summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2018-01-23delayacct: Account blkio completion on the correct taskJosh Snyder
commit c96f5471ce7d2aefd0dda560cc23f08ab00bc65d upstream. Before commit: e33a9bba85a8 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") delayacct_blkio_end() was called after context-switching into the task which completed I/O. This resulted in double counting: the task would account a delay both waiting for I/O and for time spent in the runqueue. With e33a9bba85a8, delayacct_blkio_end() is called by try_to_wake_up(). In ttwu, we have not yet context-switched. This is more correct, in that the delay accounting ends when the I/O is complete. But delayacct_blkio_end() relies on 'get_current()', and we have not yet context-switched into the task whose I/O completed. This results in the wrong task having its delay accounting statistics updated. Instead of doing that, pass the task_struct being woken to delayacct_blkio_end(), so that it can update the statistics of the correct task. Signed-off-by: Josh Snyder <joshs@netflix.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Brendan Gregg <bgregg@netflix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-block@vger.kernel.org Fixes: e33a9bba85a8 ("sched/core: move IO scheduling accounting from io_schedule_timeout() into scheduler") Link: http://lkml.kernel.org/r/1513613712-571-1-git-send-email-joshs@netflix.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-23timers: Unconditionally check deferrable baseThomas Gleixner
commit ed4bbf7910b28ce3c691aef28d245585eaabda06 upstream. When the timer base is checked for expired timers then the deferrable base must be checked as well. This was missed when making the deferrable base independent of base::nohz_active. Fixes: ced6d5c11d3e ("timers: Use deferrable base independent of base::nohz_active") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: rt@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-23futex: Prevent overflow by strengthen input validationLi Jinyue
commit fbe0e839d1e22d88810f3ee3e2f1479be4c0aa4a upstream. UBSAN reports signed integer overflow in kernel/futex.c: UBSAN: Undefined behaviour in kernel/futex.c:2041:18 signed integer overflow: 0 - -2147483648 cannot be represented in type 'int' Add a sanity check to catch negative values of nr_wake and nr_requeue. Signed-off-by: Li Jinyue <lijinyue@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: peterz@infradead.org Cc: dvhart@infradead.org Link: https://lkml.kernel.org/r/1513242294-31786-1-git-send-email-lijinyue@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-23futex: Avoid violating the 10th rule of futexPeter Zijlstra
commit c1e2f0eaf015fb7076d51a339011f2383e6dd389 upstream. Julia reported futex state corruption in the following scenario: waiter waker stealer (prio > waiter) futex(WAIT_REQUEUE_PI, uaddr, uaddr2, timeout=[N ms]) futex_wait_requeue_pi() futex_wait_queue_me() freezable_schedule() <scheduled out> futex(LOCK_PI, uaddr2) futex(CMP_REQUEUE_PI, uaddr, uaddr2, 1, 0) /* requeues waiter to uaddr2 */ futex(UNLOCK_PI, uaddr2) wake_futex_pi() cmp_futex_value_locked(uaddr2, waiter) wake_up_q() <woken by waker> <hrtimer_wakeup() fires, clears sleeper->task> futex(LOCK_PI, uaddr2) __rt_mutex_start_proxy_lock() try_to_take_rt_mutex() /* steals lock */ rt_mutex_set_owner(lock, stealer) <preempted> <scheduled in> rt_mutex_wait_proxy_lock() __rt_mutex_slowlock() try_to_take_rt_mutex() /* fails, lock held by stealer */ if (timeout && !timeout->task) return -ETIMEDOUT; fixup_owner() /* lock wasn't acquired, so, fixup_pi_state_owner skipped */ return -ETIMEDOUT; /* At this point, we've returned -ETIMEDOUT to userspace, but the * futex word shows waiter to be the owner, and the pi_mutex has * stealer as the owner */ futex_lock(LOCK_PI, uaddr2) -> bails with EDEADLK, futex word says we're owner. And suggested that what commit: 73d786bd043e ("futex: Rework inconsistent rt_mutex/futex_q state") removes from fixup_owner() looks to be just what is needed. And indeed it is -- I completely missed that requeue_pi could also result in this case. So we need to restore that, except that subsequent patches, like commit: 16ffa12d7425 ("futex: Pull rt_mutex_futex_unlock() out from under hb->lock") changed all the locking rules. Even without that, the sequence: - if (rt_mutex_futex_trylock(&q->pi_state->pi_mutex)) { - locked = 1; - goto out; - } - raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock); - owner = rt_mutex_owner(&q->pi_state->pi_mutex); - if (!owner) - owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); - raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock); - ret = fixup_pi_state_owner(uaddr, q, owner); already suggests there were races; otherwise we'd never have to look at next_owner. So instead of doing 3 consecutive wait_lock sections with who knows what races, we do it all in a single section. Additionally, the usage of pi_state->owner in fixup_owner() was only safe because only the rt_mutex owner would modify it, which this additional case wrecks. Luckily the values can only change away and not to the value we're testing, this means we can do a speculative test and double check once we have the wait_lock. Fixes: 73d786bd043e ("futex: Rework inconsistent rt_mutex/futex_q state") Reported-by: Julia Cartwright <julia@ni.com> Reported-by: Gratian Crisan <gratian.crisan@ni.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Julia Cartwright <julia@ni.com> Tested-by: Gratian Crisan <gratian.crisan@ni.com> Cc: Darren Hart <dvhart@infradead.org> Link: https://lkml.kernel.org/r/20171208124939.7livp7no2ov65rrc@hirez.programming.kicks-ass.net Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17kdump: write correct address of mem_section into vmcoreinfoKirill A. Shutemov
commit a0b1280368d1e91ab72f849ef095b4f07a39bbf1 upstream. Depending on configuration mem_section can now be an array or a pointer to an array allocated dynamically. In most cases, we can continue to refer to it as 'mem_section' regardless of what it is. But there's one exception: '&mem_section' means "address of the array" if mem_section is an array, but if mem_section is a pointer, it would mean "address of the pointer". We've stepped onto this in kdump code. VMCOREINFO_SYMBOL(mem_section) writes down address of pointer into vmcoreinfo, not array as we wanted. Let's introduce VMCOREINFO_SYMBOL_ARRAY() that would handle the situation correctly for both cases. Link: http://lkml.kernel.org/r/20180112162532.35896-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Fixes: 83e3c48729d9 ("mm/sparsemem: Allocate mem_section at runtime for CONFIG_SPARSEMEM_EXTREME=y") Acked-by: Baoquan He <bhe@redhat.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Dave Young <dyoung@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17bpf: arsh is not supported in 32 bit alu thus reject itDaniel Borkmann
commit 7891a87efc7116590eaba57acc3c422487802c6f upstream. The following snippet was throwing an 'unknown opcode cc' warning in BPF interpreter: 0: (18) r0 = 0x0 2: (7b) *(u64 *)(r10 -16) = r0 3: (cc) (u32) r0 s>>= (u32) r0 4: (95) exit Although a number of JITs do support BPF_ALU | BPF_ARSH | BPF_{K,X} generation, not all of them do and interpreter does neither. We can leave existing ones and implement it later in bpf-next for the remaining ones, but reject this properly in verifier for the time being. Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)") Reported-by: syzbot+93c4904c5c70348a6890@syzkaller.appspotmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17bpf, array: fix overflow in max_entries and undefined behavior in index_maskDaniel Borkmann
commit bbeb6e4323dad9b5e0ee9f60c223dd532e2403b1 upstream. syzkaller tried to alloc a map with 0xfffffffd entries out of a userns, and thus unprivileged. With the recently added logic in b2157399cc98 ("bpf: prevent out-of-bounds speculation") we round this up to the next power of two value for max_entries for unprivileged such that we can apply proper masking into potentially zeroed out map slots. However, this will generate an index_mask of 0xffffffff, and therefore a + 1 will let this overflow into new max_entries of 0. This will pass allocation, etc, and later on map access we still enforce on the original attr->max_entries value which was 0xfffffffd, therefore triggering GPF all over the place. Thus bail out on overflow in such case. Moreover, on 32 bit archs roundup_pow_of_two() can also not be used, since fls_long(max_entries - 1) can result in 32 and 1UL << 32 in 32 bit space is undefined. Therefore, do this by hand in a 64 bit variable. This fixes all the issues triggered by syzkaller's reproducers. Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: syzbot+b0efb8e572d01bce1ae0@syzkaller.appspotmail.com Reported-by: syzbot+6c15e9744f75f2364773@syzkaller.appspotmail.com Reported-by: syzbot+d2f5524fb46fd3b312ee@syzkaller.appspotmail.com Reported-by: syzbot+61d23c95395cc90dbc2b@syzkaller.appspotmail.com Reported-by: syzbot+0d363c942452cca68c01@syzkaller.appspotmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17bpf: prevent out-of-bounds speculationAlexei Starovoitov
commit b2157399cc9898260d6031c5bfe45fe137c1fbe7 upstream. Under speculation, CPUs may mis-predict branches in bounds checks. Thus, memory accesses under a bounds check may be speculated even if the bounds check fails, providing a primitive for building a side channel. To avoid leaking kernel data round up array-based maps and mask the index after bounds check, so speculated load with out of bounds index will load either valid value from the array or zero from the padded area. Unconditionally mask index for all array types even when max_entries are not rounded to power of 2 for root user. When map is created by unpriv user generate a sequence of bpf insns that includes AND operation to make sure that JITed code includes the same 'index & index_mask' operation. If prog_array map is created by unpriv user replace bpf_tail_call(ctx, map, index); with if (index >= max_entries) { index &= map->index_mask; bpf_tail_call(ctx, map, index); } (along with roundup to power 2) to prevent out-of-bounds speculation. There is secondary redundant 'if (index >= max_entries)' in the interpreter and in all JITs, but they can be optimized later if necessary. Other array-like maps (cpumap, devmap, sockmap, perf_event_array, cgroup_array) cannot be used by unpriv, so no changes there. That fixes bpf side of "Variant 1: bounds check bypass (CVE-2017-5753)" on all architectures with and without JIT. v2->v3: Daniel noticed that attack potentially can be crafted via syscall commands without loading the program, so add masking to those paths as well. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17membarrier: Disable preemption when calling smp_call_function_many()Mathieu Desnoyers
commit 541676078b52f365f53d46ee5517d305cd1b6350 upstream. smp_call_function_many() requires disabling preemption around the call. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Andrew Hunter <ahh@google.com> Cc: Avi Kivity <avi@scylladb.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Dave Watson <davejwatson@fb.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maged Michael <maged.michael@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171215192310.25293-1-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-17cgroup: fix css_task_iter crash on CSS_TASK_ITER_PROCTejun Heo
commit 74d0833c659a8a54735e5efdd44f4b225af68586 upstream. While teaching css_task_iter to handle skipping over tasks which aren't group leaders, bc2fb7ed089f ("cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS") introduced a silly bug. CSS_TASK_ITER_PROCS is implemented by repeating css_task_iter_advance() while the advanced cursor is pointing to a non-leader thread. However, the cursor variable, @l, wasn't updated when the iteration has to advance to the next css_set and the following repetition would operate on the terminal @l from the previous iteration which isn't pointing to a valid task leading to oopses like the following or infinite looping. BUG: unable to handle kernel NULL pointer dereference at 0000000000000254 IP: __task_pid_nr_ns+0xc7/0xf0 PGD 0 P4D 0 Oops: 0000 [#1] SMP ... CPU: 2 PID: 1 Comm: systemd Not tainted 4.14.4-200.fc26.x86_64 #1 Hardware name: System manufacturer System Product Name/PRIME B350M-A, BIOS 3203 11/09/2017 task: ffff88c4baee8000 task.stack: ffff96d5c3158000 RIP: 0010:__task_pid_nr_ns+0xc7/0xf0 RSP: 0018:ffff96d5c315bd50 EFLAGS: 00010206 RAX: 0000000000000000 RBX: ffff88c4b68c6000 RCX: 0000000000000250 RDX: ffffffffa5e47960 RSI: 0000000000000000 RDI: ffff88c490f6ab00 RBP: ffff96d5c315bd50 R08: 0000000000001000 R09: 0000000000000005 R10: ffff88c4be006b80 R11: ffff88c42f1b8004 R12: ffff96d5c315bf18 R13: ffff88c42d7dd200 R14: ffff88c490f6a510 R15: ffff88c4b68c6000 FS: 00007f9446f8ea00(0000) GS:ffff88c4be680000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000254 CR3: 00000007f956f000 CR4: 00000000003406e0 Call Trace: cgroup_procs_show+0x19/0x30 cgroup_seqfile_show+0x4c/0xb0 kernfs_seq_show+0x21/0x30 seq_read+0x2ec/0x3f0 kernfs_fop_read+0x134/0x180 __vfs_read+0x37/0x160 ? security_file_permission+0x9b/0xc0 vfs_read+0x8e/0x130 SyS_read+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xa5 RIP: 0033:0x7f94455f942d RSP: 002b:00007ffe81ba2d00 EFLAGS: 00000293 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 00005574e2233f00 RCX: 00007f94455f942d RDX: 0000000000001000 RSI: 00005574e2321a90 RDI: 000000000000002b RBP: 0000000000000000 R08: 00005574e2321a90 R09: 00005574e231de60 R10: 00007f94458c8b38 R11: 0000000000000293 R12: 00007f94458c8ae0 R13: 00007ffe81ba3800 R14: 0000000000000000 R15: 00005574e2116560 Code: 04 74 0e 89 f6 48 8d 04 76 48 8d 04 c5 f0 05 00 00 48 8b bf b8 05 00 00 48 01 c7 31 c0 48 8b 0f 48 85 c9 74 18 8b b2 30 08 00 00 <3b> 71 04 77 0d 48 c1 e6 05 48 01 f1 48 3b 51 38 74 09 5d c3 8b RIP: __task_pid_nr_ns+0xc7/0xf0 RSP: ffff96d5c315bd50 Fix it by moving the initialization of the cursor below the repeat label. While at it, rename it to @next for readability. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: bc2fb7ed089f ("cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS") Reported-by: Laura Abbott <labbott@redhat.com> Reported-by: Bronek Kozicki <brok@incorrekt.com> Reported-by: George Amanakis <gamanakis@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-10kernel/signal.c: remove the no longer needed SIGNAL_UNKILLABLE check in ↵Oleg Nesterov
complete_signal() commit 426915796ccaf9c2bd9bb06dc5702225957bc2e5 upstream. complete_signal() checks SIGNAL_UNKILLABLE before it starts to destroy the thread group, today this is wrong in many ways. If nothing else, fatal_signal_pending() should always imply that the whole thread group (except ->group_exit_task if it is not NULL) is killed, this check breaks the rule. After the previous changes we can rely on sig_task_ignored(); sig_fatal(sig) && SIGNAL_UNKILLABLE can only be true if we actually want to kill this task and sig == SIGKILL OR it is traced and debugger can intercept the signal. This should hopefully fix the problem reported by Dmitry. This test-case static int init(void *arg) { for (;;) pause(); } int main(void) { char stack[16 * 1024]; for (;;) { int pid = clone(init, stack + sizeof(stack)/2, CLONE_NEWPID | SIGCHLD, NULL); assert(pid > 0); assert(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); assert(waitpid(-1, NULL, WSTOPPED) == pid); assert(ptrace(PTRACE_DETACH, pid, 0, SIGSTOP) == 0); assert(syscall(__NR_tkill, pid, SIGKILL) == 0); assert(pid == wait(NULL)); } } triggers the WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)) in task_participate_group_stop(). do_signal_stop()->signal_group_exit() checks SIGNAL_GROUP_EXIT and return false, but task_set_jobctl_pending() checks fatal_signal_pending() and does not set JOBCTL_STOP_PENDING. And his should fix the minor security problem reported by Kyle, SECCOMP_RET_TRACE can miss fatal_signal_pending() the same way if the task is the root of a pid namespace. Link: http://lkml.kernel.org/r/20171103184246.GD21036@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Kyle Huey <me@kylehuey.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kyle Huey <me@kylehuey.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-10kernel/signal.c: protect the SIGNAL_UNKILLABLE tasks from !sig_kernel_only() ↵Oleg Nesterov
signals commit ac25385089f673560867eb5179228a44ade0cfc1 upstream. Change sig_task_ignored() to drop the SIG_DFL && !sig_kernel_only() signals even if force == T. This simplifies the next change and this matches the same check in get_signal() which will drop these signals anyway. Link: http://lkml.kernel.org/r/20171103184227.GC21036@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Tested-by: Kyle Huey <me@kylehuey.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-10kernel/signal.c: protect the traced SIGNAL_UNKILLABLE tasks from SIGKILLOleg Nesterov
commit 628c1bcba204052d19b686b5bac149a644cdb72e upstream. The comment in sig_ignored() says "Tracers may want to know about even ignored signals" but SIGKILL can not be reported to debugger and it is just wrong to return 0 in this case: SIGKILL should only kill the SIGNAL_UNKILLABLE task if it comes from the parent ns. Change sig_ignored() to ignore ->ptrace if sig == SIGKILL and rely on sig_task_ignored(). SISGTOP coming from within the namespace is not really right too but at least debugger can intercept it, and we can't drop it here because this will break "gdb -p 1": ptrace_attach() won't work. Perhaps we will add another ->ptrace check later, we will see. Link: http://lkml.kernel.org/r/20171103184206.GB21036@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Tested-by: Kyle Huey <me@kylehuey.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-10kernel/acct.c: fix the acct->needcheck check in check_free_space()Oleg Nesterov
commit 4d9570158b6260f449e317a5f9ed030c2504a615 upstream. As Tsukada explains, the time_is_before_jiffies(acct->needcheck) check is very wrong, we need time_is_after_jiffies() to make sys_acct() work. Ignoring the overflows, the code should "goto out" if needcheck > jiffies, while currently it checks "needcheck < jiffies" and thus in the likely case check_free_space() does nothing until jiffies overflow. In particular this means that sys_acct() is simply broken, acct_on() sets acct->needcheck = jiffies and expects that check_free_space() should set acct->active = 1 after the free-space check, but this won't happen if jiffies increments in between. This was broken by commit 32dc73086015 ("get rid of timer in kern/acct.c") in 2011, then another (correct) commit 795a2f22a8ea ("acct() should honour the limits from the very beginning") made the problem more visible. Link: http://lkml.kernel.org/r/20171213133940.GA6554@redhat.com Fixes: 32dc73086015 ("get rid of timer in kern/acct.c") Reported-by: TSUKADA Koutaro <tsukada@ascade.co.jp> Suggested-by: TSUKADA Koutaro <tsukada@ascade.co.jp> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()Thomas Gleixner
commit 5d62c183f9e9df1deeea0906d099a94e8a43047a upstream. The conditions in irq_exit() to invoke tick_nohz_irq_exit() which subsequently invokes tick_nohz_stop_sched_tick() are: if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) If need_resched() is not set, but a timer softirq is pending then this is an indication that the softirq code punted and delegated the execution to softirqd. need_resched() is not true because the current interrupted task takes precedence over softirqd. Invoking tick_nohz_irq_exit() in this case can cause an endless loop of timer interrupts because the timer wheel contains an expired timer, but softirqs are not yet executed. So it returns an immediate expiry request, which causes the timer to fire immediately again. Lather, rinse and repeat.... Prevent that by adding a check for a pending timer soft interrupt to the conditions in tick_nohz_stop_sched_tick() which avoid calling get_next_timer_interrupt(). That keeps the tick sched timer on the tick and prevents a repetitive programming of an already expired timer. Reported-by: Sebastian Siewior <bigeasy@linutronix.d> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272156050.2431@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Reinitialize per cpu bases on hotplugThomas Gleixner
commit 26456f87aca7157c057de65c9414b37f1ab881d1 upstream. The timer wheel bases are not (re)initialized on CPU hotplug. That leaves them with a potentially stale clk and next_expiry valuem, which can cause trouble then the CPU is plugged. Add a prepare callback which forwards the clock, sets next_expiry to far in the future and reset the control flags to a known state. Set base->must_forward_clk so the first timer which is queued will try to forward the clock to current jiffies. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Invoke timer_start_debug() where it makes senseThomas Gleixner
commit fd45bb77ad682be728d1002431d77b8c73342836 upstream. The timer start debug function is called before the proper timer base is set. As a consequence the trace data contains the stale CPU and flags values. Call the debug function after setting the new base and flags. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: rt@linutronix.de Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/20171222145337.792907137@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02timers: Use deferrable base independent of base::nohz_activeAnna-Maria Gleixner
commit ced6d5c11d3e7b342f1a80f908e6756ebd4b8ddd upstream. During boot and before base::nohz_active is set in the timer bases, deferrable timers are enqueued into the standard timer base. This works correctly as long as base::nohz_active is false. Once it base::nohz_active is set and a timer which was enqueued before that is accessed the lock selector code choses the lock of the deferred base. This causes unlocked access to the standard base and in case the timer is removed it does not clear the pending flag in the standard base bitmap which causes get_next_timer_interrupt() to return bogus values. To prevent that, the deferrable timers must be enqueued in the deferrable base, even when base::nohz_active is not set. Those deferrable timers also need to be expired unconditional. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: rt@linutronix.de Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20171222145337.633328378@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02cpufreq: schedutil: Use idle_calls counter of the remote CPUJoel Fernandes
commit 466a2b42d67644447a1765276259a3ea5531ddff upstream. Since the recent remote cpufreq callback work, its possible that a cpufreq update is triggered from a remote CPU. For single policies however, the current code uses the local CPU when trying to determine if the remote sg_cpu entered idle or is busy. This is incorrect. To remedy this, compare with the nohz tick idle_calls counter of the remote CPU. Fixes: 674e75411fc2 (sched: cpufreq: Allow remote cpufreq callbacks) Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Joel Fernandes <joelaf@google.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02ring-buffer: Do no reuse reader page if still in useSteven Rostedt (VMware)
commit ae415fa4c5248a8cf4faabd5a3c20576cb1ad607 upstream. To free the reader page that is allocated with ring_buffer_alloc_read_page(), ring_buffer_free_read_page() must be called. For faster performance, this page can be reused by the ring buffer to avoid having to free and allocate new pages. The issue arises when the page is used with a splice pipe into the networking code. The networking code may up the page counter for the page, and keep it active while sending it is queued to go to the network. The incrementing of the page ref does not prevent it from being reused in the ring buffer, and this can cause the page that is being sent out to the network to be modified before it is sent by reading new data. Add a check to the page ref counter, and only reuse the page if it is not being used anywhere else. Fixes: 73a757e63114d ("ring-buffer: Return reader page back into existing ring buffer") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02ring-buffer: Mask out the info bits when returning buffer page lengthSteven Rostedt (VMware)
commit 45d8b80c2ac5d21cd1e2954431fb676bc2b1e099 upstream. Two info bits were added to the "commit" part of the ring buffer data page when returned to be consumed. This was to inform the user space readers that events have been missed, and that the count may be stored at the end of the page. What wasn't handled, was the splice code that actually called a function to return the length of the data in order to zero out the rest of the page before sending it up to user space. These data bits were returned with the length making the value negative, and that negative value was not checked. It was compared to PAGE_SIZE, and only used if the size was less than PAGE_SIZE. Luckily PAGE_SIZE is unsigned long which made the compare an unsigned compare, meaning the negative size value did not end up causing a large portion of memory to be randomly zeroed out. Fixes: 66a8cb95ed040 ("ring-buffer: Add place holder recording of dropped events") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02tracing: Fix crash when it fails to alloc ring bufferJing Xia
commit 24f2aaf952ee0b59f31c3a18b8b36c9e3d3c2cf5 upstream. Double free of the ring buffer happens when it fails to alloc new ring buffer instance for max_buffer if TRACER_MAX_TRACE is configured. The root cause is that the pointer is not set to NULL after the buffer is freed in allocate_trace_buffers(), and the freeing of the ring buffer is invoked again later if the pointer is not equal to Null, as: instance_mkdir() |-allocate_trace_buffers() |-allocate_trace_buffer(tr, &tr->trace_buffer...) |-allocate_trace_buffer(tr, &tr->max_buffer...) // allocate fail(-ENOMEM),first free // and the buffer pointer is not set to null |-ring_buffer_free(tr->trace_buffer.buffer) // out_free_tr |-free_trace_buffers() |-free_trace_buffer(&tr->trace_buffer); //if trace_buffer is not null, free again |-ring_buffer_free(buf->buffer) |-rb_free_cpu_buffer(buffer->buffers[cpu]) // ring_buffer_per_cpu is null, and // crash in ring_buffer_per_cpu->pages Link: http://lkml.kernel.org/r/20171226071253.8968-1-chunyan.zhang@spreadtrum.com Fixes: 737223fbca3b1 ("tracing: Consolidate buffer allocation code") Signed-off-by: Jing Xia <jing.xia@spreadtrum.com> Signed-off-by: Chunyan Zhang <chunyan.zhang@spreadtrum.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02tracing: Fix possible double free on failure of allocating trace bufferSteven Rostedt (VMware)
commit 4397f04575c44e1440ec2e49b6302785c95fd2f8 upstream. Jing Xia and Chunyan Zhang reported that on failing to allocate part of the tracing buffer, memory is freed, but the pointers that point to them are not initialized back to NULL, and later paths may try to free the freed memory again. Jing and Chunyan fixed one of the locations that does this, but missed a spot. Link: http://lkml.kernel.org/r/20171226071253.8968-1-chunyan.zhang@spreadtrum.com Fixes: 737223fbca3b1 ("tracing: Consolidate buffer allocation code") Reported-by: Jing Xia <jing.xia@spreadtrum.com> Reported-by: Chunyan Zhang <chunyan.zhang@spreadtrum.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-02tracing: Remove extra zeroing out of the ring buffer pageSteven Rostedt (VMware)
commit 6b7e633fe9c24682df550e5311f47fb524701586 upstream. The ring_buffer_read_page() takes care of zeroing out any extra data in the page that it returns. There's no need to zero it out again from the consumer. It was removed from one consumer of this function, but read_buffers_splice_read() did not remove it, and worse, it contained a nasty bug because of it. Fixes: 2711ca237a084 ("ring-buffer: Move zeroing out excess in page to ring buffer code") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-29arch, mm: Allow arch_dup_mmap() to failThomas Gleixner
commit c10e83f598d08046dd1ebc8360d4bb12d802d51b upstream. In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be allowed to fail. Fix up all instances. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: dan.j.williams@intel.com Cc: hughd@google.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: linux-mm@kvack.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix integer overflowsDaniel Borkmann
From: Alexei Starovoitov <ast@kernel.org> [ Upstream commit bb7f0f989ca7de1153bd128a40a71709e339fa03 ] There were various issues related to the limited size of integers used in the verifier: - `off + size` overflow in __check_map_access() - `off + reg->off` overflow in check_mem_access() - `off + reg->var_off.value` overflow or 32-bit truncation of `reg->var_off.value` in check_mem_access() - 32-bit truncation in check_stack_boundary() Make sure that any integer math cannot overflow by not allowing pointer math with large values. Also reduce the scope of "scalar op scalar" tracking. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: don't prune branches when a scalar is replaced with a pointerDaniel Borkmann
From: Jann Horn <jannh@google.com> [ Upstream commit 179d1c5602997fef5a940c6ddcf31212cbfebd14 ] This could be made safe by passing through a reference to env and checking for env->allow_ptr_leaks, but it would only work one way and is probably not worth the hassle - not doing it will not directly lead to program rejection. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: force strict alignment checks for stack pointersDaniel Borkmann
From: Jann Horn <jannh@google.com> [ Upstream commit a5ec6ae161d72f01411169a938fa5f8baea16e8f ] Force strict alignment checks for stack pointers because the tracking of stack spills relies on it; unaligned stack accesses can lead to corruption of spilled registers, which is exploitable. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix missing error return in check_stack_boundary()Daniel Borkmann
From: Jann Horn <jannh@google.com> Prevent indirect stack accesses at non-constant addresses, which would permit reading and corrupting spilled pointers. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix 32-bit ALU op verificationDaniel Borkmann
From: Jann Horn <jannh@google.com> [ Upstream commit 468f6eafa6c44cb2c5d8aad35e12f06c240a812a ] 32-bit ALU ops operate on 32-bit values and have 32-bit outputs. Adjust the verifier accordingly. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix incorrect tracking of register size truncationDaniel Borkmann
From: Jann Horn <jannh@google.com> [ Upstream commit 0c17d1d2c61936401f4702e1846e2c19b200f958 ] Properly handle register truncation to a smaller size. The old code first mirrors the clearing of the high 32 bits in the bitwise tristate representation, which is correct. But then, it computes the new arithmetic bounds as the intersection between the old arithmetic bounds and the bounds resulting from the bitwise tristate representation. Therefore, when coerce_reg_to_32() is called on a number with bounds [0xffff'fff8, 0x1'0000'0007], the verifier computes [0xffff'fff8, 0xffff'ffff] as bounds of the truncated number. This is incorrect: The truncated number could also be in the range [0, 7], and no meaningful arithmetic bounds can be computed in that case apart from the obvious [0, 0xffff'ffff]. Starting with v4.14, this is exploitable by unprivileged users as long as the unprivileged_bpf_disabled sysctl isn't set. Debian assigned CVE-2017-16996 for this issue. v2: - flip the mask during arithmetic bounds calculation (Ben Hutchings) v3: - add CVE number (Ben Hutchings) Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values") Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Edward Cree <ecree@solarflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix incorrect sign extension in check_alu_op()Daniel Borkmann
From: Jann Horn <jannh@google.com> [ Upstream commit 95a762e2c8c942780948091f8f2a4f32fce1ac6f ] Distinguish between BPF_ALU64|BPF_MOV|BPF_K (load 32-bit immediate, sign-extended to 64-bit) and BPF_ALU|BPF_MOV|BPF_K (load 32-bit immediate, zero-padded to 64-bit); only perform sign extension in the first case. Starting with v4.14, this is exploitable by unprivileged users as long as the unprivileged_bpf_disabled sysctl isn't set. Debian assigned CVE-2017-16995 for this issue. v3: - add CVE number (Ben Hutchings) Fixes: 484611357c19 ("bpf: allow access into map value arrays") Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Edward Cree <ecree@solarflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf/verifier: fix bounds calculation on BPF_RSHDaniel Borkmann
From: Edward Cree <ecree@solarflare.com> [ Upstream commit 4374f256ce8182019353c0c639bb8d0695b4c941 ] Incorrect signed bounds were being computed. If the old upper signed bound was positive and the old lower signed bound was negative, this could cause the new upper signed bound to be too low, leading to security issues. Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Edward Cree <ecree@solarflare.com> Acked-by: Alexei Starovoitov <ast@kernel.org> [jannh@google.com: changed description to reflect bug impact] Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix corruption on concurrent perf_event_output callsDaniel Borkmann
[ Upstream commit 283ca526a9bd75aed7350220d7b1f8027d99c3fd ] When tracing and networking programs are both attached in the system and both use event-output helpers that eventually call into perf_event_output(), then we could end up in a situation where the tracing attached program runs in user context while a cls_bpf program is triggered on that same CPU out of softirq context. Since both rely on the same per-cpu perf_sample_data, we could potentially corrupt it. This can only ever happen in a combination of the two types; all tracing programs use a bpf_prog_active counter to bail out in case a program is already running on that CPU out of a different context. XDP and cls_bpf programs by themselves don't have this issue as they run in the same context only. Therefore, split both perf_sample_data so they cannot be accessed from each other. Fixes: 20b9d7ac4852 ("bpf: avoid excessive stack usage for perf_sample_data") Reported-by: Alexei Starovoitov <ast@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Song Liu <songliubraving@fb.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25bpf: fix branch pruning logicDaniel Borkmann
From: Alexei Starovoitov <ast@fb.com> [ Upstream commit c131187db2d3fa2f8bf32fdf4e9a4ef805168467 ] when the verifier detects that register contains a runtime constant and it's compared with another constant it will prune exploration of the branch that is guaranteed not to be taken at runtime. This is all correct, but malicious program may be constructed in such a way that it always has a constant comparison and the other branch is never taken under any conditions. In this case such path through the program will not be explored by the verifier. It won't be taken at run-time either, but since all instructions are JITed the malicious program may cause JITs to complain about using reserved fields, etc. To fix the issue we have to track the instructions explored by the verifier and sanitize instructions that are dead at run time with NOPs. We cannot reject such dead code, since llvm generates it for valid C code, since it doesn't do as much data flow analysis as the verifier does. Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25tracing: Exclude 'generic fields' from histogramsTom Zanussi
[ Upstream commit a15f7fc20389a8827d5859907568b201234d4b79 ] There are a small number of 'generic fields' (comm/COMM/cpu/CPU) that are found by trace_find_event_field() but are only meant for filtering. Specifically, they unlike normal fields, they have a size of 0 and thus wreak havoc when used as a histogram key. Exclude these (return -EINVAL) when used as histogram keys. Link: http://lkml.kernel.org/r/956154cbc3e8a4f0633d619b886c97f0f0edf7b4.1506105045.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25locking/barriers: Convert users of lockless_dereference() to READ_ONCE()Will Deacon
commit 3382290ed2d5e275429cef510ab21889d3ccd164 upstream. [ Note, this is a Git cherry-pick of the following commit: 506458efaf15 ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()") ... for easier x86 PTI code testing and back-porting. ] READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it can be used instead of lockless_dereference() without any change in semantics. Signed-off-by: Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20PM / s2idle: Clear the events_check_enabled flagRajat Jain
[ Upstream commit 95b982b45122c57da2ee0b46cce70775e1d987af ] Problem: This flag does not get cleared currently in the suspend or resume path in the following cases: * In case some driver's suspend routine returns an error. * Successful s2idle case * etc? Why is this a problem: What happens is that the next suspend attempt could fail even though the user did not enable the flag by writing to /sys/power/wakeup_count. This is 1 use case how the issue can be seen (but similar use case with driver suspend failure can be thought of): 1. Read /sys/power/wakeup_count 2. echo count > /sys/power/wakeup_count 3. echo freeze > /sys/power/wakeup_count 4. Let the system suspend, and wakeup the system using some wake source that calls pm_wakeup_event() e.g. power button or something. 5. Note that the combined wakeup count would be incremented due to the pm_wakeup_event() in the resume path. 6. After resuming the events_check_enabled flag is still set. At this point if the user attempts to freeze again (without writing to /sys/power/wakeup_count), the suspend would fail even though there has been no wake event since the past resume. Address that by clearing the flag just before a resume is completed, so that it is always cleared for the corner cases mentioned above. Signed-off-by: Rajat Jain <rajatja@google.com> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20posix-timer: Properly check sigevent->sigev_notifyThomas Gleixner
commit cef31d9af908243421258f1df35a4a644604efbe upstream. timer_create() specifies via sigevent->sigev_notify the signal delivery for the new timer. The valid modes are SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD and (SIGEV_SIGNAL | SIGEV_THREAD_ID). The sanity check in good_sigevent() is only checking the valid combination for the SIGEV_THREAD_ID bit, i.e. SIGEV_SIGNAL, but if SIGEV_THREAD_ID is not set it accepts any random value. This has no real effects on the posix timer and signal delivery code, but it affects show_timer() which handles the output of /proc/$PID/timers. That function uses a string array to pretty print sigev_notify. The access to that array has no bound checks, so random sigev_notify cause access beyond the array bounds. Add proper checks for the valid notify modes and remove the SIGEV_THREAD_ID masking from various code pathes as SIGEV_NONE can never be set in combination with SIGEV_THREAD_ID. Reported-by: Eric Biggers <ebiggers3@gmail.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20sched/rt: Do not pull from current CPU if only one CPU to pullSteven Rostedt
commit f73c52a5bcd1710994e53fbccc378c42b97a06b6 upstream. Daniel Wagner reported a crash on the BeagleBone Black SoC. This is a single CPU architecture, and does not have a functional arch_send_call_function_single_ipi() implementation which can crash the kernel if that is called. As it only has one CPU, it shouldn't be called, but if the kernel is compiled for SMP, the push/pull RT scheduling logic now calls it for irq_work if the one CPU is overloaded, it can use that function to call itself and crash the kernel. Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system only has a single CPU. But SCHED_FEAT is a constant if sched debugging is turned off. Another fix can also be used, and this should also help with normal SMP machines. That is, do not initiate the pull code if there's only one RT overloaded CPU, and that CPU happens to be the current CPU that is scheduling in a lower priority task. Even on a system with many CPUs, if there's many RT tasks waiting to run on a single CPU, and that CPU schedules in another RT task of lower priority, it will initiate the PULL logic in case there's a higher priority RT task on another CPU that is waiting to run. But if there is no other CPU with waiting RT tasks, it will initiate the RT pull logic on itself (as it still has RT tasks waiting to run). This is a wasted effort. Not only does this help with SMP code where the current CPU is the only one with RT overloaded tasks, it should also solve the issue that Daniel encountered, because it will prevent the PULL logic from executing, as there's only one CPU on the system, and the check added here will cause it to exit the RT pull code. Reported-by: Daniel Wagner <wagi@monom.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-rt-users <linux-rt-users@vger.kernel.org> Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic") Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20tracing: Allocate mask_str buffer dynamicallyChangbin Du
commit 90e406f96f630c07d631a021fd4af10aac913e77 upstream. The default NR_CPUS can be very large, but actual possible nr_cpu_ids usually is very small. For my x86 distribution, the NR_CPUS is 8192 and nr_cpu_ids is 4. About 2 pages are wasted. Most machines don't have so many CPUs, so define a array with NR_CPUS just wastes memory. So let's allocate the buffer dynamically when need. With this change, the mutext tracing_cpumask_update_lock also can be removed now, which was used to protect mask_str. Link: http://lkml.kernel.org/r/1512013183-19107-1-git-send-email-changbin.du@intel.com Fixes: 36dfe9252bd4c ("ftrace: make use of tracing_cpumask") Signed-off-by: Changbin Du <changbin.du@intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20kernel: make groups_sort calling a responsibility group_info allocatorsThiago Rafael Becker
commit bdcf0a423ea1c40bbb40e7ee483b50fc8aa3d758 upstream. In testing, we found that nfsd threads may call set_groups in parallel for the same entry cached in auth.unix.gid, racing in the call of groups_sort, corrupting the groups for that entry and leading to permission denials for the client. This patch: - Make groups_sort globally visible. - Move the call to groups_sort to the modifiers of group_info - Remove the call to groups_sort from set_groups Link: http://lkml.kernel.org/r/20171211151420.18655-1-thiago.becker@gmail.com Signed-off-by: Thiago Rafael Becker <thiago.becker@gmail.com> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Reviewed-by: NeilBrown <neilb@suse.com> Acked-by: "J. Bruce Fields" <bfields@fieldses.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-17audit: ensure that 'audit=1' actually enables audit for PID 1Paul Moore
[ Upstream commit 173743dd99a49c956b124a74c8aacb0384739a4c ] Prior to this patch we enabled audit in audit_init(), which is too late for PID 1 as the standard initcalls are run after the PID 1 task is forked. This means that we never allocate an audit_context (see audit_alloc()) for PID 1 and therefore miss a lot of audit events generated by PID 1. This patch enables audit as early as possible to help ensure that when PID 1 is forked it can allocate an audit_context if required. Reviewed-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-17audit: Allow auditd to set pid to 0 to end auditingSteve Grubb
[ Upstream commit 33e8a907804428109ce1d12301c3365d619cc4df ] The API to end auditing has historically been for auditd to set the pid to 0. This patch restores that functionality. See: https://github.com/linux-audit/audit-kernel/issues/69 Reviewed-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Steve Grubb <sgrubb@redhat.com> Signed-off-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14jump_label: Invoke jump_label_test() via early_initcall()Jason Baron
[ Upstream commit 92ee46efeb505ead3ab06d3c5ce695637ed5f152 ] Fengguang Wu reported that running the rcuperf test during boot can cause the jump_label_test() to hit a WARN_ON(). The issue is that the core jump label code relies on kernel_text_address() to detect when it can no longer update branches that may be contained in __init sections. The kernel_text_address() in turn assumes that if the system_state variable is greter than or equal to SYSTEM_RUNNING then __init sections are no longer valid (since the assumption is that they have been freed). However, when rcuperf is setup to run in early boot it can call kernel_power_off() which sets the system_state to SYSTEM_POWER_OFF. Since rcuperf initialization is invoked via a module_init(), we can make the dependency of jump_label_test() needing to complete before rcuperf explicit by calling it via early_initcall(). Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Jason Baron <jbaron@akamai.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1510609727-2238-1-git-send-email-jbaron@akamai.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14bpf: fix lockdep splatEric Dumazet
[ Upstream commit 89ad2fa3f043a1e8daae193bcb5fe34d5f8caf28 ] pcpu_freelist_pop() needs the same lockdep awareness than pcpu_freelist_populate() to avoid a false positive. [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ] switchto-defaul/12508 [HC0[0]:SC0[6]:HE0:SE0] is trying to acquire: (&htab->buckets[i].lock){......}, at: [<ffffffff9dc099cb>] __htab_percpu_map_update_elem+0x1cb/0x300 and this task is already holding: (dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2){+.-...}, at: [<ffffffff9e135848>] __dev_queue_xmit+0 x868/0x1240 which would create a new lock dependency: (dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2){+.-...} -> (&htab->buckets[i].lock){......} but this new dependency connects a SOFTIRQ-irq-safe lock: (dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2){+.-...} ... which became SOFTIRQ-irq-safe at: [<ffffffff9db5931b>] __lock_acquire+0x42b/0x1f10 [<ffffffff9db5b32c>] lock_acquire+0xbc/0x1b0 [<ffffffff9da05e38>] _raw_spin_lock+0x38/0x50 [<ffffffff9e135848>] __dev_queue_xmit+0x868/0x1240 [<ffffffff9e136240>] dev_queue_xmit+0x10/0x20 [<ffffffff9e1965d9>] ip_finish_output2+0x439/0x590 [<ffffffff9e197410>] ip_finish_output+0x150/0x2f0 [<ffffffff9e19886d>] ip_output+0x7d/0x260 [<ffffffff9e19789e>] ip_local_out+0x5e/0xe0 [<ffffffff9e197b25>] ip_queue_xmit+0x205/0x620 [<ffffffff9e1b8398>] tcp_transmit_skb+0x5a8/0xcb0 [<ffffffff9e1ba152>] tcp_write_xmit+0x242/0x1070 [<ffffffff9e1baffc>] __tcp_push_pending_frames+0x3c/0xf0 [<ffffffff9e1b3472>] tcp_rcv_established+0x312/0x700 [<ffffffff9e1c1acc>] tcp_v4_do_rcv+0x11c/0x200 [<ffffffff9e1c3dc2>] tcp_v4_rcv+0xaa2/0xc30 [<ffffffff9e191107>] ip_local_deliver_finish+0xa7/0x240 [<ffffffff9e191a36>] ip_local_deliver+0x66/0x200 [<ffffffff9e19137d>] ip_rcv_finish+0xdd/0x560 [<ffffffff9e191e65>] ip_rcv+0x295/0x510 [<ffffffff9e12ff88>] __netif_receive_skb_core+0x988/0x1020 [<ffffffff9e130641>] __netif_receive_skb+0x21/0x70 [<ffffffff9e1306ff>] process_backlog+0x6f/0x230 [<ffffffff9e132129>] net_rx_action+0x229/0x420 [<ffffffff9da07ee8>] __do_softirq+0xd8/0x43d [<ffffffff9e282bcc>] do_softirq_own_stack+0x1c/0x30 [<ffffffff9dafc2f5>] do_softirq+0x55/0x60 [<ffffffff9dafc3a8>] __local_bh_enable_ip+0xa8/0xb0 [<ffffffff9db4c727>] cpu_startup_entry+0x1c7/0x500 [<ffffffff9daab333>] start_secondary+0x113/0x140 to a SOFTIRQ-irq-unsafe lock: (&head->lock){+.+...} ... which became SOFTIRQ-irq-unsafe at: ... [<ffffffff9db5971f>] __lock_acquire+0x82f/0x1f10 [<ffffffff9db5b32c>] lock_acquire+0xbc/0x1b0 [<ffffffff9da05e38>] _raw_spin_lock+0x38/0x50 [<ffffffff9dc0b7fa>] pcpu_freelist_pop+0x7a/0xb0 [<ffffffff9dc08b2c>] htab_map_alloc+0x50c/0x5f0 [<ffffffff9dc00dc5>] SyS_bpf+0x265/0x1200 [<ffffffff9e28195f>] entry_SYSCALL_64_fastpath+0x12/0x17 other info that might help us debug this: Chain exists of: dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2 --> &htab->buckets[i].lock --> &head->lock Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&head->lock); local_irq_disable(); lock(dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2); lock(&htab->buckets[i].lock); <Interrupt> lock(dev_queue->dev->qdisc_class ?: &qdisc_tx_lock#2); *** DEADLOCK *** Fixes: e19494edab82 ("bpf: introduce percpu_freelist") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14pipe: match pipe_max_size data type with procfsJoe Lawrence
[ Upstream commit 98159d977f71c3b3dee898d1c34e56f520b094e7 ] Patch series "A few round_pipe_size() and pipe-max-size fixups", v3. While backporting Michael's "pipe: fix limit handling" patchset to a distro-kernel, Mikulas noticed that current upstream pipe limit handling contains a few problems: 1 - procfs signed wrap: echo'ing a large number into /proc/sys/fs/pipe-max-size and then cat'ing it back out shows a negative value. 2 - round_pipe_size() nr_pages overflow on 32bit: this would subsequently try roundup_pow_of_two(0), which is undefined. 3 - visible non-rounded pipe-max-size value: there is no mutual exclusion or protection between the time pipe_max_size is assigned a raw value from proc_dointvec_minmax() and when it is rounded. 4 - unsigned long -> unsigned int conversion makes for potential odd return errors from do_proc_douintvec_minmax_conv() and do_proc_dopipe_max_size_conv(). This version underwent the same testing as v1: https://marc.info/?l=linux-kernel&m=150643571406022&w=2 This patch (of 4): pipe_max_size is defined as an unsigned int: unsigned int pipe_max_size = 1048576; but its procfs/sysctl representation is an integer: static struct ctl_table fs_table[] = { ... { .procname = "pipe-max-size", .data = &pipe_max_size, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &pipe_proc_fn, .extra1 = &pipe_min_size, }, ... that is signed: int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf, size_t *lenp, loff_t *ppos) { ... ret = proc_dointvec_minmax(table, write, buf, lenp, ppos) This leads to signed results via procfs for large values of pipe_max_size: % echo 2147483647 >/proc/sys/fs/pipe-max-size % cat /proc/sys/fs/pipe-max-size -2147483648 Use unsigned operations on this variable to avoid such negative values. Link: http://lkml.kernel.org/r/1507658689-11669-2-git-send-email-joe.lawrence@redhat.com Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Reported-by: Mikulas Patocka <mpatocka@redhat.com> Reviewed-by: Mikulas Patocka <mpatocka@redhat.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Jens Axboe <axboe@kernel.dk> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14kdb: Fix handling of kallsyms_symbol_next() return valueDaniel Thompson
commit c07d35338081d107e57cf37572d8cc931a8e32e2 upstream. kallsyms_symbol_next() returns a boolean (true on success). Currently kdb_read() tests the return value with an inequality that unconditionally evaluates to true. This is fixed in the obvious way and, since the conditional branch is supposed to be unreachable, we also add a WARN_ON(). Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14smp/hotplug: Move step CPUHP_AP_SMPCFD_DYING to the correct placeLai Jiangshan
commit 46febd37f9c758b05cd25feae8512f22584742fe upstream. Commit 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") accidently put this step on the wrong place. The step should be at the cpuhp_ap_states[] rather than the cpuhp_bp_states[]. grep smpcfd /sys/devices/system/cpu/hotplug/states 40: smpcfd:prepare 129: smpcfd:dying "smpcfd:dying" was missing before. So was the invocation of the function smpcfd_dying_cpu(). Fixes: 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lkml.kernel.org/r/20171128131954.81229-1-jiangshanlai@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-10kprobes: Use synchronize_rcu_tasks() for optprobe with CONFIG_PREEMPT=yMasami Hiramatsu
[ Upstream commit a30b85df7d599f626973e9cd3056fe755bd778e0 ] We want to wait for all potentially preempted kprobes trampoline execution to have completed. This guarantees that any freed trampoline memory is not in use by any task in the system anymore. synchronize_rcu_tasks() gives such a guarantee, so use it. Also, this guarantees to wait for all potentially preempted tasks on the instructions which will be replaced with a jump. Since this becomes a problem only when CONFIG_PREEMPT=y, enable CONFIG_TASKS_RCU=y for synchronize_rcu_tasks() in that case. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N . Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/150845661962.5443.17724352636247312231.stgit@devbox Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>