summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2021-06-16wq: handle VM suspension in stall detectionSergey Senozhatsky
[ Upstream commit 940d71c6462e8151c78f28e4919aa8882ff2054e ] If VCPU is suspended (VM suspend) in wq_watchdog_timer_fn() then once this VCPU resumes it will see the new jiffies value, while it may take a while before IRQ detects PVCLOCK_GUEST_STOPPED on this VCPU and updates all the watchdogs via pvclock_touch_watchdogs(). There is a small chance of misreported WQ stalls in the meantime, because new jiffies is time_after() old 'ts + thresh'. wq_watchdog_timer_fn() { for_each_pool(pool, pi) { if (time_after(jiffies, ts + thresh)) { pr_emerg("BUG: workqueue lockup - pool"); } } } Save jiffies at the beginning of this function and use that value for stall detection. If VM gets suspended then we continue using "old" jiffies value and old WQ touch timestamps. If IRQ at some point restarts the stall detection cycle (pvclock_touch_watchdogs()) then old jiffies will always be before new 'ts + thresh'. Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-16cgroup: disable controllers at parse timeShakeel Butt
[ Upstream commit 45e1ba40837ac2f6f4d4716bddb8d44bd7e4a251 ] This patch effectively reverts the commit a3e72739b7a7 ("cgroup: fix too early usage of static_branch_disable()"). The commit 6041186a3258 ("init: initialize jump labels before command line option parsing") has moved the jump_label_init() before parse_args() which has made the commit a3e72739b7a7 unnecessary. On the other hand there are consequences of disabling the controllers later as there are subsystems doing the controller checks for different decisions. One such incident is reported [1] regarding the memory controller and its impact on memory reclaim code. [1] https://lore.kernel.org/linux-mm/921e53f3-4b13-aab8-4a9e-e83ff15371e4@nec.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: NOMURA JUNICHI(野村 淳一) <junichi.nomura@nec.com> Signed-off-by: Tejun Heo <tj@kernel.org> Tested-by: Jun'ichi Nomura <junichi.nomura@nec.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-16bpf: Forbid trampoline attach for functions with variable argumentsJiri Olsa
[ Upstream commit 31379397dcc364a59ce764fabb131b645c43e340 ] We can't currently allow to attach functions with variable arguments. The problem is that we should save all the registers for arguments, which is probably doable, but if caller uses more than 6 arguments, we need stack data, which will be wrong, because of the extra stack frame we do in bpf trampoline, so we could crash. Also currently there's malformed trampoline code generated for such functions at the moment as described in: https://lore.kernel.org/bpf/20210429212834.82621-1-jolsa@kernel.org/ Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210505132529.401047-1-jolsa@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-10bpf, lockdown, audit: Fix buggy SELinux lockdown permission checksDaniel Borkmann
[ Upstream commit ff40e51043af63715ab413995ff46996ecf9583f ] Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown") added an implementation of the locked_down LSM hook to SELinux, with the aim to restrict which domains are allowed to perform operations that would breach lockdown. This is indirectly also getting audit subsystem involved to report events. The latter is problematic, as reported by Ondrej and Serhei, since it can bring down the whole system via audit: 1) The audit events that are triggered due to calls to security_locked_down() can OOM kill a machine, see below details [0]. 2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit() when trying to wake up kauditd, for example, when using trace_sched_switch() tracepoint, see details in [1]. Triggering this was not via some hypothetical corner case, but with existing tools like runqlat & runqslower from bcc, for example, which make use of this tracepoint. Rough call sequence goes like: rq_lock(rq) -> -------------------------+ trace_sched_switch() -> | bpf_prog_xyz() -> +-> deadlock selinux_lockdown() -> | audit_log_end() -> | wake_up_interruptible() -> | try_to_wake_up() -> | rq_lock(rq) --------------+ What's worse is that the intention of 59438b46471a to further restrict lockdown settings for specific applications in respect to the global lockdown policy is completely broken for BPF. The SELinux policy rule for the current lockdown check looks something like this: allow <who> <who> : lockdown { <reason> }; However, this doesn't match with the 'current' task where the security_locked_down() is executed, example: httpd does a syscall. There is a tracing program attached to the syscall which triggers a BPF program to run, which ends up doing a bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does the permission check against 'current', that is, httpd in this example. httpd has literally zero relation to this tracing program, and it would be nonsensical having to write an SELinux policy rule against httpd to let the tracing helper pass. The policy in this case needs to be against the entity that is installing the BPF program. For example, if bpftrace would generate a histogram of syscall counts by user space application: bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }' bpftrace would then go and generate a BPF program from this internally. One way of doing it [for the sake of the example] could be to call bpf_get_current_task() helper and then access current->comm via one of bpf_probe_read_kernel{,_str}() helpers. So the program itself has nothing to do with httpd or any other random app doing a syscall here. The BPF program _explicitly initiated_ the lockdown check. The allow/deny policy belongs in the context of bpftrace: meaning, you want to grant bpftrace access to use these helpers, but other tracers on the system like my_random_tracer _not_. Therefore fix all three issues at the same time by taking a completely different approach for the security_locked_down() hook, that is, move the check into the program verification phase where we actually retrieve the BPF func proto. This also reliably gets the task (current) that is trying to install the BPF tracing program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since we're moving this out of the BPF helper's fast-path which can be called several millions of times per second. The check is then also in line with other security_locked_down() hooks in the system where the enforcement is performed at open/load time, for example, open_kcore() for /proc/kcore access or module_sig_check() for module signatures just to pick few random ones. What's out of scope in the fix as well as in other security_locked_down() hook locations /outside/ of BPF subsystem is that if the lockdown policy changes on the fly there is no retrospective action. This requires a different discussion, potentially complex infrastructure, and it's also not clear whether this can be solved generically. Either way, it is out of scope for a suitable stable fix which this one is targeting. Note that the breakage is specifically on 59438b46471a where it started to rely on 'current' as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf: Restrict bpf when kernel lockdown is in confidentiality mode"). [0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says: I starting seeing this with F-34. When I run a container that is traced with BPF to record the syscalls it is doing, auditd is flooded with messages like: type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality } for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM" scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0 tclass=lockdown permissive=0 This seems to be leading to auditd running out of space in the backlog buffer and eventually OOMs the machine. [...] auditd running at 99% CPU presumably processing all the messages, eventually I get: Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64 Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000 Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1 Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 [...] [1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/, Serhei Makarov says: Upstream kernel 5.11.0-rc7 and later was found to deadlock during a bpf_probe_read_compat() call within a sched_switch tracepoint. The problem is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on ppc64le. Example stack trace: [...] [ 730.868702] stack backtrace: [ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1 [ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 [ 730.873278] Call Trace: [ 730.873770] dump_stack+0x7f/0xa1 [ 730.874433] check_noncircular+0xdf/0x100 [ 730.875232] __lock_acquire+0x1202/0x1e10 [ 730.876031] ? __lock_acquire+0xfc0/0x1e10 [ 730.876844] lock_acquire+0xc2/0x3a0 [ 730.877551] ? __wake_up_common_lock+0x52/0x90 [ 730.878434] ? lock_acquire+0xc2/0x3a0 [ 730.879186] ? lock_is_held_type+0xa7/0x120 [ 730.880044] ? skb_queue_tail+0x1b/0x50 [ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90 [ 730.881656] ? __wake_up_common_lock+0x52/0x90 [ 730.882532] __wake_up_common_lock+0x52/0x90 [ 730.883375] audit_log_end+0x5b/0x100 [ 730.884104] slow_avc_audit+0x69/0x90 [ 730.884836] avc_has_perm+0x8b/0xb0 [ 730.885532] selinux_lockdown+0xa5/0xd0 [ 730.886297] security_locked_down+0x20/0x40 [ 730.887133] bpf_probe_read_compat+0x66/0xd0 [ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820 [ 730.888917] trace_call_bpf+0xe9/0x240 [ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0 [ 730.890579] perf_trace_sched_switch+0x142/0x180 [ 730.891485] ? __schedule+0x6d8/0xb20 [ 730.892209] __schedule+0x6d8/0xb20 [ 730.892899] schedule+0x5b/0xc0 [ 730.893522] exit_to_user_mode_prepare+0x11d/0x240 [ 730.894457] syscall_exit_to_user_mode+0x27/0x70 [ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown") Reported-by: Ondrej Mosnacek <omosnace@redhat.com> Reported-by: Jakub Hrozek <jhrozek@redhat.com> Reported-by: Serhei Makarov <smakarov@redhat.com> Reported-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Jiri Olsa <jolsa@redhat.com> Cc: Paul Moore <paul@paul-moore.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Frank Eigler <fche@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-10bpf: Simplify cases in bpf_base_func_protoTobias Klauser
[ Upstream commit 61ca36c8c4eb3bae35a285b1ae18c514cde65439 ] !perfmon_capable() is checked before the last switch(func_id) in bpf_base_func_proto. Thus, the cases BPF_FUNC_trace_printk and BPF_FUNC_snprintf_btf can be moved to that last switch(func_id) to omit the inline !perfmon_capable() checks. Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210127174615.3038-1-tklauser@distanz.ch Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-03bpf, offload: Reorder offload callback 'prepare' in verifierYinjun Zhang
[ Upstream commit ceb11679d9fcf3fdb358a310a38760fcbe9b63ed ] Commit 4976b718c355 ("bpf: Introduce pseudo_btf_id") switched the order of resolve_pseudo_ldimm(), in which some pseudo instructions are rewritten. Thus those rewritten instructions cannot be passed to driver via 'prepare' offload callback. Reorder the 'prepare' offload callback to fix it. Fixes: 4976b718c355 ("bpf: Introduce pseudo_btf_id") Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com> Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-03seccomp: Refactor notification handler to prepare for new semanticsSargun Dhillon
commit ddc473916955f7710d1eb17c1273d91c8622a9fe upstream. This refactors the user notification code to have a do / while loop around the completion condition. This has a small change in semantic, in that previously we ignored addfd calls upon wakeup if the notification had been responded to, but instead with the new change we check for an outstanding addfd calls prior to returning to userspace. Rodrigo Campos also identified a bug that can result in addfd causing an early return, when the supervisor didn't actually handle the syscall [1]. [1]: https://lore.kernel.org/lkml/20210413160151.3301-1-rodrigo@kinvolk.io/ Fixes: 7cf97b125455 ("seccomp: Introduce addfd ioctl to seccomp user notifier") Signed-off-by: Sargun Dhillon <sargun@sargun.me> Acked-by: Tycho Andersen <tycho@tycho.pizza> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Kees Cook <keescook@chromium.org> Tested-by: Rodrigo Campos <rodrigo@kinvolk.io> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210517193908.3113-3-sargun@sargun.me Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28bpf: No need to simulate speculative domain for immediatesDaniel Borkmann
commit a7036191277f9fa68d92f2071ddc38c09b1e5ee5 upstream. In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under speculation") we replaced masking logic with direct loads of immediates if the register is a known constant. Given in this case we do not apply any masking, there is also no reason for the operation to be truncated under the speculative domain. Therefore, there is also zero reason for the verifier to branch-off and simulate this case, it only needs to do it for unknown but bounded scalars. As a side-effect, this also enables few test cases that were previously rejected due to simulation under zero truncation. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28bpf: Fix mask direction swap upon off reg sign changeDaniel Borkmann
commit bb01a1bba579b4b1c5566af24d95f1767859771e upstream. Masking direction as indicated via mask_to_left is considered to be calculated once and then used to derive pointer limits. Thus, this needs to be placed into bpf_sanitize_info instead so we can pass it to sanitize_ptr_alu() call after the pointer move. Piotr noticed a corner case where the off reg causes masking direction change which then results in an incorrect final aux->alu_limit. Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-28bpf: Wrap aux data inside bpf_sanitize_info containerDaniel Borkmann
commit 3d0220f6861d713213b015b582e9f21e5b28d2e0 upstream. Add a container structure struct bpf_sanitize_info which holds the current aux info, and update call-sites to sanitize_ptr_alu() to pass it in. This is needed for passing in additional state later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-26kcsan: Fix debugfs initcall return typeArnd Bergmann
commit 976aac5f882989e4f6c1b3a7224819bf0e801c6a upstream. clang with CONFIG_LTO_CLANG points out that an initcall function should return an 'int' due to the changes made to the initcall macros in commit 3578ad11f3fb ("init: lto: fix PREL32 relocations"): kernel/kcsan/debugfs.c:274:15: error: returning 'void' from a function with incompatible result type 'int' late_initcall(kcsan_debugfs_init); ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~ include/linux/init.h:292:46: note: expanded from macro 'late_initcall' #define late_initcall(fn) __define_initcall(fn, 7) Fixes: e36299efe7d7 ("kcsan, debugfs: Move debugfs file creation out of early init") Cc: stable <stable@vger.kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-26locking/mutex: clear MUTEX_FLAGS if wait_list is empty due to signalZqiang
[ Upstream commit 3a010c493271f04578b133de977e0e5dd2848cea ] When a interruptible mutex locker is interrupted by a signal without acquiring this lock and removed from the wait queue. if the mutex isn't contended enough to have a waiter put into the wait queue again, the setting of the WAITER bit will force mutex locker to go into the slowpath to acquire the lock every time, so if the wait queue is empty, the WAITER bit need to be clear. Fixes: 040a0a371005 ("mutex: Add support for wound/wait style locks") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Zqiang <qiang.zhang@windriver.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210517034005.30828-1-qiang.zhang@windriver.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-26locking/lockdep: Correct calling tracepointsLeo Yan
[ Upstream commit 89e70d5c583c55088faa2201d397ee30a15704aa ] The commit eb1f00237aca ("lockdep,trace: Expose tracepoints") reverses tracepoints for lock_contended() and lock_acquired(), thus the ftrace log shows the wrong locking sequence that "acquired" event is prior to "contended" event: <idle>-0 [001] d.s3 20803.501685: lock_acquire: 0000000008b91ab4 &sg_policy->update_lock <idle>-0 [001] d.s3 20803.501686: lock_acquired: 0000000008b91ab4 &sg_policy->update_lock <idle>-0 [001] d.s3 20803.501689: lock_contended: 0000000008b91ab4 &sg_policy->update_lock <idle>-0 [001] d.s3 20803.501690: lock_release: 0000000008b91ab4 &sg_policy->update_lock This patch fixes calling tracepoints for lock_contended() and lock_acquired(). Fixes: eb1f00237aca ("lockdep,trace: Expose tracepoints") Signed-off-by: Leo Yan <leo.yan@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210512120937.90211-1-leo.yan@linaro.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-26ptrace: make ptrace() fail if the tracee changed its pid unexpectedlyOleg Nesterov
[ Upstream commit dbb5afad100a828c97e012c6106566d99f041db6 ] Suppose we have 2 threads, the group-leader L and a sub-theread T, both parked in ptrace_stop(). Debugger tries to resume both threads and does ptrace(PTRACE_CONT, T); ptrace(PTRACE_CONT, L); If the sub-thread T execs in between, the 2nd PTRACE_CONT doesn not resume the old leader L, it resumes the post-exec thread T which was actually now stopped in PTHREAD_EVENT_EXEC. In this case the PTHREAD_EVENT_EXEC event is lost, and the tracer can't know that the tracee changed its pid. This patch makes ptrace() fail in this case until debugger does wait() and consumes PTHREAD_EVENT_EXEC which reports old_pid. This affects all ptrace requests except the "asynchronous" PTRACE_INTERRUPT/KILL. The patch doesn't add the new PTRACE_ option to not complicate the API, and I _hope_ this won't cause any noticeable regression: - If debugger uses PTRACE_O_TRACEEXEC and the thread did an exec and the tracer does a ptrace request without having consumed the exec event, it's 100% sure that the thread the ptracer thinks it is targeting does not exist anymore, or isn't the same as the one it thinks it is targeting. - To some degree this patch adds nothing new. In the scenario above ptrace(L) can fail with -ESRCH if it is called after the execing sub-thread wakes the leader up and before it "steals" the leader's pid. Test-case: #include <stdio.h> #include <unistd.h> #include <signal.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <errno.h> #include <pthread.h> #include <assert.h> void *tf(void *arg) { execve("/usr/bin/true", NULL, NULL); assert(0); return NULL; } int main(void) { int leader = fork(); if (!leader) { kill(getpid(), SIGSTOP); pthread_t th; pthread_create(&th, NULL, tf, NULL); for (;;) pause(); return 0; } waitpid(leader, NULL, WSTOPPED); ptrace(PTRACE_SEIZE, leader, 0, PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC); waitpid(leader, NULL, 0); ptrace(PTRACE_CONT, leader, 0,0); waitpid(leader, NULL, 0); int status, thread = waitpid(-1, &status, 0); assert(thread > 0 && thread != leader); assert(status == 0x80137f); ptrace(PTRACE_CONT, thread, 0,0); /* * waitid() because waitpid(leader, &status, WNOWAIT) does not * report status. Why ???? * * Why WEXITED? because we have another kernel problem connected * to mt-exec. */ siginfo_t info; assert(waitid(P_PID, leader, &info, WSTOPPED|WEXITED|WNOWAIT) == 0); assert(info.si_pid == leader && info.si_status == 0x0405); /* OK, it sleeps in ptrace(PTRACE_EVENT_EXEC == 0x04) */ assert(ptrace(PTRACE_CONT, leader, 0,0) == -1); assert(errno == ESRCH); assert(leader == waitpid(leader, &status, WNOHANG)); assert(status == 0x04057f); assert(ptrace(PTRACE_CONT, leader, 0,0) == 0); return 0; } Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Simon Marchi <simon.marchi@efficios.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Pedro Alves <palves@redhat.com> Acked-by: Simon Marchi <simon.marchi@efficios.com> Acked-by: Jan Kratochvil <jan.kratochvil@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19kernel/resource: make walk_mem_res() find all busy IORESOURCE_MEM resourcesDavid Hildenbrand
[ Upstream commit 3c9c797534364593b73ba6ab060a014af8934721 ] It used to be true that we can have system RAM (IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY) only on the first level in the resource tree. However, this is no longer holds for driver-managed system RAM (i.e., added via dax/kmem and virtio-mem), which gets added on lower levels, for example, inside device containers. IORESOURCE_SYSTEM_RAM is defined as IORESOURCE_MEM | IORESOURCE_SYSRAM and just a special type of IORESOURCE_MEM. The function walk_mem_res() only considers the first level and is used in arch/x86/mm/ioremap.c:__ioremap_check_mem() only. We currently fail to identify System RAM added by dax/kmem and virtio-mem as "IORES_MAP_SYSTEM_RAM", for example, allowing for remapping of such "normal RAM" in __ioremap_caller(). Let's find all IORESOURCE_MEM | IORESOURCE_BUSY resources, making the function behave similar to walk_system_ram_res(). Link: https://lkml.kernel.org/r/20210325115326.7826-3-david@redhat.com Fixes: ebf71552bb0e ("virtio-mem: Add parent resource for all added "System RAM"") Fixes: c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Dave Young <dyoung@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Oscar Salvador <osalvador@suse.de> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19kernel/resource: make walk_system_ram_res() find all busy ↵David Hildenbrand
IORESOURCE_SYSTEM_RAM resources [ Upstream commit 97f61c8f44ec9020708b97a51188170add4f3084 ] Patch series "kernel/resource: make walk_system_ram_res() and walk_mem_res() search the whole tree", v2. Playing with kdump+virtio-mem I noticed that kexec_file_load() does not consider System RAM added via dax/kmem and virtio-mem when preparing the elf header for kdump. Looking into the details, the logic used in walk_system_ram_res() and walk_mem_res() seems to be outdated. walk_system_ram_range() already does the right thing, let's change walk_system_ram_res() and walk_mem_res(), and clean up. Loading a kdump kernel via "kexec -p -s" ... will result in the kdump kernel to also dump dax/kmem and virtio-mem added System RAM now. Note: kexec-tools on x86-64 also have to be updated to consider this memory in the kexec_load() case when processing /proc/iomem. This patch (of 3): It used to be true that we can have system RAM (IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY) only on the first level in the resource tree. However, this is no longer holds for driver-managed system RAM (i.e., added via dax/kmem and virtio-mem), which gets added on lower levels, for example, inside device containers. We have two users of walk_system_ram_res(), which currently only consideres the first level: a) kernel/kexec_file.c:kexec_walk_resources() -- We properly skip IORESOURCE_SYSRAM_DRIVER_MANAGED resources via locate_mem_hole_callback(), so even after this change, we won't be placing kexec images onto dax/kmem and virtio-mem added memory. No change. b) arch/x86/kernel/crash.c:fill_up_crash_elf_data() -- we're currently not adding relevant ranges to the crash elf header, resulting in them not getting dumped via kdump. This change fixes loading a crashkernel via kexec_file_load() and including dax/kmem and virtio-mem added System RAM in the crashdump on x86-64. Note that e.g,, arm64 relies on memblock data and, therefore, always considers all added System RAM already. Let's find all IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY resources, making the function behave like walk_system_ram_range(). Link: https://lkml.kernel.org/r/20210325115326.7826-1-david@redhat.com Link: https://lkml.kernel.org/r/20210325115326.7826-2-david@redhat.com Fixes: ebf71552bb0e ("virtio-mem: Add parent resource for all added "System RAM"") Fixes: c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Baoquan He <bhe@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Dave Young <dyoung@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Qian Cai <cai@lca.pw> Cc: Oscar Salvador <osalvador@suse.de> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19kernel: kexec_file: fix error return code of kexec_calculate_store_digests()Jia-Ju Bai
[ Upstream commit 31d82c2c787d5cf65fedd35ebbc0c1bd95c1a679 ] When vzalloc() returns NULL to sha_regions, no error return code of kexec_calculate_store_digests() is assigned. To fix this bug, ret is assigned with -ENOMEM in this case. Link: https://lkml.kernel.org/r/20210309083904.24321-1-baijiaju1990@gmail.com Fixes: a43cac0d9dc2 ("kexec: split kexec_file syscall code to kexec_file.c") Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com> Reported-by: TOTE Robot <oslab@tsinghua.edu.cn> Acked-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19sched/fair: Fix unfairness caused by missing load decayOdin Ugedal
[ Upstream commit 0258bdfaff5bd13c4d2383150b7097aecd6b6d82 ] This fixes an issue where old load on a cfs_rq is not properly decayed, resulting in strange behavior where fairness can decrease drastically. Real workloads with equally weighted control groups have ended up getting a respective 99% and 1%(!!) of cpu time. When an idle task is attached to a cfs_rq by attaching a pid to a cgroup, the old load of the task is attached to the new cfs_rq and sched_entity by attach_entity_cfs_rq. If the task is then moved to another cpu (and therefore cfs_rq) before being enqueued/woken up, the load will be moved to cfs_rq->removed from the sched_entity. Such a move will happen when enforcing a cpuset on the task (eg. via a cgroup) that force it to move. The load will however not be removed from the task_group itself, making it look like there is a constant load on that cfs_rq. This causes the vruntime of tasks on other sibling cfs_rq's to increase faster than they are supposed to; causing severe fairness issues. If no other task is started on the given cfs_rq, and due to the cpuset it would not happen, this load would never be properly unloaded. With this patch the load will be properly removed inside update_blocked_averages. This also applies to tasks moved to the fair scheduling class and moved to another cpu, and this path will also fix that. For fork, the entity is queued right away, so this problem does not affect that. This applies to cases where the new process is the first in the cfs_rq, issue introduced 3d30544f0212 ("sched/fair: Apply more PELT fixes"), and when there has previously been load on the cgroup but the cgroup was removed from the leaflist due to having null PELT load, indroduced in 039ae8bcf7a5 ("sched/fair: Fix O(nr_cgroups) in the load balancing path"). For a simple cgroup hierarchy (as seen below) with two equally weighted groups, that in theory should get 50/50 of cpu time each, it often leads to a load of 60/40 or 70/30. parent/ cg-1/ cpu.weight: 100 cpuset.cpus: 1 cg-2/ cpu.weight: 100 cpuset.cpus: 1 If the hierarchy is deeper (as seen below), while keeping cg-1 and cg-2 equally weighted, they should still get a 50/50 balance of cpu time. This however sometimes results in a balance of 10/90 or 1/99(!!) between the task groups. $ ps u -C stress USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 18568 1.1 0.0 3684 100 pts/12 R+ 13:36 0:00 stress --cpu 1 root 18580 99.3 0.0 3684 100 pts/12 R+ 13:36 0:09 stress --cpu 1 parent/ cg-1/ cpu.weight: 100 sub-group/ cpu.weight: 1 cpuset.cpus: 1 cg-2/ cpu.weight: 100 sub-group/ cpu.weight: 10000 cpuset.cpus: 1 This can be reproduced by attaching an idle process to a cgroup and moving it to a given cpuset before it wakes up. The issue is evident in many (if not most) container runtimes, and has been reproduced with both crun and runc (and therefore docker and all its "derivatives"), and with both cgroup v1 and v2. Fixes: 3d30544f0212 ("sched/fair: Apply more PELT fixes") Fixes: 039ae8bcf7a5 ("sched/fair: Fix O(nr_cgroups) in the load balancing path") Signed-off-by: Odin Ugedal <odin@uged.al> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210501141950.23622-2-odin@uged.al Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19sched: Fix out-of-bound access in uclampQuentin Perret
[ Upstream commit 6d2f8909a5fabb73fe2a63918117943986c39b6c ] Util-clamp places tasks in different buckets based on their clamp values for performance reasons. However, the size of buckets is currently computed using a rounding division, which can lead to an off-by-one error in some configurations. For instance, with 20 buckets, the bucket size will be 1024/20=51. A task with a clamp of 1024 will be mapped to bucket id 1024/51=20. Sadly, correct indexes are in range [0,19], hence leading to an out of bound memory access. Clamp the bucket id to fix the issue. Fixes: 69842cba9ace ("sched/uclamp: Add CPU's clamp buckets refcounting") Suggested-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lkml.kernel.org/r/20210430151412.160913-1-qperret@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19swiotlb: Fix the type of indexClaire Chang
[ Upstream commit 95b079d8215b83b37fa59341fda92fcb9392f14a ] Fix the type of index from unsigned int to int since find_slots() might return -1. Fixes: 26a7e094783d ("swiotlb: refactor swiotlb_tbl_map_single") Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Claire Chang <tientzu@chromium.org> Signed-off-by: Konrad Rzeszutek Wilk <konrad@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19watchdog: fix barriers when printing backtraces from all CPUsPetr Mladek
[ Upstream commit 9f113bf760ca90d709f8f89a733d10abb1f04a83 ] Any parallel softlockup reports are skipped when one CPU is already printing backtraces from all CPUs. The exclusive rights are synchronized using one bit in soft_lockup_nmi_warn. There is also one memory barrier that does not make much sense. Use two barriers on the right location to prevent mixing two reports. [pmladek@suse.com: use bit lock operations to prevent multiple soft-lockup reports] Link: https://lkml.kernel.org/r/YFSVsLGVWMXTvlbk@alley Link: https://lkml.kernel.org/r/20210311122130.6788-6-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Laurence Oberman <loberman@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Whitchurch <vincent.whitchurch@axis.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19watchdog/softlockup: remove logic that tried to prevent repeated reportsPetr Mladek
[ Upstream commit 1bc503cb4a2638fb1c57801a7796aca57845ce63 ] The softlockup detector does some gymnastic with the variable soft_watchdog_warn. It was added by the commit 58687acba59266735ad ("lockup_detector: Combine nmi_watchdog and softlockup detector"). The purpose is not completely clear. There are the following clues. They describe the situation how it looked after the above mentioned commit: 1. The variable was checked with a comment "only warn once". 2. The variable was set when softlockup was reported. It was cleared only when the CPU was not longer in the softlockup state. 3. watchdog_touch_ts was not explicitly updated when the softlockup was reported. Without this variable, the report would normally be printed again during every following watchdog_timer_fn() invocation. The logic has got even more tangled up by the commit ed235875e2ca98 ("kernel/watchdog.c: print traces for all cpus on lockup detection"). After this commit, soft_watchdog_warn is set only when softlockup_all_cpu_backtrace is enabled. But multiple reports from all CPUs are prevented by a new variable soft_lockup_nmi_warn. Conclusion: The variable probably never worked as intended. In each case, it has not worked last many years because the softlockup was reported repeatedly after the full period defined by watchdog_thresh. The reason is that watchdog gets touched in many known slow paths, for example, in printk_stack_address(). This code is called also when printing the softlockup report. It means that the watchdog timestamp gets updated after each report. Solution: Simply remove the logic. People want the periodic report anyway. Link: https://lkml.kernel.org/r/20210311122130.6788-5-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Laurence Oberman <loberman@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Whitchurch <vincent.whitchurch@axis.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19watchdog: explicitly update timestamp when reporting softlockupPetr Mladek
[ Upstream commit c9ad17c991492f4390f42598f6ab0531f87eed07 ] The softlockup situation might stay for a long time or even forever. When it happens, the softlockup debug messages are printed in regular intervals defined by get_softlockup_thresh(). There is a mystery. The repeated message is printed after the full interval that is defined by get_softlockup_thresh(). But the timer callback is called more often as defined by sample_period. The code looks like the soflockup should get reported in every sample_period when it was once behind the thresh. It works only by chance. The watchdog is touched when printing the stall report, for example, in printk_stack_address(). Make the behavior clear and predictable by explicitly updating the timestamp in watchdog_timer_fn() when the report gets printed. Link: https://lkml.kernel.org/r/20210311122130.6788-3-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Laurence Oberman <loberman@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Whitchurch <vincent.whitchurch@axis.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-19watchdog: rename __touch_watchdog() to a better descriptive namePetr Mladek
[ Upstream commit 7c0012f522c802d25be102bafe54f333168e6119 ] Patch series "watchdog/softlockup: Report overall time and some cleanup", v2. I dug deep into the softlockup watchdog history when time permitted this year. And reworked the patchset that fixed timestamps and cleaned up the code[2]. I split it into very small steps and did even more code clean up. The result looks quite strightforward and I am pretty confident with the changes. [1] v2: https://lore.kernel.org/r/20201210160038.31441-1-pmladek@suse.com [2] v1: https://lore.kernel.org/r/20191024114928.15377-1-pmladek@suse.com This patch (of 6): There are many touch_*watchdog() functions. They are called in situations where the watchdog could report false positives or create unnecessary noise. For example, when CPU is entering idle mode, a virtual machine is stopped, or a lot of messages are printed in the atomic context. These functions set SOFTLOCKUP_RESET instead of a real timestamp. It allows to call them even in a context where jiffies might be outdated. For example, in an atomic context. The real timestamp is set by __touch_watchdog() that is called from the watchdog timer callback. Rename this callback to update_touch_ts(). It better describes the effect and clearly distinguish is from the other touch_*watchdog() functions. Another motivation is that two timestamps are going to be used. One will be used for the total softlockup time. The other will be used to measure time since the last report. The new function name will help to distinguish which timestamp is being updated. Link: https://lkml.kernel.org/r/20210311122130.6788-1-pmladek@suse.com Link: https://lkml.kernel.org/r/20210311122130.6788-2-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Laurence Oberman <loberman@redhat.com> Cc: Vincent Whitchurch <vincent.whitchurch@axis.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-14smp: Fix smp_call_function_single_async prototypeArnd Bergmann
commit 1139aeb1c521eb4a050920ce6c64c36c4f2a3ab7 upstream. As of commit 966a967116e6 ("smp: Avoid using two cache lines for struct call_single_data"), the smp code prefers 32-byte aligned call_single_data objects for performance reasons, but the block layer includes an instance of this structure in the main 'struct request' that is more senstive to size than to performance here, see 4ccafe032005 ("block: unalign call_single_data in struct request"). The result is a violation of the calling conventions that clang correctly points out: block/blk-mq.c:630:39: warning: passing 8-byte aligned argument to 32-byte aligned parameter 2 of 'smp_call_function_single_async' may result in an unaligned pointer access [-Walign-mismatch] smp_call_function_single_async(cpu, &rq->csd); It does seem that the usage of the call_single_data without cache line alignment should still be allowed by the smp code, so just change the function prototype so it accepts both, but leave the default alignment unchanged for the other users. This seems better to me than adding a local hack to shut up an otherwise correct warning in the caller. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Jens Axboe <axboe@kernel.dk> Link: https://lkml.kernel.org/r/20210505211300.3174456-1-arnd@kernel.org [nc: Fix conflicts, modify rq_csd_init] Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14bpf: Prevent writable memory-mapping of read-only ringbuf pagesAndrii Nakryiko
commit 04ea3086c4d73da7009de1e84962a904139af219 upstream. Only the very first page of BPF ringbuf that contains consumer position counter is supposed to be mapped as writeable by user-space. Producer position is read-only and can be modified only by the kernel code. BPF ringbuf data pages are read-only as well and are not meant to be modified by user-code to maintain integrity of per-record headers. This patch allows to map only consumer position page as writeable and everything else is restricted to be read-only. remap_vmalloc_range() internally adds VM_DONTEXPAND, so all the established memory mappings can't be extended, which prevents any future violations through mremap()'ing. Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Reported-by: Ryota Shiga (Flatt Security) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14bpf, ringbuf: Deny reserve of buffers larger than ringbufThadeu Lima de Souza Cascardo
commit 4b81ccebaeee885ab1aa1438133f2991e3a2b6ea upstream. A BPF program might try to reserve a buffer larger than the ringbuf size. If the consumer pointer is way ahead of the producer, that would be successfully reserved, allowing the BPF program to read or write out of the ringbuf allocated area. Reported-by: Ryota Shiga (Flatt Security) Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14bpf: Fix alu32 const subreg bound tracking on bitwise operationsDaniel Borkmann
commit 049c4e13714ecbca567b4d5f6d563f05d431c80e upstream. Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor") Reported-by: Manfred Paul (@_manfp) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14bpf: Fix propagation of 32 bit unsigned bounds from 64 bit boundsDaniel Borkmann
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ] Similarly as b02709587ea3 ("bpf: Fix propagation of 32-bit signed bounds from 64-bit bounds."), we also need to fix the propagation of 32 bit unsigned bounds from 64 bit counterparts. That is, really only set the u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit space. For example, the register with a umin_value == 1 does /not/ imply that u32_min_value is also equal to 1, since umax_value could be much larger than 32 bit subregister can hold, and thus u32_min_value is in the interval [0,1] instead. Before fix, invalid tracking result of R2_w=inv1: [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0 [...] After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)): [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0 [...] Thus, same issue as in b02709587ea3 holds for unsigned subregister tracking. Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in b02709587ea3 to make them uniform again. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: Manfred Paul (@_manfp) Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-14sched/debug: Fix cgroup_path[] serializationWaiman Long
[ Upstream commit ad789f84c9a145f8a18744c0387cec22ec51651e ] The handling of sysrq key can be activated by echoing the key to /proc/sysrq-trigger or via the magic key sequence typed into a terminal that is connected to the system in some way (serial, USB or other mean). In the former case, the handling is done in a user context. In the latter case, it is likely to be in an interrupt context. Currently in print_cpu() of kernel/sched/debug.c, sched_debug_lock is taken with interrupt disabled for the whole duration of the calls to print_*_stats() and print_rq() which could last for the quite some time if the information dump happens on the serial console. If the system has many cpus and the sched_debug_lock is somehow busy (e.g. parallel sysrq-t), the system may hit a hard lockup panic depending on the actually serial console implementation of the system. The purpose of sched_debug_lock is to serialize the use of the global cgroup_path[] buffer in print_cpu(). The rests of the printk calls don't need serialization from sched_debug_lock. Calling printk() with interrupt disabled can still be problematic if multiple instances are running. Allocating a stack buffer of PATH_MAX bytes is not feasible because of the limited size of the kernel stack. The solution implemented in this patch is to allow only one caller at a time to use the full size group_path[], while other simultaneous callers will have to use shorter stack buffers with the possibility of path name truncation. A "..." suffix will be printed if truncation may have happened. The cgroup path name is provided for informational purpose only, so occasional path name truncation should not be a big problem. Fixes: efe25c2c7b3a ("sched: Reinstate group names in /proc/sched_debug") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210415195426.6677-1-longman@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-14rcu: Remove spurious instrumentation_end() in rcu_nmi_enter()Zhouyi Zhou
[ Upstream commit 6494ccb93271bee596a12db32ff44867d5be2321 ] In rcu_nmi_enter(), there is an erroneous instrumentation_end() in the second branch of the "if" statement. Oddly enough, "objtool check -f vmlinux.o" fails to complain because it is unable to correctly cover all cases. Instead, objtool visits the third branch first, which marks following trace_rcu_dyntick() as visited. This commit therefore removes the spurious instrumentation_end(). Fixes: 04b25a495bd6 ("rcu: Mark rcu_nmi_enter() call to rcu_cleanup_after_idle() noinstr") Reported-by Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-14sched/fair: Fix shift-out-of-bounds in load_balance()Valentin Schneider
[ Upstream commit 39a2a6eb5c9b66ea7c8055026303b3aa681b49a5 ] Syzbot reported a handful of occurrences where an sd->nr_balance_failed can grow to much higher values than one would expect. A successful load_balance() resets it to 0; a failed one increments it. Once it gets to sd->cache_nice_tries + 3, this *should* trigger an active balance, which will either set it to sd->cache_nice_tries+1 or reset it to 0. However, in case the to-be-active-balanced task is not allowed to run on env->dst_cpu, then the increment is done without any further modification. This could then be repeated ad nauseam, and would explain the absurdly high values reported by syzbot (86, 149). VincentG noted there is value in letting sd->cache_nice_tries grow, so the shift itself should be fixed. That means preventing: """ If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined. """ Thus we need to cap the shift exponent to BITS_PER_TYPE(typeof(lefthand)) - 1. I had a look around for other similar cases via coccinelle: @expr@ position pos; expression E1; expression E2; @@ ( E1 >> E2@pos | E1 >> E2@pos ) @cst depends on expr@ position pos; expression expr.E1; constant cst; @@ ( E1 >> cst@pos | E1 << cst@pos ) @script:python depends on !cst@ pos << expr.pos; exp << expr.E2; @@ # Dirty hack to ignore constexpr if exp.upper() != exp: coccilib.report.print_report(pos[0], "Possible UB shift here") The only other match in kernel/sched is rq_clock_thermal() which employs sched_thermal_decay_shift, and that exponent is already capped to 10, so that one is fine. Fixes: 5a7f55590467 ("sched/fair: Relax constraint on task's load during load balance") Reported-by: syzbot+d7581744d5fd27c9fbe1@syzkaller.appspotmail.com Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: http://lore.kernel.org/r/000000000000ffac1205b9a2112f@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11tracing: Restructure trace_clock_global() to never blockSteven Rostedt (VMware)
commit aafe104aa9096827a429bc1358f8260ee565b7cc upstream. It was reported that a fix to the ring buffer recursion detection would cause a hung machine when performing suspend / resume testing. The following backtrace was extracted from debugging that case: Call Trace: trace_clock_global+0x91/0xa0 __rb_reserve_next+0x237/0x460 ring_buffer_lock_reserve+0x12a/0x3f0 trace_buffer_lock_reserve+0x10/0x50 __trace_graph_return+0x1f/0x80 trace_graph_return+0xb7/0xf0 ? trace_clock_global+0x91/0xa0 ftrace_return_to_handler+0x8b/0xf0 ? pv_hash+0xa0/0xa0 return_to_handler+0x15/0x30 ? ftrace_graph_caller+0xa0/0xa0 ? trace_clock_global+0x91/0xa0 ? __rb_reserve_next+0x237/0x460 ? ring_buffer_lock_reserve+0x12a/0x3f0 ? trace_event_buffer_lock_reserve+0x3c/0x120 ? trace_event_buffer_reserve+0x6b/0xc0 ? trace_event_raw_event_device_pm_callback_start+0x125/0x2d0 ? dpm_run_callback+0x3b/0xc0 ? pm_ops_is_empty+0x50/0x50 ? platform_get_irq_byname_optional+0x90/0x90 ? trace_device_pm_callback_start+0x82/0xd0 ? dpm_run_callback+0x49/0xc0 With the following RIP: RIP: 0010:native_queued_spin_lock_slowpath+0x69/0x200 Since the fix to the recursion detection would allow a single recursion to happen while tracing, this lead to the trace_clock_global() taking a spin lock and then trying to take it again: ring_buffer_lock_reserve() { trace_clock_global() { arch_spin_lock() { queued_spin_lock_slowpath() { /* lock taken */ (something else gets traced by function graph tracer) ring_buffer_lock_reserve() { trace_clock_global() { arch_spin_lock() { queued_spin_lock_slowpath() { /* DEAD LOCK! */ Tracing should *never* block, as it can lead to strange lockups like the above. Restructure the trace_clock_global() code to instead of simply taking a lock to update the recorded "prev_time" simply use it, as two events happening on two different CPUs that calls this at the same time, really doesn't matter which one goes first. Use a trylock to grab the lock for updating the prev_time, and if it fails, simply try again the next time. If it failed to be taken, that means something else is already updating it. Link: https://lkml.kernel.org/r/20210430121758.650b6e8a@gandalf.local.home Cc: stable@vger.kernel.org Tested-by: Konstantin Kharlamov <hi-angel@yandex.ru> Tested-by: Todd Brandt <todd.e.brandt@linux.intel.com> Fixes: b02414c8f045 ("ring-buffer: Fix recursion protection transitions between interrupt context") # started showing the problem Fixes: 14131f2f98ac3 ("tracing: implement trace_clock_*() APIs") # where the bug happened Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212761 Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11tracing: Map all PIDs to command linesSteven Rostedt (VMware)
commit 785e3c0a3a870e72dc530856136ab4c8dd207128 upstream. The default max PID is set by PID_MAX_DEFAULT, and the tracing infrastructure uses this number to map PIDs to the comm names of the tasks, such output of the trace can show names from the recorded PIDs in the ring buffer. This mapping is also exported to user space via the "saved_cmdlines" file in the tracefs directory. But currently the mapping expects the PIDs to be less than PID_MAX_DEFAULT, which is the default maximum and not the real maximum. Recently, systemd will increases the maximum value of a PID on the system, and when tasks are traced that have a PID higher than PID_MAX_DEFAULT, its comm is not recorded. This leads to the entire trace to have "<...>" as the comm name, which is pretty useless. Instead, keep the array mapping the size of PID_MAX_DEFAULT, but instead of just mapping the index to the comm, map a mask of the PID (PID_MAX_DEFAULT - 1) to the comm, and find the full PID from the map_cmdline_to_pid array (that already exists). This bug goes back to the beginning of ftrace, but hasn't been an issue until user space started increasing the maximum value of PIDs. Link: https://lkml.kernel.org/r/20210427113207.3c601884@gandalf.local.home Cc: stable@vger.kernel.org Fixes: bc0c38d139ec7 ("ftrace: latency tracer infrastructure") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11kbuild: update config_data.gz only when the content of .config is changedMasahiro Yamada
commit 46b41d5dd8019b264717978c39c43313a524d033 upstream. If the timestamp of the .config file is updated, config_data.gz is regenerated, then vmlinux is re-linked. This occurs even if the content of the .config has not changed at all. This issue was mitigated by commit 67424f61f813 ("kconfig: do not write .config if the content is the same"); Kconfig does not update the .config when it ends up with the identical configuration. The issue is remaining when the .config is created by *_defconfig with some config fragment(s) applied on top. This is typical for powerpc and mips, where several *_defconfig targets are constructed by using merge_config.sh. One workaround is to have the copy of the .config. The filechk rule updates the copy, kernel/config_data, by checking the content instead of the timestamp. With this commit, the second run with the same configuration avoids the needless rebuilds. $ make ARCH=mips defconfig all [ snip ] $ make ARCH=mips defconfig all *** Default configuration is based on target '32r2el_defconfig' Using ./arch/mips/configs/generic_defconfig as base Merging arch/mips/configs/generic/32r2.config Merging arch/mips/configs/generic/el.config Merging ./arch/mips/configs/generic/board-boston.config Merging ./arch/mips/configs/generic/board-ni169445.config Merging ./arch/mips/configs/generic/board-ocelot.config Merging ./arch/mips/configs/generic/board-ranchu.config Merging ./arch/mips/configs/generic/board-sead-3.config Merging ./arch/mips/configs/generic/board-xilfpga.config # # configuration written to .config # SYNC include/config/auto.conf CALL scripts/checksyscalls.sh CALL scripts/atomic/check-atomics.sh CHK include/generated/compile.h CHK include/generated/autoksyms.h Reported-by: Elliot Berman <eberman@codeaurora.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11futex: Do not apply time namespace adjustment on FUTEX_LOCK_PIThomas Gleixner
commit cdf78db4070967869e4d027c11f4dd825d8f815a upstream. FUTEX_LOCK_PI does not require to have the FUTEX_CLOCK_REALTIME bit set because it has been using CLOCK_REALTIME based absolute timeouts forever. Due to that, the time namespace adjustment which is applied when FUTEX_CLOCK_REALTIME is not set, will wrongly take place for FUTEX_LOCK_PI and wreckage the timeout. Exclude it from that procedure. Fixes: c2f7d08cccf4 ("futex: Adjust absolute futex timeouts with per time namespace offset") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210422194704.984540159@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11Revert 337f13046ff0 ("futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op")Thomas Gleixner
commit 4fbf5d6837bf81fd7a27d771358f4ee6c4f243f8 upstream. The FUTEX_WAIT operand has historically a relative timeout which means that the clock id is irrelevant as relative timeouts on CLOCK_REALTIME are not subject to wall clock changes and therefore are mapped by the kernel to CLOCK_MONOTONIC for simplicity. If a caller would set FUTEX_CLOCK_REALTIME for FUTEX_WAIT the timeout is still treated relative vs. CLOCK_MONOTONIC and then the wait arms that timeout based on CLOCK_REALTIME which is broken and obviously has never been used or even tested. Reject any attempt to use FUTEX_CLOCK_REALTIME with FUTEX_WAIT again. The desired functionality can be achieved with FUTEX_WAIT_BITSET and a FUTEX_BITSET_MATCH_ANY argument. Fixes: 337f13046ff0 ("futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210422194704.834797921@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11kcsan, debugfs: Move debugfs file creation out of early initMarco Elver
commit e36299efe7d749976fbdaaf756dee6ef32543c2c upstream. Commit 56348560d495 ("debugfs: do not attempt to create a new file before the filesystem is initalized") forbids creating new debugfs files until debugfs is fully initialized. This means that KCSAN's debugfs file creation, which happened at the end of __init(), no longer works. And was apparently never supposed to work! However, there is no reason to create KCSAN's debugfs file so early. This commit therefore moves its creation to a late_initcall() callback. Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: stable <stable@vger.kernel.org> Fixes: 56348560d495 ("debugfs: do not attempt to create a new file before the filesystem is initalized") Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11sched,psi: Handle potential task count underflow bugs more gracefullyCharan Teja Reddy
[ Upstream commit 9d10a13d1e4c349b76f1c675a874a7f981d6d3b4 ] psi_group_cpu->tasks, represented by the unsigned int, stores the number of tasks that could be stalled on a psi resource(io/mem/cpu). Decrementing these counters at zero leads to wrapping which further leads to the psi_group_cpu->state_mask is being set with the respective pressure state. This could result into the unnecessary time sampling for the pressure state thus cause the spurious psi events. This can further lead to wrong actions being taken at the user land based on these psi events. Though psi_bug is set under these conditions but that just for debug purpose. Fix it by decrementing the ->tasks count only when it is non-zero. Signed-off-by: Charan Teja Reddy <charante@codeaurora.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/1618585336-37219-1-git-send-email-charante@codeaurora.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11sched,fair: Alternative sched_slice()Peter Zijlstra
[ Upstream commit 0c2de3f054a59f15e01804b75a04355c48de628c ] The current sched_slice() seems to have issues; there's two possible things that could be improved: - the 'nr_running' used for __sched_period() is daft when cgroups are considered. Using the RQ wide h_nr_running seems like a much more consistent number. - (esp) cgroups can slice it real fine, which makes for easy over-scheduling, ensure min_gran is what the name says. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210412102001.611897312@infradead.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11perf: Rework perf_event_exit_event()Peter Zijlstra
[ Upstream commit ef54c1a476aef7eef26fe13ea10dc090952c00f8 ] Make perf_event_exit_event() more robust, such that we can use it from other contexts. Specifically the up and coming remove_on_exec. For this to work we need to address a few issues. Remove_on_exec will not destroy the entire context, so we cannot rely on TASK_TOMBSTONE to disable event_function_call() and we thus have to use perf_remove_from_context(). When using perf_remove_from_context(), there's two races to consider. The first is against close(), where we can have concurrent tear-down of the event. The second is against child_list iteration, which should not find a half baked event. To address this, teach perf_remove_from_context() to special case !ctx->is_active and about DETACH_CHILD. [ elver@google.com: fix racing parent/child exit in sync_child_event(). ] Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210408103605.1676875-2-elver@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11sched/fair: Ignore percpu threads for imbalance pullsLingutla Chandrasekhar
[ Upstream commit 9bcb959d05eeb564dfc9cac13a59843a4fb2edf2 ] During load balance, LBF_SOME_PINNED will be set if any candidate task cannot be detached due to CPU affinity constraints. This can result in setting env->sd->parent->sgc->group_imbalance, which can lead to a group being classified as group_imbalanced (rather than any of the other, lower group_type) when balancing at a higher level. In workloads involving a single task per CPU, LBF_SOME_PINNED can often be set due to per-CPU kthreads being the only other runnable tasks on any given rq. This results in changing the group classification during load-balance at higher levels when in reality there is nothing that can be done for this affinity constraint: per-CPU kthreads, as the name implies, don't get to move around (modulo hotplug shenanigans). It's not as clear for userspace tasks - a task could be in an N-CPU cpuset with N-1 offline CPUs, making it an "accidental" per-CPU task rather than an intended one. KTHREAD_IS_PER_CPU gives us an indisputable signal which we can leverage here to not set LBF_SOME_PINNED. Note that the aforementioned classification to group_imbalance (when nothing can be done) is especially problematic on big.LITTLE systems, which have a topology the likes of: DIE [ ] MC [ ][ ] 0 1 2 3 L L B B arch_scale_cpu_capacity(L) < arch_scale_cpu_capacity(B) Here, setting LBF_SOME_PINNED due to a per-CPU kthread when balancing at MC level on CPUs [0-1] will subsequently prevent CPUs [2-3] from classifying the [0-1] group as group_misfit_task when balancing at DIE level. Thus, if CPUs [0-1] are running CPU-bound (misfit) tasks, ill-timed per-CPU kthreads can significantly delay the upgmigration of said misfit tasks. Systems relying on ASYM_PACKING are likely to face similar issues. Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org> [Use kthread_is_per_cpu() rather than p->nr_cpus_allowed] [Reword changelog] Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210407220628.3798191-2-valentin.schneider@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11kvfree_rcu: Use same set of GFP flags as does single-argumentUladzislau Rezki (Sony)
[ Upstream commit ee6ddf58475cce8a3d3697614679cd8cb4a6f583 ] Running an rcuscale stress-suite can lead to "Out of memory" of a system. This can happen under high memory pressure with a small amount of physical memory. For example, a KVM test configuration with 64 CPUs and 512 megabytes can result in OOM when running rcuscale with below parameters: ../kvm.sh --torture rcuscale --allcpus --duration 10 --kconfig CONFIG_NR_CPUS=64 \ --bootargs "rcuscale.kfree_rcu_test=1 rcuscale.kfree_nthreads=16 rcuscale.holdoff=20 \ rcuscale.kfree_loops=10000 torture.disable_onoff_at_boot" --trust-make <snip> [ 12.054448] kworker/1:1H invoked oom-killer: gfp_mask=0x2cc0(GFP_KERNEL|__GFP_NOWARN), order=0, oom_score_adj=0 [ 12.055303] CPU: 1 PID: 377 Comm: kworker/1:1H Not tainted 5.11.0-rc3+ #510 [ 12.055416] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.12.0-1 04/01/2014 [ 12.056485] Workqueue: events_highpri fill_page_cache_func [ 12.056485] Call Trace: [ 12.056485] dump_stack+0x57/0x6a [ 12.056485] dump_header+0x4c/0x30a [ 12.056485] ? del_timer_sync+0x20/0x30 [ 12.056485] out_of_memory.cold.47+0xa/0x7e [ 12.056485] __alloc_pages_slowpath.constprop.123+0x82f/0xc00 [ 12.056485] __alloc_pages_nodemask+0x289/0x2c0 [ 12.056485] __get_free_pages+0x8/0x30 [ 12.056485] fill_page_cache_func+0x39/0xb0 [ 12.056485] process_one_work+0x1ed/0x3b0 [ 12.056485] ? process_one_work+0x3b0/0x3b0 [ 12.060485] worker_thread+0x28/0x3c0 [ 12.060485] ? process_one_work+0x3b0/0x3b0 [ 12.060485] kthread+0x138/0x160 [ 12.060485] ? kthread_park+0x80/0x80 [ 12.060485] ret_from_fork+0x22/0x30 [ 12.062156] Mem-Info: [ 12.062350] active_anon:0 inactive_anon:0 isolated_anon:0 [ 12.062350] active_file:0 inactive_file:0 isolated_file:0 [ 12.062350] unevictable:0 dirty:0 writeback:0 [ 12.062350] slab_reclaimable:2797 slab_unreclaimable:80920 [ 12.062350] mapped:1 shmem:2 pagetables:8 bounce:0 [ 12.062350] free:10488 free_pcp:1227 free_cma:0 ... [ 12.101610] Out of memory and no killable processes... [ 12.102042] Kernel panic - not syncing: System is deadlocked on memory [ 12.102583] CPU: 1 PID: 377 Comm: kworker/1:1H Not tainted 5.11.0-rc3+ #510 [ 12.102600] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.12.0-1 04/01/2014 <snip> Because kvfree_rcu() has a fallback path, memory allocation failure is not the end of the world. Furthermore, the added overhead of aggressive GFP settings must be balanced against the overhead of the fallback path, which is a cache miss for double-argument kvfree_rcu() and a call to synchronize_rcu() for single-argument kvfree_rcu(). The current choice of GFP_KERNEL|__GFP_NOWARN can result in longer latencies than a call to synchronize_rcu(), so less-tenacious GFP flags would be helpful. Here is the tradeoff that must be balanced: a) Minimize use of the fallback path, b) Avoid pushing the system into OOM, c) Bound allocation latency to that of synchronize_rcu(), and d) Leave the emergency reserves to use cases lacking fallbacks. This commit therefore changes GFP flags from GFP_KERNEL|__GFP_NOWARN to GFP_KERNEL|__GFP_NORETRY|__GFP_NOMEMALLOC|__GFP_NOWARN. This combination leaves the emergency reserves alone and can initiate reclaim, but will not invoke the OOM killer. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11sched/pelt: Fix task util_est update filteringVincent Donnefort
[ Upstream commit b89997aa88f0b07d8a6414c908af75062103b8c9 ] Being called for each dequeue, util_est reduces the number of its updates by filtering out when the EWMA signal is different from the task util_avg by less than 1%. It is a problem for a sudden util_avg ramp-up. Due to the decay from a previous high util_avg, EWMA might now be close enough to the new util_avg. No update would then happen while it would leave ue.enqueued with an out-of-date value. Taking into consideration the two util_est members, EWMA and enqueued for the filtering, ensures, for both, an up-to-date value. This is for now an issue only for the trace probe that might return the stale value. Functional-wise, it isn't a problem, as the value is always accessed through max(enqueued, ewma). This problem has been observed using LISA's UtilConvergence:test_means on the sd845c board. No regression observed with Hackbench on sd845c and Perf-bench sched pipe on hikey/hikey960. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210225165820.1377125-1-vincent.donnefort@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11genirq/matrix: Prevent allocation counter corruptionVitaly Kuznetsov
[ Upstream commit c93a5e20c3c2dabef8ea360a3d3f18c6f68233ab ] When irq_matrix_free() is called for an unallocated vector the managed_allocated and total_allocated counters get out of sync with the real state of the matrix. Later, when the last interrupt is freed, these counters will underflow resulting in UINTMAX because the counters are unsigned. While this is certainly a problem of the calling code, this can be catched in the allocator by checking the allocation bit for the to be freed vector which simplifies debugging. An example of the problem described above: https://lore.kernel.org/lkml/20210318192819.636943062@linutronix.de/ Add the missing sanity check and emit a warning when it triggers. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210319111823.1105248-1-vkuznets@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11posix-timers: Preserve return value in clock_adjtime32()Chen Jun
commit 2d036dfa5f10df9782f5278fc591d79d283c1fad upstream. The return value on success (>= 0) is overwritten by the return value of put_old_timex32(). That works correct in the fault case, but is wrong for the success case where put_old_timex32() returns 0. Just check the return value of put_old_timex32() and return -EFAULT in case it is not zero. [ tglx: Massage changelog ] Fixes: 3a4d44b61625 ("ntp: Move adjtimex related compat syscalls to native counterparts") Signed-off-by: Chen Jun <chenjun102@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Richard Cochran <richardcochran@gmail.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210414030449.90692-1-chenjun102@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11ftrace: Handle commands when closing set_ftrace_filter fileSteven Rostedt (VMware)
commit 8c9af478c06bb1ab1422f90d8ecbc53defd44bc3 upstream. # echo switch_mm:traceoff > /sys/kernel/tracing/set_ftrace_filter will cause switch_mm to stop tracing by the traceoff command. # echo -n switch_mm:traceoff > /sys/kernel/tracing/set_ftrace_filter does nothing. The reason is that the parsing in the write function only processes commands if it finished parsing (there is white space written after the command). That's to handle: write(fd, "switch_mm:", 10); write(fd, "traceoff", 8); cases, where the command is broken over multiple writes. The problem is if the file descriptor is closed, then the write call is not processed, and the command needs to be processed in the release code. The release code can handle matching of functions, but does not handle commands. Cc: stable@vger.kernel.org Fixes: eda1e32855656 ("tracing: handle broken names in ftrace filter") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07perf/core: Fix unconditional security_locked_down() callOndrej Mosnacek
commit 08ef1af4de5fe7de9c6d69f1e22e51b66e385d9b upstream. Currently, the lockdown state is queried unconditionally, even though its result is used only if the PERF_SAMPLE_REGS_INTR bit is set in attr.sample_type. While that doesn't matter in case of the Lockdown LSM, it causes trouble with the SELinux's lockdown hook implementation. SELinux implements the locked_down hook with a check whether the current task's type has the corresponding "lockdown" class permission ("integrity" or "confidentiality") allowed in the policy. This means that calling the hook when the access control decision would be ignored generates a bogus permission check and audit record. Fix this by checking sample_type first and only calling the hook when its result would be honored. Fixes: b0c8fdc7fdb7 ("lockdown: Lock down perf when in confidentiality mode") Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Paul Moore <paul@paul-moore.com> Link: https://lkml.kernel.org/r/20210224215628.192519-1-omosnace@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07swiotlb: respect min_align_maskJianxiong Gao
commit: 1f221a0d0dbf0e48ef3a9c62871281d6a7819f05 swiotlb: respect min_align_mask Respect the min_align_mask in struct device_dma_parameters in swiotlb. There are two parts to it: 1) for the lower bits of the alignment inside the io tlb slot, just extent the size of the allocation and leave the start of the slot empty 2) for the high bits ensure we find a slot that matches the high bits of the alignment to avoid wasting too much memory Based on an earlier patch from Jianxiong Gao <jxgao@google.com>. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Jianxiong Gao <jxgao@google.com> Tested-by: Jianxiong Gao <jxgao@google.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jianxiong Gao <jxgao@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07swiotlb: don't modify orig_addr in swiotlb_tbl_sync_singleJianxiong Gao
commit: 16fc3cef33a04632ab6b31758abdd77563a20759 swiotlb_tbl_map_single currently nevers sets a tlb_addr that is not aligned to the tlb bucket size. But we're going to add such a case soon, for which this adjustment would be bogus. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Jianxiong Gao <jxgao@google.com> Tested-by: Jianxiong Gao <jxgao@google.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jianxiong Gao <jxgao@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>