take_insn_slot() never returns NULL. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144244.GA9480@redhat.com
2024-10-07uprobes: kill the unnecessary put_uprobe/xol_free_insn_slot in ↵Oleg Nesterov
uprobe_free_utask() If pre_ssout() succeeds and sets utask->active_uprobe and utask->xol_vaddr the task must not exit until it calls handle_singlestep() which does the necessary put_uprobe() and xol_free_insn_slot(). Remove put_uprobe() and xol_free_insn_slot() from uprobe_free_utask(). With this change xol_free_insn_slot() can't hit xol_area/utask/xol_vaddr == NULL, we can kill the unnecessary checks checks and simplify this function more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144239.GA9475@redhat.com
2024-10-07uprobes: sanitiize xol_free_insn_slot()Oleg Nesterov
1. Clear utask->xol_vaddr unconditionally, even if this addr is not valid, xol_free_insn_slot() should never return with utask->xol_vaddr != NULL. 2. Add a comment to explain why do we need to validate slot_addr. 3. Simplify the validation above. We can simply check offset < PAGE_SIZE, unsigned underflows are fine, it should work if slot_addr < area->vaddr. 4. Kill the unnecessary "slot_nr >= UINSNS_PER_PAGE" check, slot_nr must be valid if offset < PAGE_SIZE. The next patches will cleanup this function even more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144235.GA9471@redhat.com