Age | Commit message (Collapse) | Author |
|
commit 2394ac4145ea91b92271e675a09af2a9ea6840b7 upstream.
The allocation of the struct saved_cmdlines_buffer structure changed from:
s = kmalloc(sizeof(*s), GFP_KERNEL);
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
to:
orig_size = sizeof(*s) + val * TASK_COMM_LEN;
order = get_order(orig_size);
size = 1 << (order + PAGE_SHIFT);
page = alloc_pages(GFP_KERNEL, order);
if (!page)
return NULL;
s = page_address(page);
memset(s, 0, sizeof(*s));
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.
Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:
unreferenced object 0xffff8881010c8000 (size 32760):
comm "swapper", pid 0, jiffies 4294667296
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace (crc ae6ec1b9):
[<ffffffff86722405>] kmemleak_alloc+0x45/0x80
[<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
[<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
[<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
[<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
[<ffffffff8864a174>] early_trace_init+0x14/0xa0
[<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
[<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
[<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
[<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b
Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bdbddb109c75365d22ec4826f480c5e75869e1cb upstream.
Commit a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by
default") attempted to fix an issue with direct trampolines on x86, see
its description for details. However, it wrongly referenced the
HAVE_DYNAMIC_FTRACE_WITH_REGS config option and the problem is still
present.
Add the missing "CONFIG_" prefix for the logic to work as intended.
Link: https://lore.kernel.org/linux-trace-kernel/20240213132434.22537-1-petr.pavlu@suse.com
Fixes: a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a8b9cf62ade1bf17261a979fc97e40c2d7842353 upstream.
The commit 60c8971899f3 ("ftrace: Make DIRECT_CALLS work WITH_ARGS
and !WITH_REGS") changed DIRECT_CALLS to use SAVE_ARGS when there
are multiple ftrace_ops at the same function, but since the x86 only
support to jump to direct_call from ftrace_regs_caller, when we set
the function tracer on the same target function on x86, ftrace-direct
does not work as below (this actually works on arm64.)
At first, insmod ftrace-direct.ko to put a direct_call on
'wake_up_process()'.
# insmod kernel/samples/ftrace/ftrace-direct.ko
# less trace
...
<idle>-0 [006] ..s1. 564.686958: my_direct_func: waking up rcu_preempt-17
<idle>-0 [007] ..s1. 564.687836: my_direct_func: waking up kcompactd0-63
<idle>-0 [006] ..s1. 564.690926: my_direct_func: waking up rcu_preempt-17
<idle>-0 [006] ..s1. 564.696872: my_direct_func: waking up rcu_preempt-17
<idle>-0 [007] ..s1. 565.191982: my_direct_func: waking up kcompactd0-63
Setup a function filter to the 'wake_up_process' too, and enable it.
# cd /sys/kernel/tracing/
# echo wake_up_process > set_ftrace_filter
# echo function > current_tracer
# less trace
...
<idle>-0 [006] ..s3. 686.180972: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s3. 686.186919: wake_up_process <-call_timer_fn
<idle>-0 [002] ..s3. 686.264049: wake_up_process <-call_timer_fn
<idle>-0 [002] d.h6. 686.515216: wake_up_process <-kick_pool
<idle>-0 [002] d.h6. 686.691386: wake_up_process <-kick_pool
Then, only function tracer is shown on x86.
But if you enable 'kprobe on ftrace' event (which uses SAVE_REGS flag)
on the same function, it is shown again.
# echo 'p wake_up_process' >> dynamic_events
# echo 1 > events/kprobes/p_wake_up_process_0/enable
# echo > trace
# less trace
...
<idle>-0 [006] ..s2. 2710.345919: p_wake_up_process_0: (wake_up_process+0x4/0x20)
<idle>-0 [006] ..s3. 2710.345923: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s1. 2710.345928: my_direct_func: waking up rcu_preempt-17
<idle>-0 [006] ..s2. 2710.349931: p_wake_up_process_0: (wake_up_process+0x4/0x20)
<idle>-0 [006] ..s3. 2710.349934: wake_up_process <-call_timer_fn
<idle>-0 [006] ..s1. 2710.349937: my_direct_func: waking up rcu_preempt-17
To fix this issue, use SAVE_REGS flag for multiple ftrace_ops flag of
direct_call by default.
Link: https://lore.kernel.org/linux-trace-kernel/170484558617.178953.1590516949390270842.stgit@devnote2
Fixes: 60c8971899f3 ("ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS")
Cc: stable@vger.kernel.org
Cc: Florent Revest <revest@chromium.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 66bbea9ed6446b8471d365a22734dc00556c4785 upstream.
The return type for ring_buffer_poll_wait() is __poll_t. This is behind
the scenes an unsigned where we can set event bits. In case of a
non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us,
this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so
user-space at least is aware something went wrong.
Nonetheless, this is an incorrect code. Replace that -EINVAL with a
proper EPOLLERR to clean that output. As this doesn't change the
behaviour, there's no need to treat this change as a bug fix.
Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com
Cc: stable@vger.kernel.org
Fixes: 6721cb6002262 ("ring-buffer: Do not poll non allocated cpu buffers")
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
workqueue_apply_unbound_cpumask()"
commit aac8a59537dfc704ff344f1aacfd143c089ee20f upstream.
This reverts commit ca10d851b9ad0338c19e8e3089e24d565ebfffd7.
The commit allowed workqueue_apply_unbound_cpumask() to clear __WQ_ORDERED
on now removed implicitly ordered workqueues. This was incorrect in that
system-wide config change shouldn't break ordering properties of all
workqueues. The reason why apply_workqueue_attrs() path was allowed to do so
was because it was targeting the specific workqueue - either the workqueue
had WQ_SYSFS set or the workqueue user specifically tried to change
max_active, both of which indicate that the workqueue doesn't need to be
ordered.
The implicitly ordered workqueue promotion was removed by the previous
commit 3bc1e711c26b ("workqueue: Don't implicitly make UNBOUND workqueues w/
@max_active==1 ordered"). However, it didn't update this path and broke
build. Let's revert the commit which was incorrect in the first place which
also fixes build.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 3bc1e711c26b ("workqueue: Don't implicitly make UNBOUND workqueues w/ @max_active==1 ordered")
Fixes: ca10d851b9ad ("workqueue: Override implicit ordered attribute in workqueue_apply_unbound_cpumask()")
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9704669c386f9bbfef2e002e7e690c56b7dcf5de upstream.
Fix to search a field from the structure which has anonymous union
correctly.
Since the reference `type` pointer was updated in the loop, the search
loop suddenly aborted where it hits an anonymous union. Thus it can not
find the field after the anonymous union. This avoids updating the
cursor `type` pointer in the loop.
Link: https://lore.kernel.org/all/170791694361.389532.10047514554799419688.stgit@devnote2/
Fixes: 302db0f5b3d8 ("tracing/probes: Add a function to search a member of a struct/union")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a571c1e275cedacd48c66a6bddd0c23f1dffdbf upstream.
Since the BTF type setting updates probe_arg::type, the type size
calculation and setting print-fmt should be done after that.
Without this fix, the argument size and print-fmt can be wrong.
Link: https://lore.kernel.org/all/170602218196.215583.6417859469540955777.stgit@devnote2/
Fixes: b576e09701c7 ("tracing/probes: Support function parameters if BTF is available")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8c427cc2fa73684ea140999e121b7b6c1c717632 upstream.
Fix to show a parse error for bad type (non-string) for $comm/$COMM and
immediate-string. With this fix, error_log file shows appropriate error
message as below.
/sys/kernel/tracing # echo 'p vfs_read $comm:u32' >> kprobe_events
sh: write error: Invalid argument
/sys/kernel/tracing # echo 'p vfs_read \"hoge":u32' >> kprobe_events
sh: write error: Invalid argument
/sys/kernel/tracing # cat error_log
[ 30.144183] trace_kprobe: error: $comm and immediate-string only accepts string type
Command: p vfs_read $comm:u32
^
[ 62.618500] trace_kprobe: error: $comm and immediate-string only accepts string type
Command: p vfs_read \"hoge":u32
^
Link: https://lore.kernel.org/all/170602215411.215583.2238016352271091852.stgit@devnote2/
Fixes: 3dd1f7f24f8c ("tracing: probeevent: Fix to make the type of $comm string")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9b6326354cf9a41521b79287da3bfab022ae0b6d upstream.
Fix trace_string() by assigning the string length to the return variable
which got lost in commit ddeea494a16f ("tracing/synthetic: Use union
instead of casts") and caused trace_string() to always return 0.
Link: https://lore.kernel.org/linux-trace-kernel/20240214220555.711598-1-thorsten.blum@toblux.com
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ddeea494a16f ("tracing/synthetic: Use union instead of casts")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream.
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04fcd ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1389358bb008e7625942846e9f03554319b7fecc upstream.
Currently, the timerlat's hrtimer is initialized at the first read of
timerlat_fd, and destroyed at close(). It works, but it causes an error
if the user program open() and close() the file without reading.
Here's an example:
# echo NO_OSNOISE_WORKLOAD > /sys/kernel/debug/tracing/osnoise/options
# echo timerlat > /sys/kernel/debug/tracing/current_tracer
# cat <<EOF > ./timerlat_load.py
# !/usr/bin/env python3
timerlat_fd = open("/sys/kernel/tracing/osnoise/per_cpu/cpu0/timerlat_fd", 'r')
timerlat_fd.close();
EOF
# ./taskset -c 0 ./timerlat_load.py
<BOOM>
BUG: kernel NULL pointer dereference, address: 0000000000000010
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 2673 Comm: python3 Not tainted 6.6.13-200.fc39.x86_64 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:hrtimer_active+0xd/0x50
Code: 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 57 30 <8b> 42 10 a8 01 74 09 f3 90 8b 42 10 a8 01 75 f7 80 7f 38 00 75 1d
RSP: 0018:ffffb031009b7e10 EFLAGS: 00010286
RAX: 000000000002db00 RBX: ffff9118f786db08 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9117a0e64400 RDI: ffff9118f786db08
RBP: ffff9118f786db80 R08: ffff9117a0ddd420 R09: ffff9117804d4f70
R10: 0000000000000000 R11: 0000000000000000 R12: ffff9118f786db08
R13: ffff91178fdd5e20 R14: ffff9117840978c0 R15: 0000000000000000
FS: 00007f2ffbab1740(0000) GS:ffff9118f7840000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 00000001b402e000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? srso_alias_return_thunk+0x5/0x7f
? avc_has_extended_perms+0x237/0x520
? exc_page_fault+0x7f/0x180
? asm_exc_page_fault+0x26/0x30
? hrtimer_active+0xd/0x50
hrtimer_cancel+0x15/0x40
timerlat_fd_release+0x48/0xe0
__fput+0xf5/0x290
__x64_sys_close+0x3d/0x80
do_syscall_64+0x60/0x90
? srso_alias_return_thunk+0x5/0x7f
? __x64_sys_ioctl+0x72/0xd0
? srso_alias_return_thunk+0x5/0x7f
? syscall_exit_to_user_mode+0x2b/0x40
? srso_alias_return_thunk+0x5/0x7f
? do_syscall_64+0x6c/0x90
? srso_alias_return_thunk+0x5/0x7f
? exit_to_user_mode_prepare+0x142/0x1f0
? srso_alias_return_thunk+0x5/0x7f
? syscall_exit_to_user_mode+0x2b/0x40
? srso_alias_return_thunk+0x5/0x7f
? do_syscall_64+0x6c/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f2ffb321594
Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 cd 0d 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3c c3 0f 1f 00 55 48 89 e5 48 83 ec 10 89 7d
RSP: 002b:00007ffe8d8eef18 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
RAX: ffffffffffffffda RBX: 00007f2ffba4e668 RCX: 00007f2ffb321594
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007ffe8d8eef40 R08: 0000000000000000 R09: 0000000000000000
R10: 55c926e3167eae79 R11: 0000000000000202 R12: 0000000000000003
R13: 00007ffe8d8ef030 R14: 0000000000000000 R15: 00007f2ffba4e668
</TASK>
CR2: 0000000000000010
---[ end trace 0000000000000000 ]---
Move hrtimer_init to timerlat_fd open() to avoid this problem.
Link: https://lore.kernel.org/linux-trace-kernel/7324dd3fc0035658c99b825204a66049389c56e3.1706798888.git.bristot@kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Fixes: e88ed227f639 ("tracing/timerlat: Add user-space interface")
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream.
Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error.
Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2
Fixes: 0bbe7f719985 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation")
Cc: stable@vger.kernel.org
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dad6a09f3148257ac1773cd90934d721d68ab595 upstream.
The hrtimers migration on CPU-down hotplug process has been moved
earlier, before the CPU actually goes to die. This leaves a small window
of opportunity to queue an hrtimer in a blind spot, leaving it ignored.
For example a practical case has been reported with RCU waking up a
SCHED_FIFO task right before the CPUHP_AP_IDLE_DEAD stage, queuing that
way a sched/rt timer to the local offline CPU.
Make sure such situations never go unnoticed and warn when that happens.
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240129235646.3171983-4-boqun.feng@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 388a1fb7da6aaa1970c7e2a7d7fcd983a87a8484 ]
Thomas reported that commit 652ffc2104ec ("perf/core: Fix narrow
startup race when creating the perf nr_addr_filters sysfs file") made
the entire attribute group vanish, instead of only the nr_addr_filters
attribute.
Additionally a stray return.
Insufficient coffee was involved with both writing and merging the
patch.
Fixes: 652ffc2104ec ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file")
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 06e5c999f10269a532304e89a6adb2fbfeb0593c ]
generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.
Fix it by setting uattr->batch.count as zero beore batched update or
deletion.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 79d93b3c6ffd79abcd8e43345980aa1e904879c4 ]
Both map deletion operation, map release and map free operation use
fd_array_map_delete_elem() to remove the element from fd array and
need_defer is always true in fd_array_map_delete_elem(). For the map
deletion operation and map release operation, need_defer=true is
necessary, because the bpf program, which accesses the element in fd
array, may still alive. However for map free operation, it is certain
that the bpf program which owns the fd array has already been exited, so
setting need_defer as false is appropriate for map free operation.
So fix it by adding need_defer parameter to bpf_fd_array_map_clear() and
adding a new helper __fd_array_map_delete_elem() to handle the map
deletion, map release and map free operations correspondingly.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 169410eba271afc9f0fb476d996795aa26770c6d ]
These three bpf_map_{lookup,update,delete}_elem() helpers are also
available for sleepable bpf program, so add the corresponding lock
assertion for sleepable bpf program, otherwise the following warning
will be reported when a sleepable bpf program manipulates bpf map under
interpreter mode (aka bpf_jit_enable=0):
WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ......
CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:bpf_map_lookup_elem+0x54/0x60
......
Call Trace:
<TASK>
? __warn+0xa5/0x240
? bpf_map_lookup_elem+0x54/0x60
? report_bug+0x1ba/0x1f0
? handle_bug+0x40/0x80
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1b/0x20
? __pfx_bpf_map_lookup_elem+0x10/0x10
? rcu_lockdep_current_cpu_online+0x65/0xb0
? rcu_is_watching+0x23/0x50
? bpf_map_lookup_elem+0x54/0x60
? __pfx_bpf_map_lookup_elem+0x10/0x10
___bpf_prog_run+0x513/0x3b70
__bpf_prog_run32+0x9d/0xd0
? __bpf_prog_enter_sleepable_recur+0xad/0x120
? __bpf_prog_enter_sleepable_recur+0x3e/0x120
bpf_trampoline_6442580665+0x4d/0x1000
__x64_sys_getpgid+0x5/0x30
? do_syscall_64+0x36/0xb0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 022732e3d846e197539712e51ecada90ded0572a ]
When auditd_set sets the auditd_conn pointer, audit messages can
immediately be put on the socket by other kernel threads. If the backlog
is large or the rate is high, this can immediately fill the socket
buffer. If the audit daemon requested an ACK for this operation, a full
socket buffer causes the ACK to get dropped, also setting ENOBUFS on the
socket.
To avoid this race and ensure ACKs get through, fast-track the ACK in
this specific case to ensure it is sent before auditd_conn is set.
Signed-off-by: Chris Riches <chris.riches@nutanix.com>
[PM: fix some tab vs space damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
sysfs file
[ Upstream commit 652ffc2104ec1f69dd4a46313888c33527145ccf ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/2023061204-decal-flyable-6090@gregkh
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9a574ea9069be30b835a3da772c039993c43369b upstream.
Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.
Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.
Preserve those fields too.
Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 644649553508b9bacf0fc7a5bdc4f9e0165576a5 upstream.
There have been reports of the watchdog marking clocksources unstable on
machines with 8 NUMA nodes:
clocksource: timekeeping watchdog on CPU373:
Marking clocksource 'tsc' as unstable because the skew is too large:
clocksource: 'hpet' wd_nsec: 14523447520
clocksource: 'tsc' cs_nsec: 14524115132
The measured clocksource skew - the absolute difference between cs_nsec
and wd_nsec - was 668 microseconds:
cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612
The kernel used 200 microseconds for the uncertainty_margin of both the
clocksource and watchdog, resulting in a threshold of 400 microseconds (the
md variable). Both the cs_nsec and the wd_nsec value indicate that the
readout interval was circa 14.5 seconds. The observed behaviour is that
watchdog checks failed for large readout intervals on 8 NUMA node
machines. This indicates that the size of the skew was directly proportinal
to the length of the readout interval on those machines. The measured
clocksource skew, 668 microseconds, was evaluated against a threshold (the
md variable) that is suited for readout intervals of roughly
WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second.
The intention of 2e27e793e280 ("clocksource: Reduce clocksource-skew
threshold") was to tighten the threshold for evaluating skew and set the
lower bound for the uncertainty_margin of clocksources to twice
WATCHDOG_MAX_SKEW. Later in c37e85c135ce ("clocksource: Loosen clocksource
watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to
125 microseconds to fit the limit of NTP, which is able to use a
clocksource that suffers from up to 500 microseconds of skew per second.
Both the TSC and the HPET use default uncertainty_margin. When the
readout interval gets stretched the default uncertainty_margin is no
longer a suitable lower bound for evaluating skew - it imposes a limit
that is far stricter than the skew with which NTP can deal.
The root causes of the skew being directly proportinal to the length of
the readout interval are:
* the inaccuracy of the shift/mult pairs of clocksources and the watchdog
* the conversion to nanoseconds is imprecise for large readout intervals
Prevent this by skipping the current watchdog check if the readout
interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout
interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin
(of the TSC and HPET) corresponds to a limit on clocksource skew of 250
ppm (microseconds of skew per second). To keep the limit imposed by NTP
(500 microseconds of skew per second) for all possible readout intervals,
the margins would have to be scaled so that the threshold value is
proportional to the length of the actual readout interval.
As for why the readout interval may get stretched: Since the watchdog is
executed in softirq context the expiration of the watchdog timer can get
severely delayed on account of a ksoftirqd thread not getting to run in a
timely manner. Surely, a system with such belated softirq execution is not
working well and the scheduling issue should be looked into but the
clocksource watchdog should be able to deal with it accordingly.
Fixes: 2e27e793e280 ("clocksource: Reduce clocksource-skew threshold")
Suggested-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Jiri Wiesner <jwiesner@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122172350.GA740@incl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b184c8c2889ceef0a137c7d0567ef9fe3d92276e upstream.
For a CONFIG_SPARSE_IRQ=n kernel, early_irq_init() is supposed to
initialize all interrupt descriptors.
It does except for irq_desc::resend_node, which ia only initialized for the
first descriptor.
Use the indexed decriptor and not the base pointer to address that.
Fixes: bc06a9e08742 ("genirq: Use hlist for managing resend handlers")
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122085716.2999875-5-dawei.li@shingroup.cn
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 53e380d21441909b12b6e0782b77187ae4b971c4 ]
As prep for adding unix socket support to the cgroup sockaddr hooks,
let's add a kfunc bpf_sock_addr_set_sun_path() that allows modifying a unix
sockaddr from bpf. While this is already possible for AF_INET and AF_INET6,
we'll need this kfunc when we add unix socket support since modifying the
address for those requires modifying both the address and the sockaddr
length.
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-4-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8ce ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fefba7d1ae198dcbf8b3b432de46a4e29f8dbd8c ]
As prep for adding unix socket support to the cgroup sockaddr hooks,
let's propagate the sockaddr length back to the caller after running
a bpf cgroup sockaddr hook program. While not important for AF_INET or
AF_INET6, the sockaddr length is important when working with AF_UNIX
sockaddrs as the size of the sockaddr cannot be determined just from the
address family or the sockaddr's contents.
__cgroup_bpf_run_filter_sock_addr() is modified to take the uaddrlen as
an input/output argument. After running the program, the modified sockaddr
length is stored in the uaddrlen pointer.
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-3-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Stable-dep-of: c5114710c8ce ("xsk: fix usage of multi-buffer BPF helpers for ZC XDP")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e787644caf7628ad3269c1fbd321c3255cf51710 ]
When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).
If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.
This triggers TREE03 rcutorture hangs:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
rcu: (t=21035 jiffies g=938281 q=40787 ncpus=6)
rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:R running task stack:14896 pid:14 tgid:14 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2eb/0xa80
schedule+0x1f/0x90
schedule_timeout+0x163/0x270
? __pfx_process_timeout+0x10/0x10
rcu_gp_fqs_loop+0x37c/0x5b0
? __pfx_rcu_gp_kthread+0x10/0x10
rcu_gp_kthread+0x17c/0x200
kthread+0xde/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2b/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.
So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaad5 ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2b44760609e9eaafc9d234a6883d042fc21132a7 ]
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry->val);
if (val && keys_match(key, val->key, map->key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt->key, key, map->key_size);
entry->val = elt;
The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.
Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.
The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.
From the user's perspective, the issue was introduced by commit
c193707dde77 ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb8f ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.
Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com
Fixes: c193707dde77 ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit bb124da69c47dd98d69361ec13244ece50bec63e upstream.
In some cases verifier can't infer convergence of the bpf_loop()
iteration. E.g. for the following program:
static int cb(__u32 idx, struct num_context* ctx)
{
ctx->i++;
return 0;
}
SEC("?raw_tp")
int prog(void *_)
{
struct num_context ctx = { .i = 0 };
__u8 choice_arr[2] = { 0, 1 };
bpf_loop(2, cb, &ctx, 0);
return choice_arr[ctx.i];
}
Each 'cb' simulation would eventually return to 'prog' and reach
'return choice_arr[ctx.i]' statement. At which point ctx.i would be
marked precise, thus forcing verifier to track multitude of separate
states with {.i=0}, {.i=1}, ... at bpf_loop() callback entry.
This commit allows "brute force" handling for such cases by limiting
number of callback body simulations using 'umax' value of the first
bpf_loop() parameter.
For this, extend bpf_func_state with 'callback_depth' field.
Increment this field when callback visiting state is pushed to states
traversal stack. For frame #N it's 'callback_depth' field counts how
many times callback with frame depth N+1 had been executed.
Use bpf_func_state specifically to allow independent tracking of
callback depths when multiple nested bpf_loop() calls are present.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cafe2c21508a38cdb3ed22708842e957b2572c3e upstream.
Callbacks are similar to open coded iterators, so add imprecise
widening logic for callback body processing. This makes callback based
loops behave identically to open coded iterators, e.g. allowing to
verify programs like below:
struct ctx { u32 i; };
int cb(u32 idx, struct ctx* ctx)
{
++ctx->i;
return 0;
}
...
struct ctx ctx = { .i = 0 };
bpf_loop(100, cb, &ctx, 0);
...
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-9-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ab5cfac139ab8576fb54630d4cca23c3e690ee90 upstream.
Prior to this patch callbacks were handled as regular function calls,
execution of callback body was modeled exactly once.
This patch updates callbacks handling logic as follows:
- introduces a function push_callback_call() that schedules callback
body verification in env->head stack;
- updates prepare_func_exit() to reschedule callback body verification
upon BPF_EXIT;
- as calls to bpf_*_iter_next(), calls to callback invoking functions
are marked as checkpoints;
- is_state_visited() is updated to stop callback based iteration when
some identical parent state is found.
Paths with callback function invoked zero times are now verified first,
which leads to necessity to modify some selftests:
- the following negative tests required adding release/unlock/drop
calls to avoid previously masked unrelated error reports:
- cb_refs.c:underflow_prog
- exceptions_fail.c:reject_rbtree_add_throw
- exceptions_fail.c:reject_with_cp_reference
- the following precision tracking selftests needed change in expected
log trace:
- verifier_subprog_precision.c:callback_result_precise
(note: r0 precision is no longer propagated inside callback and
I think this is a correct behavior)
- verifier_subprog_precision.c:parent_callee_saved_reg_precise_with_callback
- verifier_subprog_precision.c:parent_stack_slot_precise_with_callback
Reported-by: Andrew Werner <awerner32@gmail.com>
Closes: https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 58124a98cb8eda69d248d7f1de954c8b2767c945 upstream.
Move code for simulated stack frame creation to a separate utility
function. This function would be used in the follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 683b96f9606ab7308ffb23c46ab43cecdef8a241 upstream.
Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
a parameter;
The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b4d8239534fddc036abe4a0fdbf474d9894d4641 upstream.
Additional logging in is_state_visited(): if infinite loop is detected
print full verifier state for both current and equivalent states.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2a0992829ea3864939d917a5c7b48be6629c6217 upstream.
It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition to identify if two verifier states form a loop
when iterators convergence is computed. This commit adds logic to
distinguish situations like below:
(I) initial (II) initial
| |
V V
.---------> hdr ..
| | |
| V V
| .------... .------..
| | | | |
| V V V V
| ... ... .-> hdr ..
| | | | | |
| V V | V V
| succ <- cur | succ <- cur
| | | |
| V | V
| ... | ...
| | | |
'----' '----'
For both (I) and (II) successor 'succ' of the current state 'cur' was
previously explored and has branches count at 0. However, loop entry
'hdr' corresponding to 'succ' might be a part of current DFS path.
If that is the case 'succ' and 'cur' are members of the same loop
and have to be compared exactly.
Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2793a8b015f7f1caadb9bce9c63dc659f7522676 upstream.
Convergence for open coded iterators is computed in is_state_visited()
by examining states with branches count > 1 and using states_equal().
states_equal() computes sub-state relation using read and precision marks.
Read and precision marks are propagated from children states,
thus are not guaranteed to be complete inside a loop when branches
count > 1. This could be demonstrated using the following unsafe program:
1. r7 = -16
2. r6 = bpf_get_prandom_u32()
3. while (bpf_iter_num_next(&fp[-8])) {
4. if (r6 != 42) {
5. r7 = -32
6. r6 = bpf_get_prandom_u32()
7. continue
8. }
9. r0 = r10
10. r0 += r7
11. r8 = *(u64 *)(r0 + 0)
12. r6 = bpf_get_prandom_u32()
13. }
Here verifier would first visit path 1-3, create a checkpoint at 3
with r7=-16, continue to 4-7,3 with r7=-32.
Because instructions at 9-12 had not been visitied yet existing
checkpoint at 3 does not have read or precision mark for r7.
Thus states_equal() would return true and verifier would discard
current state, thus unsafe memory access at 11 would not be caught.
This commit fixes this loophole by introducing exact state comparisons
for iterator convergence logic:
- registers are compared using regs_exact() regardless of read or
precision marks;
- stack slots have to have identical type.
Unfortunately, this is too strict even for simple programs like below:
i = 0;
while(iter_next(&it))
i++;
At each iteration step i++ would produce a new distinct state and
eventually instruction processing limit would be reached.
To avoid such behavior speculatively forget (widen) range for
imprecise scalar registers, if those registers were not precise at the
end of the previous iteration and do not match exactly.
This a conservative heuristic that allows to verify wide range of
programs, however it precludes verification of programs that conjure
an imprecise value on the first loop iteration and use it as precise
on the second.
Test case iter_task_vma_for_each() presents one of such cases:
unsigned int seen = 0;
...
bpf_for_each(task_vma, vma, task, 0) {
if (seen >= 1000)
break;
...
seen++;
}
Here clang generates the following code:
<LBB0_4>:
24: r8 = r6 ; stash current value of
... body ... 'seen'
29: r1 = r10
30: r1 += -0x8
31: call bpf_iter_task_vma_next
32: r6 += 0x1 ; seen++;
33: if r0 == 0x0 goto +0x2 <LBB0_6> ; exit on next() == NULL
34: r7 += 0x10
35: if r8 < 0x3e7 goto -0xc <LBB0_4> ; loop on seen < 1000
<LBB0_6>:
... exit ...
Note that counter in r6 is copied to r8 and then incremented,
conditional jump is done using r8. Because of this precision mark for
r6 lags one state behind of precision mark on r8 and widening logic
kicks in.
Adding barrier_var(seen) after conditional is sufficient to force
clang use the same register for both counting and conditional jump.
This issue was discussed in the thread [1] which was started by
Andrew Werner <awerner32@gmail.com> demonstrating a similar bug
in callback functions handling. The callbacks would be addressed
in a followup patch.
[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/
Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4c97259abc9bc8df7712f76f58ce385581876857 upstream.
Extract same_callsites() from clean_live_states() as a utility function.
This function would be used by the next patch in the set.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c4e420cb6536026ddd50eaaff5f30e4f144200d upstream.
Subsequent patches would make use of explored_state() function.
Move it up to avoid adding unnecessary prototype.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7bb943806ff61e83ae4cceef8906b7fe52453e8a upstream.
syscore_shutdown() runs driver and module callbacks to get the system into
a state where it can be correctly shut down. In commit 6f389a8f1dd2 ("PM
/ reboot: call syscore_shutdown() after disable_nonboot_cpus()")
syscore_shutdown() was removed from kernel_restart_prepare() and hence got
(incorrectly?) removed from the kexec flow. This was innocuous until
commit 6735150b6997 ("KVM: Use syscore_ops instead of reboot_notifier to
hook restart/shutdown") changed the way that KVM registered its shutdown
callbacks, switching from reboot notifiers to syscore_ops.shutdown. As
syscore_shutdown() is missing from kexec, KVM's shutdown hook is not run
and virtualisation is left enabled on the boot CPU which results in triple
faults when switching to the new kernel on Intel x86 VT-x with VMXE
enabled.
Fix this by adding syscore_shutdown() to the kexec sequence. In terms of
where to add it, it is being added after migrating the kexec task to the
boot CPU, but before APs are shut down. It is not totally clear if this
is the best place: in commit 6f389a8f1dd2 ("PM / reboot: call
syscore_shutdown() after disable_nonboot_cpus()") it is stated that
"syscore_ops operations should be carried with one CPU on-line and
interrupts disabled." APs are only offlined later in machine_shutdown(),
so this syscore_shutdown() is being run while APs are still online. This
seems to be the correct place as it matches where syscore_shutdown() is
run in the reboot and halt flows - they also run it before APs are shut
down. The assumption is that the commit message in commit 6f389a8f1dd2
("PM / reboot: call syscore_shutdown() after disable_nonboot_cpus()") is
no longer valid.
KVM has been discussed here as it is what broke loudly by not having
syscore_shutdown() in kexec, but this change impacts more than just KVM;
all drivers/modules which register a syscore_ops.shutdown callback will
now be invoked in the kexec flow. Looking at some of them like x86 MCE it
is probably more correct to also shut these down during kexec.
Maintainers of all drivers which use syscore_ops.shutdown are added on CC
for visibility. They are:
arch/powerpc/platforms/cell/spu_base.c .shutdown = spu_shutdown,
arch/x86/kernel/cpu/mce/core.c .shutdown = mce_syscore_shutdown,
arch/x86/kernel/i8259.c .shutdown = i8259A_shutdown,
drivers/irqchip/irq-i8259.c .shutdown = i8259A_shutdown,
drivers/irqchip/irq-sun6i-r.c .shutdown = sun6i_r_intc_shutdown,
drivers/leds/trigger/ledtrig-cpu.c .shutdown = ledtrig_cpu_syscore_shutdown,
drivers/power/reset/sc27xx-poweroff.c .shutdown = sc27xx_poweroff_shutdown,
kernel/irq/generic-chip.c .shutdown = irq_gc_shutdown,
virt/kvm/kvm_main.c .shutdown = kvm_shutdown,
This has been tested by doing a kexec on x86_64 and aarch64.
Link: https://lkml.kernel.org/r/20231213064004.2419447-1-jgowans@amazon.com
Fixes: 6735150b6997 ("KVM: Use syscore_ops instead of reboot_notifier to hook restart/shutdown")
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Jernej Skrabec <jernej.skrabec@gmail.com>
Cc: Samuel Holland <samuel@sholland.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Alexander Graf <graf@amazon.de>
Cc: Jan H. Schoenherr <jschoenh@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 71cd7e80cfde548959952eac7063aeaea1f2e1c6 upstream.
An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:
Invalid LZO compressed length
That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:
CPU 0 CPU 1
save_image_lzo lzo_compress_threadfn
atomic_set(&d->stop, 1);
atomic_read(&data[thr].stop)
data[thr].cmp = data[thr].cmp_len;
WRITE data[thr].cmp_len
Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.
To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.
Fixes: 081a9d043c98 ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7d4b5d7a37bdd63a5a3371b988744b060d5bb86f upstream.
In preparation for subsequent changes, introduce a specialized variant
of async_schedule_dev() that will not invoke the argument function
synchronously when it cannot be scheduled for asynchronous execution.
The new function, async_schedule_dev_nocall(), will be used for fixing
possible deadlocks in the system-wide power management core code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com> for the series.
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6aa09a5bccd8e224d917afdb4c278fc66aacde4d upstream.
In preparation for subsequent changes, split async_schedule_node_domain()
in two pieces so as to allow the bottom part of it to be called from a
somewhat different code path.
No functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4f41d30cd6dc865c3cbc1a852372321eba6d4e4c ]
When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.
An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.
However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].
[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/
Fixes: 5d5314d6795f ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 22c7fa171a02d310e3a3f6ed46a698ca8a0060ed ]
For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.
The following prog is accepted:
func#0 @0
0: R1=ctx() R10=fp0
0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx()
1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys()
2: (b7) r8 = 1024 ; R8_w=1024
3: (37) r8 /= 1 ; R8_w=scalar()
4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0,
smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
5: (0f) r7 += r8
mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
=(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
var_off=(0x0; 0x400))
6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar()
7: (95) exit
This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:
BUG: unable to handle page fault for address: ffffc90014c80038
[...]
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
__bpf_prog_run include/linux/filter.h:651 [inline]
bpf_prog_run include/linux/filter.h:658 [inline]
bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
__sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
__do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
__x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited".
Fixes: d58e468b1112 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 715d82ba636cb3629a6e18a33bb9dbe53f9936ee upstream.
The following case can cause a crash due to missing attach_btf:
1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3
In the end we have:
- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one
BUG: kernel NULL pointer dereference, address: 0000000000000058
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15b/0x430
? fixup_exception+0x22/0x330
? exc_page_fault+0x6f/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_tracing_prog_attach+0x279/0x560
? btf_obj_id+0x5/0x10
bpf_tracing_prog_attach+0x439/0x560
__sys_bpf+0x1cf4/0x2de0
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x41/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Return -EINVAL in this situation.
Fixes: f3a95075549e0 ("bpf: Allow trampoline re-attach for tracing and lsm programs")
Cc: stable@vger.kernel.org
Signed-off-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 71fee48fb772ac4f6cfa63dbebc5629de8b4cc09 upstream.
When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:
cpu 132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0
cpu 133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0
cpu 133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0 <---- idle + iowait start with 0
cpu 133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0
Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:
- if a CPU is online the values may be taken from its per cpu
tick_cpu_sched structure
- if a CPU is offline the values are taken from its per cpu cpustat
structure
The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.
Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.
It looks like this behavior was introduced with commit 4b0c0f294f60
("tick: Cleanup NOHZ per cpu data on cpu down").
This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea614460 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").
Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.
Fixes: 4b0c0f294f60 ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 7ac5c53e00735d183a0f5e2cfce5eeb6c16319f2 ]
At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().
The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.
Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.
A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.
As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.
Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:
kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s
After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:
kmalloc: alloc 11.01 ± 0.03M/s free 32.42 ± 0.48M/s
percpu: alloc 12.84 ± 0.12M/s free 35.24 ± 0.23M/s
After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.
Fixes: 9077fc228f09 ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3f2189e4f77b7a3e979d143dc4ff586488c7e8a5 ]
For bpf_global_percpu_ma, the pointer passed to bpf_mem_free_rcu() is
allocated by kmalloc() and its size is fixed (16-bytes on x86-64). So
no matter which cache allocates the dynamic per-cpu area, on x86-64
cache[2] will always be used to free the per-cpu area.
Fix the unbalance by checking whether the bpf memory allocator is
per-cpu or not and use pcpu_alloc_size() instead of ksize() to
find the correct cache for per-cpu free.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e0073 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit baa8fdecd87bb8751237b45e3bcb5a179e5a12ca ]
With pcpu_alloc_size() in place, check whether or not the size of
the dynamic per-cpu area is matched with unit_size.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7ac5c53e0073 ("bpf: Use c->unit_size to select target cache during free")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d6d1e6c17cab2dcb7b8530c599f00e7de906d380 ]
An abnormally big cnt may also be assigned to kprobe_multi.cnt when
attaching multiple kprobes. It will trigger the following warning in
kvmalloc_node():
if (unlikely(size > INT_MAX)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
Fix the warning by limiting the maximal number of kprobes in
bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than
MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG.
Fixes: 0dcac2725406 ("bpf: Add multi kprobe link")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8b2efe51ba85ca83460941672afac6fca4199df6 ]
An abnormally big cnt may be passed to link_create.uprobe_multi.cnt,
and it will trigger the following warning in kvmalloc_node():
if (unlikely(size > INT_MAX)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
Fix the warning by limiting the maximal number of uprobes in
bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than
MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG.
Fixes: 89ae89f53d20 ("bpf: Add multi uprobe link")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com
Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b07bc2347672cc8c7293c64499f1488278c5ca3d ]
Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error
It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.
Fixes: cf65a0f6f6ff ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|