summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2021-06-24sched/topology: Rework CPU capacity asymmetry detectionBeata Michalska
Currently the CPU capacity asymmetry detection, performed through asym_cpu_capacity_level, tries to identify the lowest topology level at which the highest CPU capacity is being observed, not necessarily finding the level at which all possible capacity values are visible to all CPUs, which might be bit problematic for some possible/valid asymmetric topologies i.e.: DIE [ ] MC [ ][ ] CPU [0] [1] [2] [3] [4] [5] [6] [7] Capacity |.....| |.....| |.....| |.....| L M B B Where: arch_scale_cpu_capacity(L) = 512 arch_scale_cpu_capacity(M) = 871 arch_scale_cpu_capacity(B) = 1024 In this particular case, the asymmetric topology level will point at MC, as all possible CPU masks for that level do cover the CPU with the highest capacity. It will work just fine for the first cluster, not so much for the second one though (consider the find_energy_efficient_cpu which might end up attempting the energy aware wake-up for a domain that does not see any asymmetry at all) Rework the way the capacity asymmetry levels are being detected, allowing to point to the lowest topology level (for a given CPU), where full set of available CPU capacities is visible to all CPUs within given domain. As a result, the per-cpu sd_asym_cpucapacity might differ across the domains. This will have an impact on EAS wake-up placement in a way that it might see different range of CPUs to be considered, depending on the given current and target CPUs. Additionally, those levels, where any range of asymmetry (not necessarily full) is being detected will get identified as well. The selected asymmetric topology level will be denoted by SD_ASYM_CPUCAPACITY_FULL sched domain flag whereas the 'sub-levels' would receive the already used SD_ASYM_CPUCAPACITY flag. This allows maintaining the current behaviour for asymmetric topologies, with misfit migration operating correctly on lower levels, if applicable, as any asymmetry is enough to trigger the misfit migration. The logic there relies on the SD_ASYM_CPUCAPACITY flag and does not relate to the full asymmetry level denoted by the sd_asym_cpucapacity pointer. Detecting the CPU capacity asymmetry is being based on a set of available CPU capacities for all possible CPUs. This data is being generated upon init and updated once CPU topology changes are being detected (through arch_update_cpu_topology). As such, any changes to identified CPU capacities (like initializing cpufreq) need to be explicitly advertised by corresponding archs to trigger rebuilding the data. Additional -dflags- parameter, used when building sched domains, has been removed as well, as the asymmetry flags are now being set directly in sd_init. Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Beata Michalska <beata.michalska@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lore.kernel.org/r/20210603140627.8409-3-beata.michalska@arm.com
2021-06-24psi: Fix race between psi_trigger_create/destroyZhaoyang Huang
Race detected between psi_trigger_destroy/create as shown below, which cause panic by accessing invalid psi_system->poll_wait->wait_queue_entry and psi_system->poll_timer->entry->next. Under this modification, the race window is removed by initialising poll_wait and poll_timer in group_init which are executed only once at beginning. psi_trigger_destroy() psi_trigger_create() mutex_lock(trigger_lock); rcu_assign_pointer(poll_task, NULL); mutex_unlock(trigger_lock); mutex_lock(trigger_lock); if (!rcu_access_pointer(group->poll_task)) { timer_setup(poll_timer, poll_timer_fn, 0); rcu_assign_pointer(poll_task, task); } mutex_unlock(trigger_lock); synchronize_rcu(); del_timer_sync(poll_timer); <-- poll_timer has been reinitialized by psi_trigger_create() So, trigger_lock/RCU correctly protects destruction of group->poll_task but misses this race affecting poll_timer and poll_wait. Fixes: 461daba06bdc ("psi: eliminate kthread_worker from psi trigger scheduling mechanism") Co-developed-by: ziwei.dai <ziwei.dai@unisoc.com> Signed-off-by: ziwei.dai <ziwei.dai@unisoc.com> Co-developed-by: ke.wang <ke.wang@unisoc.com> Signed-off-by: ke.wang <ke.wang@unisoc.com> Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/1623371374-15664-1-git-send-email-huangzhaoyang@gmail.com
2021-06-24sched/fair: Introduce the burstable CFS controllerHuaixin Chang
The CFS bandwidth controller limits CPU requests of a task group to quota during each period. However, parallel workloads might be bursty so that they get throttled even when their average utilization is under quota. And they are latency sensitive at the same time so that throttling them is undesired. We borrow time now against our future underrun, at the cost of increased interference against the other system users. All nicely bounded. Traditional (UP-EDF) bandwidth control is something like: (U = \Sum u_i) <= 1 This guaranteeds both that every deadline is met and that the system is stable. After all, if U were > 1, then for every second of walltime, we'd have to run more than a second of program time, and obviously miss our deadline, but the next deadline will be further out still, there is never time to catch up, unbounded fail. This work observes that a workload doesn't always executes the full quota; this enables one to describe u_i as a statistical distribution. For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100) (the traditional WCET). This effectively allows u to be smaller, increasing the efficiency (we can pack more tasks in the system), but at the cost of missing deadlines when all the odds line up. However, it does maintain stability, since every overrun must be paired with an underrun as long as our x is above the average. That is, suppose we have 2 tasks, both specify a p(95) value, then we have a p(95)*p(95) = 90.25% chance both tasks are within their quota and everything is good. At the same time we have a p(5)p(5) = 0.25% chance both tasks will exceed their quota at the same time (guaranteed deadline fail). Somewhere in between there's a threshold where one exceeds and the other doesn't underrun enough to compensate; this depends on the specific CDFs. At the same time, we can say that the worst case deadline miss, will be \Sum e_i; that is, there is a bounded tardiness (under the assumption that x+e is indeed WCET). The benefit of burst is seen when testing with schbench. Default value of kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used. mkdir /sys/fs/cgroup/cpu/test echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us ./schbench -m 1 -t 3 -r 20 -c 80000 -R 10 The average CPU usage is at 80%. I run this for 10 times, and got long tail latency for 6 times and got throttled for 8 times. Tail latencies are shown below, and it wasn't the worst case. Latency percentiles (usec) 50.0000th: 19872 75.0000th: 21344 90.0000th: 22176 95.0000th: 22496 *99.0000th: 22752 99.5000th: 22752 99.9000th: 22752 min=0, max=22727 rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44% The interferenece when using burst is valued by the possibilities for missing the deadline and the average WCET. Test results showed that when there many cgroups or CPU is under utilized, the interference is limited. More details are shown in: https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/ Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com> Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com> Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
2021-06-23kernel/sysctl-test: Remove some casts which are no-longer requiredDavid Gow
With some of the stricter type checking in KUnit's EXPECT macros removed, several casts in sysctl-test are no longer required. Remove the unnecessary casts, making the conditions clearer. Signed-off-by: David Gow <davidgow@google.com> Reviewed-by: Brendan Higgins <brendanhiggins@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-06-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpfDavid S. Miller
Daniel Borkmann says: ==================== pull-request: bpf 2021-06-23 The following pull-request contains BPF updates for your *net* tree. We've added 14 non-merge commits during the last 6 day(s) which contain a total of 13 files changed, 137 insertions(+), 64 deletions(-). Note that when you merge net into net-next, there is a small merge conflict between 9f2470fbc4cb ("skmsg: Improve udp_bpf_recvmsg() accuracy") from bpf with c49661aa6f70 ("skmsg: Remove unused parameters of sk_msg_wait_data()") from net-next. Resolution is to: i) net/ipv4/udp_bpf.c: take udp_msg_wait_data() and remove err parameter from the function, ii) net/ipv4/tcp_bpf.c: take tcp_msg_wait_data() and remove err parameter from the function, iii) for net/core/skmsg.c and include/linux/skmsg.h: remove the sk_msg_wait_data() implementation and its prototype in header. The main changes are: 1) Fix BPF poke descriptor adjustments after insn rewrite, from John Fastabend. 2) Fix regression when using BPF_OBJ_GET with non-O_RDWR flags, from Maciej Żenczykowski. 3) Various bug and error handling fixes for UDP-related sock_map, from Cong Wang. 4) Fix patching of vmlinux BTF IDs with correct endianness, from Tony Ambardar. 5) Two fixes for TX descriptor validation in AF_XDP, from Magnus Karlsson. 6) Fix overflow in size calculation for bpf_map_area_alloc(), from Bui Quang Minh. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-23perf: Fix task context PMU for HeteroPeter Zijlstra
On HETEROGENEOUS hardware (ARM big.Little, Intel Alderlake etc.) each CPU might have a different hardware PMU. Since each such PMU is represented by a different struct pmu, but we only have a single HW task context. That means that the task context needs to switch PMU type when it switches CPUs. Not doing this means that ctx->pmu calls (pmu_{dis,en}able(), {start,commit,cancel}_txn() etc.) are called against the wrong PMU and things will go wobbly. Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support") Reported-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lkml.kernel.org/r/YMsy7BuGT8nBTspT@hirez.programming.kicks-ass.net
2021-06-23Merge branch 'stable/for-linus-5.14' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb Pull swiotlb fix from Konrad Rzeszutek Wilk: "A fix for the regression for the DMA operations where the offset was ignored and corruptions would appear. Going forward there will be a cleanups to make the offset and alignment logic more clearer and better test-cases to help with this" * 'stable/for-linus-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb: swiotlb: manipulate orig_addr when tlb_addr has offset
2021-06-23Merge remote-tracking branch 'regulator/for-5.14' into regulator-nextMark Brown
2021-06-22bpf: Fix null ptr deref with mixed tail calls and subprogsJohn Fastabend
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the individual JITs. The poke_tab[] to use is stored in the insn->imm by the code adding it to that array slot. The JIT then uses imm to find the right entry for an individual instruction. In the x86 bpf_jit_comp.c this is done by calling emit_bpf_tail_call_direct with the poke_tab[] of the imm value. However, we observed the below null-ptr-deref when mixing tail call programs with subprog programs. For this to happen we just need to mix bpf-2-bpf calls and tailcalls with some extra calls or instructions that would be patched later by one of the fixup routines. So whats happening? Before the fixup_call_args() -- where the jit op is done -- various code patching is done by do_misc_fixups(). This may increase the insn count, for example when we patch map_lookup_up using map_gen_lookup hook. This does two things. First, it means the instruction index, insn_idx field, of a tail call instruction will move by a 'delta'. In verifier code, struct bpf_jit_poke_descriptor desc = { .reason = BPF_POKE_REASON_TAIL_CALL, .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), .tail_call.key = bpf_map_key_immediate(aux), .insn_idx = i + delta, }; Then subprog start values subprog_info[i].start will be updated with the delta and any poke descriptor index will also be updated with the delta in adjust_poke_desc(). If we look at the adjust subprog starts though we see its only adjusted when the delta occurs before the new instructions, /* NOTE: fake 'exit' subprog should be updated as well. */ for (i = 0; i <= env->subprog_cnt; i++) { if (env->subprog_info[i].start <= off) continue; Earlier subprograms are not changed because their start values are not moved. But, adjust_poke_desc() does the offset + delta indiscriminately. The result is poke descriptors are potentially corrupted. Then in jit_subprogs() we only populate the poke_tab[] when the above insn_idx is less than the next subprogram start. From above we corrupted our insn_idx so we might incorrectly assume a poke descriptor is not used in a subprogram omitting it from the subprogram. And finally when the jit runs it does the deref of poke_tab when emitting the instruction and crashes with below. Because earlier step omitted the poke descriptor. The fix is straight forward with above context. Simply move same logic from adjust_subprog_starts() into adjust_poke_descs() and only adjust insn_idx when needed. [ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload ' [ 82.623001] loop10: detected capacity change from 0 to 8 [ 88.487424] ================================================================== [ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290 [ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295 [ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386 [ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019 [ 88.487490] Call Trace: [ 88.487498] dump_stack+0x93/0xc2 [ 88.487515] kasan_report.cold+0x5f/0xd8 [ 88.487530] ? do_jit+0x184a/0x3290 [ 88.487542] do_jit+0x184a/0x3290 ... [ 88.487709] bpf_int_jit_compile+0x248/0x810 ... [ 88.487765] bpf_check+0x3718/0x5140 ... [ 88.487920] bpf_prog_load+0xa22/0xf10 Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") Reported-by: Jussi Maki <joamaki@gmail.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
2021-06-22module: limit enabling module.sig_enforceMimi Zohar
Irrespective as to whether CONFIG_MODULE_SIG is configured, specifying "module.sig_enforce=1" on the boot command line sets "sig_enforce". Only allow "sig_enforce" to be set when CONFIG_MODULE_SIG is configured. This patch makes the presence of /sys/module/module/parameters/sig_enforce dependent on CONFIG_MODULE_SIG=y. Fixes: fda784e50aac ("module: export module signature enforcement status") Reported-by: Nayna Jain <nayna@linux.ibm.com> Tested-by: Mimi Zohar <zohar@linux.ibm.com> Tested-by: Jessica Yu <jeyu@kernel.org> Signed-off-by: Mimi Zohar <zohar@linux.ibm.com> Signed-off-by: Jessica Yu <jeyu@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-22Kconfig: Introduce ARCH_WANTS_NO_INSTR and CC_HAS_NO_PROFILE_FN_ATTRNick Desaulniers
We don't want compiler instrumentation to touch noinstr functions, which are annotated with the no_profile_instrument_function function attribute. Add a Kconfig test for this and make GCOV depend on it, and in the future, PGO. If an architecture is using noinstr, it should denote that via this Kconfig value. That makes Kconfigs that depend on noinstr able to express dependencies in an architecturally agnostic way. Cc: Masahiro Yamada <masahiroy@kernel.org> Link: https://lore.kernel.org/lkml/YMTn9yjuemKFLbws@hirez.programming.kicks-ass.net/ Link: https://lore.kernel.org/lkml/YMcssV%2Fn5IBGv4f0@hirez.programming.kicks-ass.net/ Suggested-by: Nathan Chancellor <nathan@kernel.org> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210621231822.2848305-4-ndesaulniers@google.com
2021-06-22bpf: Fix integer overflow in argument calculation for bpf_map_area_allocBui Quang Minh
In 32-bit architecture, the result of sizeof() is a 32-bit integer so the expression becomes the multiplication between 2 32-bit integer which can potentially leads to integer overflow. As a result, bpf_map_area_alloc() allocates less memory than needed. Fix this by casting 1 operand to u64. Fixes: 0d2c4f964050 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps") Fixes: 99c51064fb06 ("devmap: Use bpf_map_area_alloc() for allocating hash buckets") Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com
2021-06-22clockevents: Use list_move() instead of list_del()/list_add()Baokun Li
Simplify the code. Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Baokun Li <libaokun1@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210609070242.1322450-1-libaokun1@huawei.com
2021-06-22clocksource: Print deviation in nanoseconds when a clocksource becomes unstableFeng Tang
Currently when an unstable clocksource is detected, the raw counters of that clocksource and watchdog will be printed, which can only be understood after some math calculation. So print the delta in nanoseconds as well to make it easier for humans to check the results. [ paulmck: Fix typo. ] Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210527190124.440372-6-paulmck@kernel.org
2021-06-22clocksource: Provide kernel module to test clocksource watchdogPaul E. McKenney
When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. It would be good to have a way of testing the clocksource watchdog's ability to distinguish between these two causes of clock skew and instability. Therefore, provide a new clocksource-wdtest module selected by a new TEST_CLOCKSOURCE_WATCHDOG Kconfig option. This module has a single module parameter named "holdoff" that provides the number of seconds of delay before testing should start, which defaults to zero when built as a module and to 10 seconds when built directly into the kernel. Very large systems that boot slowly may need to increase the value of this module parameter. This module uses hand-crafted clocksource structures to do its testing, thus avoiding messing up timing for the rest of the kernel and for user applications. This module first verifies that the ->uncertainty_margin field of the clocksource structures are set sanely. It then tests the delay-detection capability of the clocksource watchdog, increasing the number of consecutive delays injected, first provoking console messages complaining about the delays and finally forcing a clock-skew event. Unexpected test results cause at least one WARN_ON_ONCE() console splat. If there are no splats, the test has passed. Finally, it fuzzes the value returned from a clocksource to test the clocksource watchdog's ability to detect time skew. This module checks the state of its clocksource after each test, and uses WARN_ON_ONCE() to emit a console splat if there are any failures. This should enable all types of test frameworks to detect any such failures. This facility is intended for diagnostic use only, and should be avoided on production systems. Reported-by: Chris Mason <clm@fb.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-5-paulmck@kernel.org
2021-06-22clocksource: Reduce clocksource-skew thresholdPaul E. McKenney
Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed by more than 12.5% in order to be marked unstable. Except that a clock that is skewed by that much is probably destroying unsuspecting software right and left. And given that there are now checks for false-positive skews due to delays between reading the two clocks, it should be possible to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks such as TSC. Therefore, add a new uncertainty_margin field to the clocksource structure that contains the maximum uncertainty in nanoseconds for the corresponding clock. This field may be initialized manually, as it is for clocksource_tsc_early and clocksource_jiffies, which is copied to refined_jiffies. If the field is not initialized manually, it will be computed at clock-registry time as the period of the clock in question based on the scale and freq parameters to __clocksource_update_freq_scale() function. If either of those two parameters are zero, the tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative to dividing by zero. No matter how the uncertainty_margin field is calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100 microseconds. Note that manually initialized uncertainty_margin fields are not adjusted, but there is a WARN_ON_ONCE() that triggers if any such field is less than twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage production use of the one-nanosecond uncertainty_margin values that are used to test the clock-skew code itself. The actual clock-skew check uses the sum of the uncertainty_margin fields of the two clocksource structures being compared. Integer overflow is avoided because the largest computed value of the uncertainty_margin fields is one billion (10^9), and double that value fits into an unsigned int. However, if someone manually specifies (say) UINT_MAX, they will get what they deserve. Note that the refined_jiffies uncertainty_margin field is initialized to TICK_NSEC, which means that skew checks involving this clocksource will be sufficently forgiving. In a similar vein, the clocksource_tsc_early uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which replicates the current behavior and allows custom setting if needed in order to address the rare skews detected for this clocksource in current mainline. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
2021-06-22clocksource: Limit number of CPUs checked for clock synchronizationPaul E. McKenney
Currently, if skew is detected on a clock marked CLOCK_SOURCE_VERIFY_PERCPU, that clock is checked on all CPUs. This is thorough, but might not be what you want on a system with a few tens of CPUs, let alone a few hundred of them. Therefore, by default check only up to eight randomly chosen CPUs. Also provide a new clocksource.verify_n_cpus kernel boot parameter. A value of -1 says to check all of the CPUs, and a non-negative value says to randomly select that number of CPUs, without concern about selecting the same CPU multiple times. However, make use of a cpumask so that a given CPU will be checked at most once. Suggested-by: Thomas Gleixner <tglx@linutronix.de> # For verify_n_cpus=1. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-3-paulmck@kernel.org
2021-06-22clocksource: Check per-CPU clock synchronization when marked unstablePaul E. McKenney
Some sorts of per-CPU clock sources have a history of going out of synchronization with each other. However, this problem has purportedy been solved in the past ten years. Except that it is all too possible that the problem has instead simply been made less likely, which might mean that some of the occasional "Marking clocksource 'tsc' as unstable" messages might be due to desynchronization. How would anyone know? Therefore apply CPU-to-CPU synchronization checking to newly unstable clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag. Lists of desynchronized CPUs are printed, with the caveat that if it is the reporting CPU that is itself desynchronized, it will appear that all the other clocks are wrong. Just like in real life. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org
2021-06-22clocksource: Retry clock read if long delays detectedPaul E. McKenney
When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
2021-06-22locking/lockdep: Correct the description error for check_redundant()Xiongwei Song
If there is no matched result, check_redundant() will return BFS_RNOMATCH. Signed-off-by: Xiongwei Song <sxwjean@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lkml.kernel.org/r/20210618130230.123249-1-sxwjean@me.com
2021-06-22futex: Provide FUTEX_LOCK_PI2 to support clock selectionThomas Gleixner
The FUTEX_LOCK_PI futex operand uses a CLOCK_REALTIME based absolute timeout since it was implemented, but it does not require that the FUTEX_CLOCK_REALTIME flag is set, because that was introduced later. In theory as none of the user space implementations can set the FUTEX_CLOCK_REALTIME flag on this operand, it would be possible to creatively abuse it and make the meaning invers, i.e. select CLOCK_REALTIME when not set and CLOCK_MONOTONIC when set. But that's a nasty hackery. Another option would be to have a new FUTEX_CLOCK_MONOTONIC flag only for FUTEX_LOCK_PI, but that's also awkward because it does not allow libraries to handle the timeout clock selection consistently. So provide a new FUTEX_LOCK_PI2 operand which implements the timeout semantics which the other operands use and leave FUTEX_LOCK_PI alone. Reported-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210422194705.440773992@linutronix.de
2021-06-22futex: Prepare futex_lock_pi() for runtime clock selectionThomas Gleixner
futex_lock_pi() is the only futex operation which cannot select the clock for timeouts (CLOCK_MONOTONIC/CLOCK_REALTIME). That's inconsistent and there is no particular reason why this cannot be supported. This was overlooked when CLOCK_REALTIME_FLAG was introduced and unfortunately not reported when the inconsistency was discovered in glibc. Prepare the function and enforce the CLOCK_REALTIME_FLAG on FUTEX_LOCK_PI so that a new FUTEX_LOCK_PI2 can implement it correctly. Reported-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210422194705.338657741@linutronix.de
2021-06-22lockdep: Fix wait-type for empty stackPeter Zijlstra
Even the very first lock can violate the wait-context check, consider the various IRQ contexts. Fixes: de8f5e4f2dc1 ("lockdep: Introduce wait-type checks") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Joerg Roedel <jroedel@suse.de> Link: https://lore.kernel.org/r/20210617190313.256987481@infradead.org
2021-06-22lockding/lockdep: Avoid to find wrong lock dep path in check_irq_usage()Boqun Feng
In the step #3 of check_irq_usage(), we seach backwards to find a lock whose usage conflicts the usage of @target_entry1 on safe/unsafe. However, we should only keep the irq-unsafe usage of @target_entry1 into consideration, because it could be a case where a lock is hardirq-unsafe but soft-safe, and in check_irq_usage() we find it because its hardirq-unsafe could result into a hardirq-safe-unsafe deadlock, but currently since we don't filter out the other usage bits, so we may find a lock dependency path softirq-unsafe -> softirq-safe, which in fact doesn't cause a deadlock. And this may cause misleading lockdep splats. Fix this by only keeping LOCKF_ENABLED_IRQ_ALL bits when we try the backwards search. Reported-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210618170110.3699115-4-boqun.feng@gmail.com
2021-06-22locking/lockdep: Remove the unnecessary trace savingBoqun Feng
In print_bad_irq_dependency(), save_trace() is called to set the ->trace for @prev_root as the current call trace, however @prev_root corresponds to the the held lock, which may not be acquired in current call trace, therefore it's wrong to use save_trace() to set ->trace of @prev_root. Moreover, with our adjustment of printing backwards dependency path, the ->trace of @prev_root is unncessary, so remove it. Reported-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210618170110.3699115-3-boqun.feng@gmail.com
2021-06-22locking/lockdep: Fix the dep path printing for backwards BFSBoqun Feng
We use the same code to print backwards lock dependency path as the forwards lock dependency path, and this could result into incorrect printing because for a backwards lock_list ->trace is not the call trace where the lock of ->class is acquired. Fix this by introducing a separate function on printing the backwards dependency path. Also add a few comments about the printing while we are at it. Reported-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210618170110.3699115-2-boqun.feng@gmail.com
2021-06-22sched/uclamp: Fix uclamp_tg_restrict()Qais Yousef
Now cpu.uclamp.min acts as a protection, we need to make sure that the uclamp request of the task is within the allowed range of the cgroup, that is it is clamp()'ed correctly by tg->uclamp[UCLAMP_MIN] and tg->uclamp[UCLAMP_MAX]. As reported by Xuewen [1] we can have some corner cases where there's inversion between uclamp requested by task (p) and the uclamp values of the taskgroup it's attached to (tg). Following table demonstrates 2 corner cases: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 60% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 20% -----------+-----+------+----------- With this fix we get: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 30% -----------+-----+------+----------- Additionally uclamp_update_active_tasks() must now unconditionally update both UCLAMP_MIN/MAX because changing the tg's UCLAMP_MAX for instance could have an impact on the effective UCLAMP_MIN of the tasks. | p | tg | effective -----------+-----+------+----------- old -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- *new* -----------+-----+------+----------- uclamp_min | 60% | 0% | *60%* -----------+-----+------+----------- uclamp_max | 80% |*70%* | *70%* -----------+-----+------+----------- [1] https://lore.kernel.org/lkml/CAB8ipk_a6VFNjiEnHRHkUMBKbA+qzPQvhtNjJ_YNzQhqV_o8Zw@mail.gmail.com/ Fixes: 0c18f2ecfcc2 ("sched/uclamp: Fix wrong implementation of cpu.uclamp.min") Reported-by: Xuewen Yan <xuewen.yan94@gmail.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210617165155.3774110-1-qais.yousef@arm.com
2021-06-22sched/rt: Fix Deadline utilization tracking during policy changeVincent Donnefort
DL keeps track of the utilization on a per-rq basis with the structure avg_dl. This utilization is updated during task_tick_dl(), put_prev_task_dl() and set_next_task_dl(). However, when the current running task changes its policy, set_next_task_dl() which would usually take care of updating the utilization when the rq starts running DL tasks, will not see a such change, leaving the avg_dl structure outdated. When that very same task will be dequeued later, put_prev_task_dl() will then update the utilization, based on a wrong last_update_time, leading to a huge spike in the DL utilization signal. The signal would eventually recover from this issue after few ms. Even if no DL tasks are run, avg_dl is also updated in __update_blocked_others(). But as the CPU capacity depends partly on the avg_dl, this issue has nonetheless a significant impact on the scheduler. Fix this issue by ensuring a load update when a running task changes its policy to DL. Fixes: 3727e0e ("sched/dl: Add dl_rq utilization tracking") Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/1624271872-211872-3-git-send-email-vincent.donnefort@arm.com
2021-06-22sched/rt: Fix RT utilization tracking during policy changeVincent Donnefort
RT keeps track of the utilization on a per-rq basis with the structure avg_rt. This utilization is updated during task_tick_rt(), put_prev_task_rt() and set_next_task_rt(). However, when the current running task changes its policy, set_next_task_rt() which would usually take care of updating the utilization when the rq starts running RT tasks, will not see a such change, leaving the avg_rt structure outdated. When that very same task will be dequeued later, put_prev_task_rt() will then update the utilization, based on a wrong last_update_time, leading to a huge spike in the RT utilization signal. The signal would eventually recover from this issue after few ms. Even if no RT tasks are run, avg_rt is also updated in __update_blocked_others(). But as the CPU capacity depends partly on the avg_rt, this issue has nonetheless a significant impact on the scheduler. Fix this issue by ensuring a load update when a running task changes its policy to RT. Fixes: 371bf427 ("sched/rt: Add rt_rq utilization tracking") Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/1624271872-211872-2-git-send-email-vincent.donnefort@arm.com
2021-06-22clockevents: Add missing parameter documentationBaokun Li
Add the missing documentation for the @cpu parameter of tick_cleanup_dead_cpu(). Signed-off-by: Baokun Li <libaokun1@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210608024305.2750999-1-libaokun1@huawei.com
2021-06-22signal: Prevent sigqueue caching after task got releasedThomas Gleixner
syzbot reported a memory leak related to sigqueue caching. The assumption that a task cannot cache a sigqueue after the signal handler has been dropped and exit_task_sigqueue_cache() has been invoked turns out to be wrong. Such a task can still invoke release_task(other_task), which cleans up the signals of 'other_task' and ends up in sigqueue_cache_or_free(), which in turn will cache the signal because task->sigqueue_cache is NULL. That's obviously bogus because nothing will free the cached signal of that task anymore, so the cached item is leaked. This happens when e.g. the last non-leader thread exits and reaps the zombie leader. Prevent this by setting tsk::sigqueue_cache to an error pointer value in exit_task_sigqueue_cache() which forces any subsequent invocation of sigqueue_cache_or_free() from that task to hand the sigqueue back to the kmemcache. Add comments to all relevant places. Fixes: 4bad58ebc8bc ("signal: Allow tasks to cache one sigqueue struct") Reported-by: syzbot+0bac5fec63d4f399ba98@syzkaller.appspotmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/878s32g6j5.ffs@nanos.tec.linutronix.de
2021-06-22bpf: Fix regression on BPF_OBJ_GET with non-O_RDWR flagsMaciej Żenczykowski
This reverts commit d37300ed1821 ("bpf: program: Refuse non-O_RDWR flags in BPF_OBJ_GET"). It breaks Android userspace which expects to be able to fetch programs with just read permissions. See: https://cs.android.com/android/platform/superproject/+/master:frameworks/libs/net/common/native/bpf_syscall_wrappers/include/BpfSyscallWrappers.h;drc=7005c764be23d31fa1d69e826b4a2f6689a8c81e;l=124 Side-note: another option to fix it would be to extend bpf_prog_new_fd() and to pass in used file mode flags in the same way as we do for maps via bpf_map_new_fd(). Meaning, they'd end up in anon_inode_getfd() and thus would be retained for prog fd operations with bpf() syscall. Right now these flags are not checked with progs since they are immutable for their lifetime (as opposed to maps which can be updated from user space). In future this could potentially change with new features, but at that point it's still fine to do the bpf_prog_new_fd() extension when needed. For a simple stable fix, a revert is less churn. Fixes: d37300ed1821 ("bpf: program: Refuse non-O_RDWR flags in BPF_OBJ_GET") Signed-off-by: Maciej Żenczykowski <maze@google.com> [ Daniel: added side-note to commit message ] Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Lorenz Bauer <lmb@cloudflare.com> Acked-by: Greg Kroah-Hartman <gregkh@google.com> Link: https://lore.kernel.org/bpf/20210618105526.265003-1-zenczykowski@gmail.com
2021-06-22sched/fair: Ensure that the CFS parent is added after unthrottlingRik van Riel
Ensure that a CFS parent will be in the list whenever one of its children is also in the list. A warning on rq->tmp_alone_branch != &rq->leaf_cfs_rq_list has been reported while running LTP test cfs_bandwidth01. Odin Ugedal found the root cause: $ tree /sys/fs/cgroup/ltp/ -d --charset=ascii /sys/fs/cgroup/ltp/ |-- drain `-- test-6851 `-- level2 |-- level3a | |-- worker1 | `-- worker2 `-- level3b `-- worker3 Timeline (ish): - worker3 gets throttled - level3b is decayed, since it has no more load - level2 get throttled - worker3 get unthrottled - level2 get unthrottled - worker3 is added to list - level3b is not added to list, since nr_running==0 and is decayed [ Vincent Guittot: Rebased and updated to fix for the reported warning. ] Fixes: a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com> Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com> Acked-by: Odin Ugedal <odin@uged.al> Link: https://lore.kernel.org/r/20210621174330.11258-1-vincent.guittot@linaro.org
2021-06-22locking/lockdep: Improve noinstr vs errorsPeter Zijlstra
Better handle the failure paths. vmlinux.o: warning: objtool: debug_locks_off()+0x23: call to console_verbose() leaves .noinstr.text section vmlinux.o: warning: objtool: debug_locks_off()+0x19: call to __kasan_check_write() leaves .noinstr.text section debug_locks_off+0x19/0x40: instrument_atomic_write at include/linux/instrumented.h:86 (inlined by) __debug_locks_off at include/linux/debug_locks.h:17 (inlined by) debug_locks_off at lib/debug_locks.c:41 Fixes: 6eebad1ad303 ("lockdep: __always_inline more for noinstr") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210621120120.784404944@infradead.org
2021-06-22printk: fix cpu lock orderingJohn Ogness
The cpu lock implementation uses a full memory barrier to take the lock, but no memory barriers when releasing the lock. This means that changes performed by a lock owner may not be seen by the next lock owner. This may have been "good enough" for use by dump_stack() as a serialization mechanism, but it is not enough to provide proper protection for a critical section. Correct this problem by using acquire/release memory barriers for lock/unlock, respectively. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20210617095051.4808-3-john.ogness@linutronix.de
2021-06-22lib/dump_stack: move cpu lock to printk.cJohn Ogness
dump_stack() implements its own cpu-reentrant spinning lock to best-effort serialize stack traces in the printk log. However, there are other functions (such as show_regs()) that can also benefit from this serialization. Move the cpu-reentrant spinning lock (cpu lock) into new helper functions printk_cpu_lock_irqsave()/printk_cpu_unlock_irqrestore() so that it is available for others as well. For !CONFIG_SMP the cpu lock is a NOP. Note that having multiple cpu locks in the system can easily lead to deadlock. Code needing a cpu lock should use the printk cpu lock, since the printk cpu lock could be acquired from any code and any context. Also note that it is not necessary for a cpu lock to disable interrupts. However, in upcoming work this cpu lock will be used for emergency tasks (for example, atomic consoles during kernel crashes) and any interruptions while holding the cpu lock should be avoided if possible. Signed-off-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> [pmladek@suse.com: Backported on top of 5.13-rc1.] Signed-off-by: Petr Mladek <pmladek@suse.com> Link: https://lore.kernel.org/r/20210617095051.4808-2-john.ogness@linutronix.de
2021-06-22dma-debug: report -EEXIST errors in add_dma_entryHamza Mahfooz
Since, overlapping mappings are not supported by the DMA API we should report an error if active_cacheline_insert returns -EEXIST. Suggested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Hamza Mahfooz <someguy@effective-light.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-22dma-mapping: remove a trailing spaceZhen Lei
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-06-21swiotlb: manipulate orig_addr when tlb_addr has offsetBumyong Lee
in case of driver wants to sync part of ranges with offset, swiotlb_tbl_sync_single() copies from orig_addr base to tlb_addr with offset and ends up with data mismatch. It was removed from "swiotlb: don't modify orig_addr in swiotlb_tbl_sync_single", but said logic has to be added back in. From Linus's email: "That commit which the removed the offset calculation entirely, because the old (unsigned long)tlb_addr & (IO_TLB_SIZE - 1) was wrong, but instead of removing it, I think it should have just fixed it to be (tlb_addr - mem->start) & (IO_TLB_SIZE - 1); instead. That way the slot offset always matches the slot index calculation." (Unfortunatly that broke NVMe). The use-case that drivers are hitting is as follow: 1. Get dma_addr_t from dma_map_single() dma_addr_t tlb_addr = dma_map_single(dev, vaddr, vsize, DMA_TO_DEVICE); |<---------------vsize------------->| +-----------------------------------+ | | original buffer +-----------------------------------+ vaddr swiotlb_align_offset |<----->|<---------------vsize------------->| +-------+-----------------------------------+ | | | swiotlb buffer +-------+-----------------------------------+ tlb_addr 2. Do something 3. Sync dma_addr_t through dma_sync_single_for_device(..) dma_sync_single_for_device(dev, tlb_addr + offset, size, DMA_TO_DEVICE); Error case. Copy data to original buffer but it is from base addr (instead of base addr + offset) in original buffer: swiotlb_align_offset |<----->|<- offset ->|<- size ->| +-------+-----------------------------------+ | | |##########| | swiotlb buffer +-------+-----------------------------------+ tlb_addr |<- size ->| +-----------------------------------+ |##########| | original buffer +-----------------------------------+ vaddr The fix is to copy the data to the original buffer and take into account the offset, like so: swiotlb_align_offset |<----->|<- offset ->|<- size ->| +-------+-----------------------------------+ | | |##########| | swiotlb buffer +-------+-----------------------------------+ tlb_addr |<- offset ->|<- size ->| +-----------------------------------+ | |##########| | original buffer +-----------------------------------+ vaddr [One fix which was Linus's that made more sense to as it created a symmetry would break NVMe. The reason for that is the: unsigned int offset = (tlb_addr - mem->start) & (IO_TLB_SIZE - 1); would come up with the proper offset, but it would lose the alignment (which this patch contains).] Fixes: 16fc3cef33a0 ("swiotlb: don't modify orig_addr in swiotlb_tbl_sync_single") Signed-off-by: Bumyong Lee <bumyong.lee@samsung.com> Signed-off-by: Chanho Park <chanho61.park@samsung.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reported-by: Dominique MARTINET <dominique.martinet@atmark-techno.com> Reported-by: Horia Geantă <horia.geanta@nxp.com> Tested-by: Horia Geantă <horia.geanta@nxp.com> CC: stable@vger.kernel.org Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2021-06-21reboot: Add hardware protection power-offMatti Vaittinen
There can be few cases when we need to shut-down the system in order to protect the hardware. Currently this is done at least by the thermal core when temperature raises over certain limit. Some PMICs can also generate interrupts for example for over-current or over-voltage, voltage drops, short-circuit, ... etc. On some systems these are a sign of hardware failure and only thing to do is try to protect the rest of the hardware by shutting down the system. Add shut-down logic which can be used by all subsystems instead of implementing the shutdown in each subsystem. The logic is stolen from thermal_core with difference of using atomic_t instead of a mutex in order to allow calls directly from IRQ context and changing the WARN() to pr_emerg() as discussed here: https://lore.kernel.org/lkml/YJuPwAZroVZ%2Fw633@alley/ and here: https://lore.kernel.org/linux-iommu/20210331093104.383705-4-geert+renesas@glider.be/ Signed-off-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/e83ec1ca9408f90c857ea9dcdc57b14d9037b03f.1622628333.git.matti.vaittinen@fi.rohmeurope.com Signed-off-by: Mark Brown <broonie@kernel.org>
2021-06-21cpu/hotplug: Cure the cpusets trainwreckThomas Gleixner
Alexey and Joshua tried to solve a cpusets related hotplug problem which is user space visible and results in unexpected behaviour for some time after a CPU has been plugged in and the corresponding uevent was delivered. cpusets delegate the hotplug work (rebuilding cpumasks etc.) to a workqueue. This is done because the cpusets code has already a lock nesting of cgroups_mutex -> cpu_hotplug_lock. A synchronous callback or waiting for the work to finish with cpu_hotplug_lock held can and will deadlock because that results in the reverse lock order. As a consequence the uevent can be delivered before cpusets have consistent state which means that a user space invocation of sched_setaffinity() to move a task to the plugged CPU fails up to the point where the scheduled work has been processed. The same is true for CPU unplug, but that does not create user observable failure (yet). It's still inconsistent to claim that an operation is finished before it actually is and that's the real issue at hand. uevents just make it reliably observable. Obviously the problem should be fixed in cpusets/cgroups, but untangling that is pretty much impossible because according to the changelog of the commit which introduced this 8 years ago: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") the lock order cgroups_mutex -> cpu_hotplug_lock is a design decision and the whole code is built around that. So bite the bullet and invoke the relevant cpuset function, which waits for the work to finish, in _cpu_up/down() after dropping cpu_hotplug_lock and only when tasks are not frozen by suspend/hibernate because that would obviously wait forever. Waiting there with cpu_add_remove_lock, which is protecting the present and possible CPU maps, held is not a problem at all because neither work queues nor cpusets/cgroups have any lockchains related to that lock. Waiting in the hotplug machinery is not problematic either because there are already state callbacks which wait for hardware queues to drain. It makes the operations slightly slower, but hotplug is slow anyway. This ensures that state is consistent before returning from a hotplug up/down operation. It's still inconsistent during the operation, but that's a different story. Add a large comment which explains why this is done and why this is not a dump ground for the hack of the day to work around half thought out locking schemes. Document also the implications vs. hotplug operations and serialization or the lack of it. Thanks to Alexy and Joshua for analyzing why this temporary sched_setaffinity() failure happened. Fixes: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") Reported-by: Alexey Klimov <aklimov@redhat.com> Reported-by: Joshua Baker <jobaker@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexey Klimov <aklimov@redhat.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87tuowcnv3.ffs@nanos.tec.linutronix.de
2021-06-20Merge tag 'sched_urgent_for_v5.13_rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fix from Borislav Petkov: "A single fix to restore fairness between control groups with equal priority" * tag 'sched_urgent_for_v5.13_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Correctly insert cfs_rq's to list on unthrottle
2021-06-18Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Trivial conflicts in net/can/isotp.c and tools/testing/selftests/net/mptcp/mptcp_connect.sh scaled_ppm_to_ppb() was moved from drivers/ptp/ptp_clock.c to include/linux/ptp_clock_kernel.h in -next so re-apply the fix there. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-18Merge tag 'net-5.13-rc7' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net Pull networking fixes from Jakub Kicinski: "Networking fixes for 5.13-rc7, including fixes from wireless, bpf, bluetooth, netfilter and can. Current release - regressions: - mlxsw: spectrum_qdisc: Pass handle, not band number to find_class() to fix modifying offloaded qdiscs - lantiq: net: fix duplicated skb in rx descriptor ring - rtnetlink: fix regression in bridge VLAN configuration, empty info is not an error, bot-generated "fix" was not needed - libbpf: s/rx/tx/ typo on umem->rx_ring_setup_done to fix umem creation Current release - new code bugs: - ethtool: fix NULL pointer dereference during module EEPROM dump via the new netlink API - mlx5e: don't update netdev RQs with PTP-RQ, the special purpose queue should not be visible to the stack - mlx5e: select special PTP queue only for SKBTX_HW_TSTAMP skbs - mlx5e: verify dev is present in get devlink port ndo, avoid a panic Previous releases - regressions: - neighbour: allow NUD_NOARP entries to be force GCed - further fixes for fallout from reorg of WiFi locking (staging: rtl8723bs, mac80211, cfg80211) - skbuff: fix incorrect msg_zerocopy copy notifications - mac80211: fix NULL ptr deref for injected rate info - Revert "net/mlx5: Arm only EQs with EQEs" it may cause missed IRQs Previous releases - always broken: - bpf: more speculative execution fixes - netfilter: nft_fib_ipv6: skip ipv6 packets from any to link-local - udp: fix race between close() and udp_abort() resulting in a panic - fix out of bounds when parsing TCP options before packets are validated (in netfilter: synproxy, tc: sch_cake and mptcp) - mptcp: improve operation under memory pressure, add missing wake-ups - mptcp: fix double-lock/soft lookup in subflow_error_report() - bridge: fix races (null pointer deref and UAF) in vlan tunnel egress - ena: fix DMA mapping function issues in XDP - rds: fix memory leak in rds_recvmsg Misc: - vrf: allow larger MTUs - icmp: don't send out ICMP messages with a source address of 0.0.0.0 - cdc_ncm: switch to eth%d interface naming" * tag 'net-5.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (139 commits) net: ethernet: fix potential use-after-free in ec_bhf_remove selftests/net: Add icmp.sh for testing ICMP dummy address responses icmp: don't send out ICMP messages with a source address of 0.0.0.0 net: ll_temac: Avoid ndo_start_xmit returning NETDEV_TX_BUSY net: ll_temac: Fix TX BD buffer overwrite net: ll_temac: Add memory-barriers for TX BD access net: ll_temac: Make sure to free skb when it is completely used MAINTAINERS: add Guvenc as SMC maintainer bnxt_en: Call bnxt_ethtool_free() in bnxt_init_one() error path bnxt_en: Fix TQM fastpath ring backing store computation bnxt_en: Rediscover PHY capabilities after firmware reset cxgb4: fix wrong shift. mac80211: handle various extensible elements correctly mac80211: reset profile_periodicity/ema_ap cfg80211: avoid double free of PMSR request cfg80211: make certificate generation more robust mac80211: minstrel_ht: fix sample time check net: qed: Fix memcpy() overflow of qed_dcbx_params() net: cdc_eem: fix tx fixup skb leak net: hamradio: fix memory leak in mkiss_close ...
2021-06-18Merge tag 'trace-v5.13-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: - Have recordmcount check for valid st_shndx otherwise some archs may have invalid references for the mcount location. - Two fixes done for mapping pids to task names. Traces were not showing the names of tasks when they should have. - Fix to trace_clock_global() to prevent it from going backwards * tag 'trace-v5.13-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: tracing: Do no increment trace_clock_global() by one tracing: Do not stop recording comms if the trace file is being read tracing: Do not stop recording cmdlines when tracing is off recordmcount: Correct st_shndx handling
2021-06-18Merge tag 'printk-for-5.13-fixup' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux Pull printk fixup from Petr Mladek: "Fix misplaced EXPORT_SYMBOL(vsprintf)" * tag 'printk-for-5.13-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux: printk: Move EXPORT_SYMBOL() closer to vprintk definition
2021-06-18Merge tag 'pm-5.13-rc7' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management fix from Rafael Wysocki: "Remove recently added frequency invariance support from the CPPC cpufreq driver, because it has turned out to be problematic and it cannot be fixed properly on time for 5.13 (Viresh Kumar)" * tag 'pm-5.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: Revert "cpufreq: CPPC: Add support for frequency invariance"
2021-06-18tracing: Do no increment trace_clock_global() by oneSteven Rostedt (VMware)
The trace_clock_global() tries to make sure the events between CPUs is somewhat in order. A global value is used and updated by the latest read of a clock. If one CPU is ahead by a little, and is read by another CPU, a lock is taken, and if the timestamp of the other CPU is behind, it will simply use the other CPUs timestamp. The lock is also only taken with a "trylock" due to tracing, and strange recursions can happen. The lock is not taken at all in NMI context. In the case where the lock is not able to be taken, the non synced timestamp is returned. But it will not be less than the saved global timestamp. The problem arises because when the time goes "backwards" the time returned is the saved timestamp plus 1. If the lock is not taken, and the plus one to the timestamp is returned, there's a small race that can cause the time to go backwards! CPU0 CPU1 ---- ---- trace_clock_global() { ts = clock() [ 1000 ] trylock(clock_lock) [ success ] global_ts = ts; [ 1000 ] <interrupted by NMI> trace_clock_global() { ts = clock() [ 999 ] if (ts < global_ts) ts = global_ts + 1 [ 1001 ] trylock(clock_lock) [ fail ] return ts [ 1001] } unlock(clock_lock); return ts; [ 1000 ] } trace_clock_global() { ts = clock() [ 1000 ] if (ts < global_ts) [ false 1000 == 1000 ] trylock(clock_lock) [ success ] global_ts = ts; [ 1000 ] unlock(clock_lock) return ts; [ 1000 ] } The above case shows to reads of trace_clock_global() on the same CPU, but the second read returns one less than the first read. That is, time when backwards, and this is not what is allowed by trace_clock_global(). This was triggered by heavy tracing and the ring buffer checker that tests for the clock going backwards: Ring buffer clock went backwards: 20613921464 -> 20613921463 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 0 at kernel/trace/ring_buffer.c:3412 check_buffer+0x1b9/0x1c0 Modules linked in: [..] [CPU: 2]TIME DOES NOT MATCH expected:20620711698 actual:20620711697 delta:6790234 before:20613921463 after:20613921463 [20613915818] PAGE TIME STAMP [20613915818] delta:0 [20613915819] delta:1 [20613916035] delta:216 [20613916465] delta:430 [20613916575] delta:110 [20613916749] delta:174 [20613917248] delta:499 [20613917333] delta:85 [20613917775] delta:442 [20613917921] delta:146 [20613918321] delta:400 [20613918568] delta:247 [20613918768] delta:200 [20613919306] delta:538 [20613919353] delta:47 [20613919980] delta:627 [20613920296] delta:316 [20613920571] delta:275 [20613920862] delta:291 [20613921152] delta:290 [20613921464] delta:312 [20613921464] delta:0 TIME EXTEND [20613921464] delta:0 This happened more than once, and always for an off by one result. It also started happening after commit aafe104aa9096 was added. Cc: stable@vger.kernel.org Fixes: aafe104aa9096 ("tracing: Restructure trace_clock_global() to never block") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-18tracing: Do not stop recording comms if the trace file is being readSteven Rostedt (VMware)
A while ago, when the "trace" file was opened, tracing was stopped, and code was added to stop recording the comms to saved_cmdlines, for mapping of the pids to the task name. Code has been added that only records the comm if a trace event occurred, and there's no reason to not trace it if the trace file is opened. Cc: stable@vger.kernel.org Fixes: 7ffbd48d5cab2 ("tracing: Cache comms only after an event occurred") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-18tracing: Do not stop recording cmdlines when tracing is offSteven Rostedt (VMware)
The saved_cmdlines is used to map pids to the task name, such that the output of the tracing does not just show pids, but also gives a human readable name for the task. If the name is not mapped, the output looks like this: <...>-1316 [005] ...2 132.044039: ... Instead of this: gnome-shell-1316 [005] ...2 132.044039: ... The names are updated when tracing is running, but are skipped if tracing is stopped. Unfortunately, this stops the recording of the names if the top level tracer is stopped, and not if there's other tracers active. The recording of a name only happens when a new event is written into a ring buffer, so there is no need to test if tracing is on or not. If tracing is off, then no event is written and no need to test if tracing is off or not. Remove the check, as it hides the names of tasks for events in the instance buffers. Cc: stable@vger.kernel.org Fixes: 7ffbd48d5cab2 ("tracing: Cache comms only after an event occurred") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>