Age | Commit message (Collapse) | Author |
|
Consider this code snippet:
struct node {
long key;
bpf_list_node l;
bpf_rb_node r;
bpf_refcount ref;
}
int some_bpf_prog(void *ctx)
{
struct node *n = bpf_obj_new(/*...*/), *m;
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->r, /* ... */);
m = bpf_refcount_acquire(n);
bpf_rbtree_add(&other_tree, &m->r, /* ... */);
bpf_spin_unlock(&glock);
/* ... */
}
After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.
The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.
bpf_obj_drop on failure
=======================
Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.
With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.
With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.
Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:
long important_failures = 0;
int some_bpf_prog(void *ctx)
{
struct node *n, *m, *o; /* all bpf_obj_new'd */
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->node, /* ... */);
bpf_rbtree_add(&some_tree, &m->node, /* ... */);
if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
important_failures++;
}
bpf_spin_unlock(&glock);
}
If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:
if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
bpf_obj_drop(n);
But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.
For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:
struct node *n = bpf_obj_new(/* ... */), *m;
bpf_spin_lock(&glock);
m = bpf_refcount_acquire(n);
if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
/* Do something with m */
}
bpf_spin_unlock(&glock);
bpf_obj_drop(m);
bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.
Addition of two verifier-fixup'd args to collection inserts
===========================================================
The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.
Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.
Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.
These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:
beginning_of_node = bpf_rb_node_ptr - offset
if (already_inserted)
__bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);
Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.
Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.
This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.
How does this new logic affect non-owning references?
=====================================================
Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.
On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".
We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:
* If the input to the insert function is _not_ refcounted
* We have an owning reference to the input, and can conclude it isn't
in any collection
* Inserting a node in a collection turns owning refs into
non-owning, and since our input type isn't refcounted, there's no
way to obtain additional owning refs to the same underlying
memory
* Because our node isn't in any collection, the insert operation
cannot fail, so bpf_obj_drop will not execute
* If bpf_obj_drop is guaranteed not to execute, there's no risk of
memory being free'd
* Otherwise, the input to the insert function is refcounted
* If the insert operation fails due to the node's list_head or rb_root
already being in some collection, there was some previous successful
insert which passed refcount to the collection
* We have an owning reference to the input, it must have been
acquired via bpf_refcount_acquire, which bumped the refcount
* refcount must be >= 2 since there's a valid owning reference and the
node is already in a collection
* Insert triggering bpf_obj_drop will decr refcount to >= 1, never
resulting in a free
So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Currently, BPF programs can interact with the lifetime of refcounted
local kptrs in the following ways:
bpf_obj_new - Initialize refcount to 1 as part of new object creation
bpf_obj_drop - Decrement refcount and free object if it's 0
collection add - Pass ownership to the collection. No change to
refcount but collection is responsible for
bpf_obj_dropping it
In order to be able to add a refcounted local kptr to multiple
collections we need to be able to increment the refcount and acquire a
new owning reference. This patch adds a kfunc, bpf_refcount_acquire,
implementing such an operation.
bpf_refcount_acquire takes a refcounted local kptr and returns a new
owning reference to the same underlying memory as the input. The input
can be either owning or non-owning. To reinforce why this is safe,
consider the following code snippets:
struct node *n = bpf_obj_new(typeof(*n)); // A
struct node *m = bpf_refcount_acquire(n); // B
In the above snippet, n will be alive with refcount=1 after (A), and
since nothing changes that state before (B), it's obviously safe. If
n is instead added to some rbtree, we can still safely refcount_acquire
it:
struct node *n = bpf_obj_new(typeof(*n));
struct node *m;
bpf_spin_lock(&glock);
bpf_rbtree_add(&groot, &n->node, less); // A
m = bpf_refcount_acquire(n); // B
bpf_spin_unlock(&glock);
In the above snippet, after (A) n is a non-owning reference, and after
(B) m is an owning reference pointing to the same memory as n. Although
n has no ownership of that memory's lifetime, it's guaranteed to be
alive until the end of the critical section, and n would be clobbered if
we were past the end of the critical section, so it's safe to bump
refcount.
Implementation details:
* From verifier's perspective, bpf_refcount_acquire handling is similar
to bpf_obj_new and bpf_obj_drop. Like the former, it returns a new
owning reference matching input type, although like the latter, type
can be inferred from concrete kptr input. Verifier changes in
{check,fixup}_kfunc_call and check_kfunc_args are largely copied from
aforementioned functions' verifier changes.
* An exception to the above is the new KF_ARG_PTR_TO_REFCOUNTED_KPTR
arg, indicated by new "__refcounted_kptr" kfunc arg suffix. This is
necessary in order to handle both owning and non-owning input without
adding special-casing to "__alloc" arg handling. Also a convenient
place to confirm that input type has bpf_refcount field.
* The implemented kfunc is actually bpf_refcount_acquire_impl, with
'hidden' second arg that the verifier sets to the type's struct_meta
in fixup_kfunc_call.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A local kptr is considered 'refcounted' when it is of a type that has a
bpf_refcount field. When such a kptr is created, its refcount should be
initialized to 1; when destroyed, the object should be free'd only if a
refcount decr results in 0 refcount.
Existing logic always frees the underlying memory when destroying a
local kptr, and 0-initializes all btf_record fields. This patch adds
checks for "is local kptr refcounted?" and new logic for that case in
the appropriate places.
This patch focuses on changing existing semantics and thus conspicuously
does _not_ provide a way for BPF programs in increment refcount. That
follows later in the series.
__bpf_obj_drop_impl is modified to do the right thing when it sees a
refcounted type. Container types for graph nodes (list, tree, stashed in
map) are migrated to use __bpf_obj_drop_impl as a destructor for their
nodes instead of each having custom destruction code in their _free
paths. Now that "drop" isn't a synonym for "free" when the type is
refcounted it makes sense to centralize this logic.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
A 'struct bpf_refcount' is added to the set of opaque uapi/bpf.h types
meant for use in BPF programs. Similarly to other opaque types like
bpf_spin_lock and bpf_rbtree_node, the verifier needs to know where in
user-defined struct types a bpf_refcount can be located, so necessary
btf_record plumbing is added to enable this. bpf_refcount is sized to
hold a refcount_t.
Similarly to bpf_spin_lock, the offset of a bpf_refcount is cached in
btf_record as refcount_off in addition to being in the field array.
Caching refcount_off makes sense for this field because further patches
in the series will modify functions that take local kptrs (e.g.
bpf_obj_drop) to change their behavior if the type they're operating on
is refcounted. So enabling fast "is this type refcounted?" checks is
desirable.
No such verifier behavior changes are introduced in this patch, just
logic to recognize 'struct bpf_refcount' in btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.
This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.
Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:
if (btf_record_successfully_initialized) {
foffs = btf_parse_field_offs(rec);
if (IS_ERR_OR_NULL(foffs))
// free the btf_record and return err
}
Other changes in this patch are pretty mechanical:
* foffs->field_off[i] -> rec->fields[i].offset
* foffs->field_sz[i] -> rec->fields[i].size
* Sort rec->fields in btf_parse_fields before returning
* It's possible that this is necessary independently of other
changes in this patch. btf_record_find in syscall.c expects
btf_record's fields to be sorted by offset, yet there's no
explicit sorting of them before this patch, record's fields are
populated in the order they're read from BTF struct definition.
BTF docs don't say anything about the sortedness of struct fields.
* All functions taking struct btf_field_offs * input now instead take
struct btf_record *. All callsites of these functions already have
access to the correct btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
For interrupts with secondary threads, the affinity is applied when the
thread is created but if the interrupts affinity is changed later only
the primary thread is updated.
Update the secondary thread's affinity as well to keep all the interrupts
activity on the assigned CPUs.
Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230406180857.588682-1-john@metanate.com
|
|
Tasklets are supposed to finish their work quickly and should not block the
current running process, but it is not guaranteed that they do so.
Currently softirq_entry/exit can be used to analyse the total tasklets
execution time, but that's not helpful to track individual tasklets
execution time. That makes it hard to identify tasklet functions, which
take more time than expected.
Add tasklet_entry/exit trace point support to track individual tasklet
execution.
Trivial usage example:
# echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_entry/enable
# echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_exit/enable
# cat /sys/kernel/debug/tracing/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 4/4 #P:4
#
# _-----=> irqs-off/BH-disabled
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> migrate-disable
# |||| / delay
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
<idle>-0 [003] ..s1. 314.011428: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.011432: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.017369: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.017371: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
Signed-off-by: J. Avila <elavila@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230407230526.1685443-1-jstultz@google.com
[elavila: Port to android-mainline]
[jstultz: Rebased to upstream, cut unused trace points, added
comments for the tracepoints, reworded commit]
|
|
Commit ac3b43283923 ("module: replace module_layout with module_memory")
reworked the way to handle memory allocations to make it clearer. But it
lost in translation how we handled kmemleak_ignore() or kmemleak_not_leak()
for different ELF sections.
Fix this and clarify the comments a bit more. Contrary to the old way
of using kmemleak_ignore() for init.* ELF sections we stick now only to
kmemleak_not_leak() as per suggestion by Catalin Marinas so to avoid
any false positives and simplify the code.
Fixes: ac3b43283923 ("module: replace module_layout with module_memory")
Reported-by: Jim Cromie <jim.cromie@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
In preparation for improving objtool's handling of weak noreturn
functions, mark nmi_panic_self_stop() __noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/316fc6dfab5a8c4e024c7185484a1ee5fb0afb79.1681342859.git.jpoimboe@kernel.org
|
|
In preparation for improving objtool's handling of weak noreturn
functions, mark panic_smp_self_stop() __noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/92d76ab5c8bf660f04fdcd3da1084519212de248.1681342859.git.jpoimboe@kernel.org
|
|
commit e050e3f0a71bf ("perf: Fix broken interrupt rate throttling")
introduces a change in throttling threshold judgment. Before this,
compare hwc->interrupts and max_samples_per_tick, then increase
hwc->interrupts by 1, but this commit reverses order of these two
behaviors, causing the semantics of max_samples_per_tick to change.
In literal sense of "max_samples_per_tick", if hwc->interrupts ==
max_samples_per_tick, it should not be throttled, therefore, the judgment
condition should be changed to "hwc->interrupts > max_samples_per_tick".
In fact, this may cause the hardlockup to fail, The minimum value of
max_samples_per_tick may be 1, in this case, the return value of
__perf_event_account_interrupt function is 1.
As a result, nmi_watchdog gets throttled, which would stop PMU (Use x86
architecture as an example, see x86_pmu_handle_irq).
Fixes: e050e3f0a71b ("perf: Fix broken interrupt rate throttling")
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230227023508.102230-1-yangjihong1@huawei.com
|
|
'arm/omap', 'arm/renesas', 'arm/rockchip', 'arm/smmu', 'ppc/pamu', 'unisoc', 'x86/vt-d', 'x86/amd', 'core' and 'platform-remove_new' into next
|
|
test_ksyms_module fails to emit a kfunc call targeting a module on
s390x, because the verifier stores the difference between kfunc
address and __bpf_call_base in bpf_insn.imm, which is s32, and modules
are roughly (1 << 42) bytes away from the kernel on s390x.
Fix by keeping BTF id in bpf_insn.imm for BPF_PSEUDO_KFUNC_CALLs,
and storing the absolute address in bpf_kfunc_desc.
Introduce bpf_jit_supports_far_kfunc_call() in order to limit this new
behavior to the s390x JIT. Otherwise other JITs need to be modified,
which is not desired.
Introduce bpf_get_kfunc_addr() instead of exposing both
find_kfunc_desc() and struct bpf_kfunc_desc.
In addition to sorting kfuncs by imm, also sort them by offset, in
order to handle conflicting imms from different modules. Do this on
all architectures in order to simplify code.
Factor out resolving specialized kfuncs (XPD and dynptr) from
fixup_kfunc_call(). This was required in the first place, because
fixup_kfunc_call() uses find_kfunc_desc(), which returns a const
pointer, so it's not possible to modify kfunc addr without stripping
const, which is not nice. It also removes repetition of code like:
if (bpf_jit_supports_far_kfunc_call())
desc->addr = func;
else
insn->imm = BPF_CALL_IMM(func);
and separates kfunc_desc_tab fixups from kfunc_call fixups.
Suggested-by: Jiri Olsa <olsajiri@gmail.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230412230632.885985-1-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,
[ 867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[ 867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[ 867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[ 867.843100] Call Trace:
[ 867.843101] <TASK>
[ 867.843104] asm_exc_int3+0x3a/0x40
[ 867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[ 867.843135] __bpf_prog_enter_recur+0x17/0x90
[ 867.843148] bpf_trampoline_6442468108_0+0x2e/0x1000
[ 867.843154] ? preempt_count_sub+0x1/0xa0
[ 867.843157] preempt_count_sub+0x5/0xa0
[ 867.843159] ? migrate_enable+0xac/0xf0
[ 867.843164] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843168] bpf_trampoline_6442468108_0+0x55/0x1000
...
[ 867.843788] preempt_count_sub+0x5/0xa0
[ 867.843793] ? migrate_enable+0xac/0xf0
[ 867.843829] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[ 867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[ 867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[ 867.843842] bpf_trampoline_6442468108_0+0x55/0x1000
...
That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.
Fixing this by adding these two functions into btf ids deny list.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The L0 symbol is generated when build module on LoongArch, ignore it in
modpost and when looking at module symbols, otherwise we can not see the
expected call trace.
Now is_arm_mapping_symbol() is not only for ARM, in order to reflect the
reality, rename is_arm_mapping_symbol() to is_mapping_symbol().
This is related with commit c17a2538704f ("mksysmap: Fix the mismatch of
'L0' symbols in System.map").
(1) Simple test case
[loongson@linux hello]$ cat hello.c
#include <linux/init.h>
#include <linux/module.h>
#include <linux/printk.h>
static void test_func(void)
{
pr_info("This is a test\n");
dump_stack();
}
static int __init hello_init(void)
{
pr_warn("Hello, world\n");
test_func();
return 0;
}
static void __exit hello_exit(void)
{
pr_warn("Goodbye\n");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
[loongson@linux hello]$ cat Makefile
obj-m:=hello.o
ccflags-y += -g -Og
all:
make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean
(2) Test environment
system: LoongArch CLFS 5.5
https://github.com/sunhaiyong1978/CLFS-for-LoongArch/releases/tag/5.0
It needs to update grub to avoid booting error "invalid magic number".
kernel: 6.3-rc1 with loongson3_defconfig + CONFIG_DYNAMIC_FTRACE=y
(3) Test result
Without this patch:
[root@linux hello]# insmod hello.ko
[root@linux hello]# dmesg
...
Hello, world
This is a test
...
Call Trace:
[<9000000000223728>] show_stack+0x68/0x18c
[<90000000013374cc>] dump_stack_lvl+0x60/0x88
[<ffff800002050028>] L0\x01+0x20/0x2c [hello]
[<ffff800002058028>] L0\x01+0x20/0x30 [hello]
[<900000000022097c>] do_one_initcall+0x88/0x288
[<90000000002df890>] do_init_module+0x54/0x200
[<90000000002e1e18>] __do_sys_finit_module+0xc4/0x114
[<90000000013382e8>] do_syscall+0x7c/0x94
[<9000000000221e3c>] handle_syscall+0xbc/0x158
With this patch:
[root@linux hello]# insmod hello.ko
[root@linux hello]# dmesg
...
Hello, world
This is a test
...
Call Trace:
[<9000000000223728>] show_stack+0x68/0x18c
[<90000000013374cc>] dump_stack_lvl+0x60/0x88
[<ffff800002050028>] test_func+0x28/0x34 [hello]
[<ffff800002058028>] hello_init+0x28/0x38 [hello]
[<900000000022097c>] do_one_initcall+0x88/0x288
[<90000000002df890>] do_init_module+0x54/0x200
[<90000000002e1e18>] __do_sys_finit_module+0xc4/0x114
[<90000000013382e8>] do_syscall+0x7c/0x94
[<9000000000221e3c>] handle_syscall+0xbc/0x158
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Tested-by: Youling Tang <tangyouling@loongson.cn> # for LoongArch
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
In order to avoid duplicated code, move is_arm_mapping_symbol() to
include/linux/module_symbol.h, then remove is_arm_mapping_symbol()
in the other places.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
After commit 2e3a10a1551d ("ARM: avoid ARM binutils leaking ELF local
symbols") and commit d6b732666a1b ("modpost: fix undefined behavior of
is_arm_mapping_symbol()"), many differences of is_arm_mapping_symbol()
exist in kernel/module/kallsyms.c and scripts/mod/modpost.c, just sync
the code to keep consistent.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
====================
pull-request: bpf-next 2023-04-13
We've added 260 non-merge commits during the last 36 day(s) which contain
a total of 356 files changed, 21786 insertions(+), 11275 deletions(-).
The main changes are:
1) Rework BPF verifier log behavior and implement it as a rotating log
by default with the option to retain old-style fixed log behavior,
from Andrii Nakryiko.
2) Adds support for using {FOU,GUE} encap with an ipip device operating
in collect_md mode and add a set of BPF kfuncs for controlling encap
params, from Christian Ehrig.
3) Allow BPF programs to detect at load time whether a particular kfunc
exists or not, and also add support for this in light skeleton,
from Alexei Starovoitov.
4) Optimize hashmap lookups when key size is multiple of 4,
from Anton Protopopov.
5) Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps, from David Vernet.
6) Add support for stashing local BPF kptr into a map value via
bpf_kptr_xchg(). This is useful e.g. for rbtree node creation
for new cgroups, from Dave Marchevsky.
7) Fix BTF handling of is_int_ptr to skip modifiers to work around
tracing issues where a program cannot be attached, from Feng Zhou.
8) Migrate a big portion of test_verifier unit tests over to
test_progs -a verifier_* via inline asm to ease {read,debug}ability,
from Eduard Zingerman.
9) Several updates to the instruction-set.rst documentation
which is subject to future IETF standardization
(https://lwn.net/Articles/926882/), from Dave Thaler.
10) Fix BPF verifier in the __reg_bound_offset's 64->32 tnum sub-register
known bits information propagation, from Daniel Borkmann.
11) Add skb bitfield compaction work related to BPF with the overall goal
to make more of the sk_buff bits optional, from Jakub Kicinski.
12) BPF selftest cleanups for build id extraction which stand on its own
from the upcoming integration work of build id into struct file object,
from Jiri Olsa.
13) Add fixes and optimizations for xsk descriptor validation and several
selftest improvements for xsk sockets, from Kal Conley.
14) Add BPF links for struct_ops and enable switching implementations
of BPF TCP cong-ctls under a given name by replacing backing
struct_ops map, from Kui-Feng Lee.
15) Remove a misleading BPF verifier env->bypass_spec_v1 check on variable
offset stack read as earlier Spectre checks cover this,
from Luis Gerhorst.
16) Fix issues in copy_from_user_nofault() for BPF and other tracers
to resemble copy_from_user_nmi() from safety PoV, from Florian Lehner
and Alexei Starovoitov.
17) Add --json-summary option to test_progs in order for CI tooling to
ease parsing of test results, from Manu Bretelle.
18) Batch of improvements and refactoring to prep for upcoming
bpf_local_storage conversion to bpf_mem_cache_{alloc,free} allocator,
from Martin KaFai Lau.
19) Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations,
from Quentin Monnet.
20) Fix attaching fentry/fexit/fmod_ret/lsm to modules by extracting
the module name from BTF of the target and searching kallsyms of
the correct module, from Viktor Malik.
21) Improve BPF verifier handling of '<const> <cond> <non_const>'
to better detect whether in particular jmp32 branches are taken,
from Yonghong Song.
22) Allow BPF TCP cong-ctls to write app_limited of struct tcp_sock.
A built-in cc or one from a kernel module is already able to write
to app_limited, from Yixin Shen.
Conflicts:
Documentation/bpf/bpf_devel_QA.rst
b7abcd9c656b ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
0f10f647f455 ("bpf, docs: Use internal linking for link to netdev subsystem doc")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/
include/net/ip_tunnels.h
bc9d003dc48c3 ("ip_tunnel: Preserve pointer const in ip_tunnel_info_opts")
ac931d4cdec3d ("ipip,ip_tunnel,sit: Add FOU support for externally controlled ipip devices")
https://lore.kernel.org/all/20230413161235.4093777-1-broonie@kernel.org/
net/bpf/test_run.c
e5995bc7e2ba ("bpf, test_run: fix crashes due to XDP frame overwriting/corruption")
294635a8165a ("bpf, test_run: fix &xdp_frame misplacement for LIVE_FRAMES")
https://lore.kernel.org/all/20230320102619.05b80a98@canb.auug.org.au/
====================
Link: https://lore.kernel.org/r/20230413191525.7295-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
"This is a relatively big pull request this late in the cycle but the
major contributor is the cpuset bug which is rather significant:
- Fix several cpuset bugs including one where it wasn't applying the
target cgroup when tasks are created with CLONE_INTO_CGROUP
With a few smaller fixes:
- Fix inversed locking order in cgroup1 freezer implementation
- Fix garbage cpu.stat::core_sched.forceidle_usec reporting in the
root cgroup"
* tag 'cgroup-for-6.3-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup/cpuset: Make cpuset_attach_task() skip subpartitions CPUs for top_cpuset
cgroup/cpuset: Add cpuset_can_fork() and cpuset_cancel_fork() methods
cgroup/cpuset: Make cpuset_fork() handle CLONE_INTO_CGROUP properly
cgroup/cpuset: Wake up cpuset_attach_wq tasks in cpuset_cancel_attach()
cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex
cgroup/cpuset: Fix partition root's cpuset.cpus update bug
cgroup: fix display of forceidle time at root
|
|
Conflicts:
tools/testing/selftests/net/config
62199e3f1658 ("selftests: net: Add VXLAN MDB test")
3a0385be133e ("selftests: add the missing CONFIG_IP_SCTP in net config")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Since commit 8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Since commit 8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: linux-trace-devel@vger.kernel.org
Cc: linux-trace-kernel@vger.kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Since commit 8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: linux-perf-users@vger.kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Since commit 8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: iommu@lists.linux.dev
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
This moves all compaction sysctls to its own file.
Move sysctl to where the functionality truly belongs to improve
readability, reduce merge conflicts, and facilitate maintenance.
I use x86_defconfig and linux-next-20230327 branch
$ make defconfig;make all -jn
CONFIG_COMPACTION=y
add/remove: 1/0 grow/shrink: 1/1 up/down: 350/-256 (94)
Function old new delta
vm_compaction - 320 +320
kcompactd_init 180 210 +30
vm_table 2112 1856 -256
Total: Before=21119987, After=21120081, chg +0.00%
Despite the addition of 94 bytes the patch still seems a worthwile
cleanup.
Link: https://lore.kernel.org/lkml/067f7347-ba10-5405-920c-0f5f985c84f4@suse.cz/
Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
The sysctl_memory_failure_early_kill and memory_failure_recovery
are only used in memory-failure.c, move them to its own file.
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[mcgrof: fix by adding empty ctl entry, this caused a crash]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
There is no need to declare an extra tables to just create directory,
this can be easily be done with a prefix path with register_sysctl().
Simplify this registration.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
register_sysctl_paths() is only needed if you have childs (directories)
with entries. Just use register_sysctl_init() as it also does the
kmemleak check for you.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Now that bpf_cgroup_acquire() is KF_RCU | KF_RET_NULL,
bpf_cgroup_kptr_get() is redundant. Let's remove it, and update
selftests to instead use bpf_cgroup_acquire() where appropriate. The
next patch will update the BPF documentation to not mention
bpf_cgroup_kptr_get().
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
struct cgroup is already an RCU-safe type in the verifier. We can
therefore update bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
subsequently remove bpf_cgroup_kptr_get(). This patch does the first of
these by updating bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
also updates selftests accordingly.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
It is found that attaching a task to the top_cpuset does not currently
ignore CPUs allocated to subpartitions in cpuset_attach_task(). So the
code is changed to fix that.
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
In the case of CLONE_INTO_CGROUP, not all cpusets are ready to accept
new tasks. It is too late to check that in cpuset_fork(). So we need
to add the cpuset_can_fork() and cpuset_cancel_fork() methods to
pre-check it before we can allow attachment to a different cpuset.
We also need to set the attach_in_progress flag to alert other code
that a new task is going to be added to the cpuset.
Fixes: ef2c41cf38a7 ("clone3: allow spawning processes into cgroups")
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
By default, the clone(2) syscall spawn a child process into the same
cgroup as its parent. With the use of the CLONE_INTO_CGROUP flag
introduced by commit ef2c41cf38a7 ("clone3: allow spawning processes
into cgroups"), the child will be spawned into a different cgroup which
is somewhat similar to writing the child's tid into "cgroup.threads".
The current cpuset_fork() method does not properly handle the
CLONE_INTO_CGROUP case where the cpuset of the child may be different
from that of its parent. Update the cpuset_fork() method to treat the
CLONE_INTO_CGROUP case similar to cpuset_attach().
Since the newly cloned task has not been running yet, its actual
memory usage isn't known. So it is not necessary to make change to mm
in cpuset_fork().
Fixes: ef2c41cf38a7 ("clone3: allow spawning processes into cgroups")
Reported-by: Giuseppe Scrivano <gscrivan@redhat.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
After a successful cpuset_can_attach() call which increments the
attach_in_progress flag, either cpuset_cancel_attach() or cpuset_attach()
will be called later. In cpuset_attach(), tasks in cpuset_attach_wq,
if present, will be woken up at the end. That is not the case in
cpuset_cancel_attach(). So missed wakeup is possible if the attach
operation is somehow cancelled. Fix that by doing the wakeup in
cpuset_cancel_attach() as well.
Fixes: e44193d39e8d ("cpuset: let hotplug propagation work wait for task attaching")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: stable@vger.kernel.org # v3.11+
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
syzbot is reporting circular locking dependency between cpu_hotplug_lock
and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core
freezer logic") replaced atomic_inc() in freezer_apply_state() with
static_branch_inc() which holds cpu_hotplug_lock.
cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex
cgroup_file_write() {
cgroup_procs_write() {
__cgroup_procs_write() {
cgroup_procs_write_start() {
cgroup_attach_lock() {
cpus_read_lock() {
percpu_down_read(&cpu_hotplug_lock);
}
percpu_down_write(&cgroup_threadgroup_rwsem);
}
}
cgroup_attach_task() {
cgroup_migrate() {
cgroup_migrate_execute() {
freezer_attach() {
mutex_lock(&freezer_mutex);
(...snipped...)
}
}
}
}
(...snipped...)
}
}
}
freezer_mutex => cpu_hotplug_lock
cgroup_file_write() {
freezer_write() {
freezer_change_state() {
mutex_lock(&freezer_mutex);
freezer_apply_state() {
static_branch_inc(&freezer_active) {
static_key_slow_inc() {
cpus_read_lock();
static_key_slow_inc_cpuslocked();
cpus_read_unlock();
}
}
}
mutex_unlock(&freezer_mutex);
}
}
}
Swap locking order by moving cpus_read_lock() in freezer_apply_state()
to before mutex_lock(&freezer_mutex) in freezer_change_state().
Reported-by: syzbot <syzbot+c39682e86c9d84152f93@syzkaller.appspotmail.com>
Link: https://syzkaller.appspot.com/bug?extid=c39682e86c9d84152f93
Suggested-by: Hillf Danton <hdanton@sina.com>
Fixes: f5d39b020809 ("freezer,sched: Rewrite core freezer logic")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
During OOM bpf_local_storage_alloc() may fail to allocate 'storage' and
call to bpf_local_storage_free() with NULL pointer will cause a crash like:
[ 271718.917646] BUG: kernel NULL pointer dereference, address: 00000000000000a0
[ 271719.019620] RIP: 0010:call_rcu+0x2d/0x240
[ 271719.216274] bpf_local_storage_alloc+0x19e/0x1e0
[ 271719.250121] bpf_local_storage_update+0x33b/0x740
Fixes: 7e30a8477b0b ("bpf: Add bpf_local_storage_free()")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230412171252.15635-1-alexei.starovoitov@gmail.com
|
|
The sched_dynamic_mutex is only used within the file. Make it static.
Fixes: e3ff7c609f39 ("livepatch,sched: Add livepatch task switching to cond_resched()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-kbuild-all/202304062335.tNuUjgsl-lkp@intel.com/
|
|
When local group is fully busy but its average load is above system load,
computing the imbalance will overflow and local group is not the best
target for pulling this load.
Fixes: 0b0695f2b34a ("sched/fair: Rework load_balance()")
Reported-by: Tingjia Cao <tjcao980311@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tingjia Cao <tjcao980311@gmail.com>
Link: https://lore.kernel.org/lkml/CABcWv9_DAhVBOq2=W=2ypKE9dKM5s2DvoV8-U0+GDwwuKZ89jQ@mail.gmail.com/T/
|
|
When tracing a kernel function with arg type is u32*, btf_ctx_access()
would report error: arg2 type INT is not a struct.
The commit bb6728d75611 ("bpf: Allow access to int pointer arguments
in tracing programs") added support for int pointer, but did not skip
modifiers before checking it's type. This patch fixes it.
Fixes: bb6728d75611 ("bpf: Allow access to int pointer arguments in tracing programs")
Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230410085908.98493-2-zhoufeng.zf@bytedance.com
|
|
Drop the log_size>0 and log_buf!=NULL condition when log_level>0. This
allows users to request log_true_size of a full log without providing
actual (even if small) log buffer. Verifier log handling code was mostly
ready to handle NULL log->ubuf, so only few small changes were necessary
to prevent NULL log->ubuf from causing problems.
Note, that if user provided NULL log_buf with log_level>0 we don't
consider this a log truncation, and thus won't return -ENOSPC.
We also enforce that either (log_buf==NULL && log_size==0) or
(log_buf!=NULL && log_size>0).
Suggested-by: Lorenz Bauer <lmb@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-15-andrii@kernel.org
|
|
Simplify internal verifier log API down to bpf_vlog_init() and
bpf_vlog_finalize(). The former handles input arguments validation in
one place and makes it easier to change it. The latter subsumes -ENOSPC
(truncation) and -EFAULT handling and simplifies both caller's code
(bpf_check() and btf_parse()).
For btf_parse(), this patch also makes sure that verifier log
finalization happens even if there is some error condition during BTF
verification process prior to normal finalization step.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-14-andrii@kernel.org
|
|
Add output-only log_true_size and btf_log_true_size field to
BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return
the size of log buffer necessary to fit in all the log contents at
specified log_level. This is very useful for BPF loader libraries like
libbpf to be able to size log buffer correctly, but could be used by
users directly, if necessary, as well.
This patch plumbs all this through the code, taking into account actual
bpf_attr size provided by user to determine if these new fields are
expected by users. And if they are, set them from kernel on return.
We refactory btf_parse() function to accommodate this, moving attr and
uattr handling inside it. The rest is very straightforward code, which
is split from the logging accounting changes in the previous patch to
make it simpler to review logic vs UAPI changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
|
|
Change how we do accounting in BPF_LOG_FIXED mode and adopt log->end_pos
as *logical* log position. This means that we can go beyond physical log
buffer size now and be able to tell what log buffer size should be to
fit entire log contents without -ENOSPC.
To do this for BPF_LOG_FIXED mode, we need to remove a short-circuiting
logic of not vsnprintf()'ing further log content once we filled up
user-provided buffer, which is done by bpf_verifier_log_needed() checks.
We modify these checks to always keep going if log->level is non-zero
(i.e., log is requested), even if log->ubuf was NULL'ed out due to
copying data to user-space, or if entire log buffer is physically full.
We adopt bpf_verifier_vlog() routine to work correctly with
log->ubuf == NULL condition, performing log formatting into temporary
kernel buffer, doing all the necessary accounting, but just avoiding
copying data out if buffer is full or NULL'ed out.
With these changes, it's now possible to do this sort of determination of
log contents size in both BPF_LOG_FIXED and default rolling log mode.
We need to keep in mind bpf_vlog_reset(), though, which shrinks log
contents after successful verification of a particular code path. This
log reset means that log->end_pos isn't always increasing, so to return
back to users what should be the log buffer size to fit all log content
without causing -ENOSPC even in the presence of log resetting, we need
to keep maximum over "lifetime" of logging. We do this accounting in
bpf_vlog_update_len_max() helper.
A related and subtle aspect is that with this logical log->end_pos even in
BPF_LOG_FIXED mode we could temporary "overflow" buffer, but then reset
it back with bpf_vlog_reset() to a position inside user-supplied
log_buf. In such situation we still want to properly maintain
terminating zero. We will eventually return -ENOSPC even if final log
buffer is small (we detect this through log->len_max check). This
behavior is simpler to reason about and is consistent with current
behavior of verifier log. Handling of this required a small addition to
bpf_vlog_reset() logic to avoid doing put_user() beyond physical log
buffer dimensions.
Another issue to keep in mind is that we limit log buffer size to 32-bit
value and keep such log length as u32, but theoretically verifier could
produce huge log stretching beyond 4GB. Instead of keeping (and later
returning) 64-bit log length, we cap it at UINT_MAX. Current UAPI makes
it impossible to specify log buffer size bigger than 4GB anyways, so we
don't really loose anything here and keep everything consistently 32-bit
in UAPI. This property will be utilized in next patch.
Doing the same determination of maximum log buffer for rolling mode is
trivial, as log->end_pos and log->start_pos are already logical
positions, so there is nothing new there.
These changes do incidentally fix one small issue with previous logging
logic. Previously, if use provided log buffer of size N, and actual log
output was exactly N-1 bytes + terminating \0, kernel logic coun't
distinguish this condition from log truncation scenario which would end
up with truncated log contents of N-1 bytes + terminating \0 as well.
But now with log->end_pos being logical position that could go beyond
actual log buffer size, we can distinguish these two conditions, which
we do in this patch. This plays nicely with returning log_size_actual
(implemented in UAPI in the next patch), as we can now guarantee that if
user takes such log_size_actual and provides log buffer of that exact
size, they will not get -ENOSPC in return.
All in all, all these changes do conceptually unify fixed and rolling
log modes much better, and allow a nice feature requested by users:
knowing what should be the size of the buffer to avoid -ENOSPC.
We'll plumb this through the UAPI and the code in the next patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-12-andrii@kernel.org
|
|
Move log->level == 0 check into bpf_vlog_truncated() instead of doing it
explicitly. Also remove unnecessary goto in kernel/bpf/verifier.c.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-11-andrii@kernel.org
|
|
If verifier log is in BPF_LOG_KERNEL mode, no log->ubuf is expected and
it stays NULL throughout entire verification process. Don't erroneously
return -EFAULT in such case.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-10-andrii@kernel.org
|
|
btf_parse() is missing -EFAULT error return if log->ubuf was NULL-ed out
due to error while copying data into user-provided buffer. Add it, but
handle a special case of BPF_LOG_KERNEL in which log->ubuf is always NULL.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-9-andrii@kernel.org
|
|
Verifier log position reset is meaningless in BPF_LOG_KERNEL mode, so
just exit early in bpf_vlog_reset() if log->level is BPF_LOG_KERNEL.
This avoid meaningless put_user() into NULL log->ubuf.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-8-andrii@kernel.org
|
|
Currently, if user-supplied log buffer to collect BPF verifier log turns
out to be too small to contain full log, bpf() syscall returns -ENOSPC,
fails BPF program verification/load, and preserves first N-1 bytes of
the verifier log (where N is the size of user-supplied buffer).
This is problematic in a bunch of common scenarios, especially when
working with real-world BPF programs that tend to be pretty complex as
far as verification goes and require big log buffers. Typically, it's
when debugging tricky cases at log level 2 (verbose). Also, when BPF program
is successfully validated, log level 2 is the only way to actually see
verifier state progression and all the important details.
Even with log level 1, it's possible to get -ENOSPC even if the final
verifier log fits in log buffer, if there is a code path that's deep
enough to fill up entire log, even if normally it would be reset later
on (there is a logic to chop off successfully validated portions of BPF
verifier log).
In short, it's not always possible to pre-size log buffer. Also, what's
worse, in practice, the end of the log most often is way more important
than the beginning, but verifier stops emitting log as soon as initial
log buffer is filled up.
This patch switches BPF verifier log behavior to effectively behave as
rotating log. That is, if user-supplied log buffer turns out to be too
short, verifier will keep overwriting previously written log,
effectively treating user's log buffer as a ring buffer. -ENOSPC is
still going to be returned at the end, to notify user that log contents
was truncated, but the important last N bytes of the log would be
returned, which might be all that user really needs. This consistent
-ENOSPC behavior, regardless of rotating or fixed log behavior, allows
to prevent backwards compatibility breakage. The only user-visible
change is which portion of verifier log user ends up seeing *if buffer
is too small*. Given contents of verifier log itself is not an ABI,
there is no breakage due to this behavior change. Specialized tools that
rely on specific contents of verifier log in -ENOSPC scenario are
expected to be easily adapted to accommodate old and new behaviors.
Importantly, though, to preserve good user experience and not require
every user-space application to adopt to this new behavior, before
exiting to user-space verifier will rotate log (in place) to make it
start at the very beginning of user buffer as a continuous
zero-terminated string. The contents will be a chopped off N-1 last
bytes of full verifier log, of course.
Given beginning of log is sometimes important as well, we add
BPF_LOG_FIXED (which equals 8) flag to force old behavior, which allows
tools like veristat to request first part of verifier log, if necessary.
BPF_LOG_FIXED flag is also a simple and straightforward way to check if
BPF verifier supports rotating behavior.
On the implementation side, conceptually, it's all simple. We maintain
64-bit logical start and end positions. If we need to truncate the log,
start position will be adjusted accordingly to lag end position by
N bytes. We then use those logical positions to calculate their matching
actual positions in user buffer and handle wrap around the end of the
buffer properly. Finally, right before returning from bpf_check(), we
rotate user log buffer contents in-place as necessary, to make log
contents contiguous. See comments in relevant functions for details.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-4-andrii@kernel.org
|
|
It's not clear why we have 128 as minimum size, but it makes testing
harder and seems unnecessary, as we carefully handle truncation
scenarios and use proper snprintf variants. So remove this limitation
and just enforce positive length for log buffer.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-3-andrii@kernel.org
|
|
kernel/bpf/verifier.c file is large and growing larger all the time. So
it's good to start splitting off more or less self-contained parts into
separate files to keep source code size (somewhat) somewhat under
control.
This patch is a one step in this direction, moving some of BPF verifier log
routines into a separate kernel/bpf/log.c. Right now it's most low-level
and isolated routines to append data to log, reset log to previous
position, etc. Eventually we could probably move verifier state
printing logic here as well, but this patch doesn't attempt to do that
yet.
Subsequent patches will add more logic to verifier log management, so
having basics in a separate file will make sure verifier.c doesn't grow
more with new changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-2-andrii@kernel.org
|