summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2019-08-09cgroup: Fix css_task_iter_advance_css_set() cset skip conditionTejun Heo
commit c596687a008b579c503afb7a64fcacc7270fae9e upstream. While adding handling for dying task group leaders c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") added an inverted cset skip condition to css_task_iter_advance_css_set(). It should skip cset if it's completely empty but was incorrectly testing for the inverse condition for the dying_tasks list. Fix it. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") Reported-by: syzbot+d4bba5ccd4f9a2a68681@syzkaller.appspotmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09cgroup: css_task_iter_skip()'d iterators must be advanced before accessedTejun Heo
commit cee0c33c546a93957a52ae9ab6bebadbee765ec5 upstream. b636fd38dc40 ("cgroup: Implement css_task_iter_skip()") introduced css_task_iter_skip() which is used to fix task iterations skipping dying threadgroup leaders with live threads. Skipping is implemented as a subportion of full advancing but css_task_iter_next() forgot to fully advance a skipped iterator before determining the next task to visit causing it to return invalid task pointers. Fix it by making css_task_iter_next() fully advance the iterator if it has been skipped since the previous iteration. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: syzbot Link: http://lkml.kernel.org/r/00000000000097025d058a7fd785@google.com Fixes: b636fd38dc40 ("cgroup: Implement css_task_iter_skip()") Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09cgroup: Include dying leaders with live threads in PROCS iterationsTejun Heo
commit c03cd7738a83b13739f00546166969342c8ff014 upstream. CSS_TASK_ITER_PROCS currently iterates live group leaders; however, this means that a process with dying leader and live threads will be skipped. IOW, cgroup.procs might be empty while cgroup.threads isn't, which is confusing to say the least. Fix it by making cset track dying tasks and include dying leaders with live threads in PROCS iteration. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Topi Miettinen <toiwoton@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09cgroup: Implement css_task_iter_skip()Tejun Heo
commit b636fd38dc40113f853337a7d2a6885ad23b8811 upstream. When a task is moved out of a cset, task iterators pointing to the task are advanced using the normal css_task_iter_advance() call. This is fine but we'll be tracking dying tasks on csets and thus moving tasks from cset->tasks to (to be added) cset->dying_tasks. When we remove a task from cset->tasks, if we advance the iterators, they may move over to the next cset before we had the chance to add the task back on the dying list, which can allow the task to escape iteration. This patch separates out skipping from advancing. Skipping only moves the affected iterators to the next pointer rather than fully advancing it and the following advancing will recognize that the cursor has already been moved forward and do the rest of advancing. This ensures that when a task moves from one list to another in its cset, as long as it moves in the right direction, it's always visible to iteration. This doesn't cause any visible behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09cgroup: Call cgroup_release() before __exit_signal()Tejun Heo
commit 6b115bf58e6f013ca75e7115aabcbd56c20ff31d upstream. cgroup_release() calls cgroup_subsys->release() which is used by the pids controller to uncharge its pid. We want to use it to manage iteration of dying tasks which requires putting it before __unhash_process(). Move cgroup_release() above __exit_signal(). While this makes it uncharge before the pid is freed, pid is RCU freed anyway and the window is very narrow. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-06kernel/module.c: Only return -EEXIST for modules that have finished loadingPrarit Bhargava
[ Upstream commit 6e6de3dee51a439f76eb73c22ae2ffd2c9384712 ] Microsoft HyperV disables the X86_FEATURE_SMCA bit on AMD systems, and linux guests boot with repeated errors: amd64_edac_mod: Unknown symbol amd_unregister_ecc_decoder (err -2) amd64_edac_mod: Unknown symbol amd_register_ecc_decoder (err -2) amd64_edac_mod: Unknown symbol amd_report_gart_errors (err -2) amd64_edac_mod: Unknown symbol amd_unregister_ecc_decoder (err -2) amd64_edac_mod: Unknown symbol amd_register_ecc_decoder (err -2) amd64_edac_mod: Unknown symbol amd_report_gart_errors (err -2) The warnings occur because the module code erroneously returns -EEXIST for modules that have failed to load and are in the process of being removed from the module list. module amd64_edac_mod has a dependency on module edac_mce_amd. Using modules.dep, systemd will load edac_mce_amd for every request of amd64_edac_mod. When the edac_mce_amd module loads, the module has state MODULE_STATE_UNFORMED and once the module load fails and the state becomes MODULE_STATE_GOING. Another request for edac_mce_amd module executes and add_unformed_module() will erroneously return -EEXIST even though the previous instance of edac_mce_amd has MODULE_STATE_GOING. Upon receiving -EEXIST, systemd attempts to load amd64_edac_mod, which fails because of unknown symbols from edac_mce_amd. add_unformed_module() must wait to return for any case other than MODULE_STATE_LIVE to prevent a race between multiple loads of dependent modules. Signed-off-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Barret Rhoden <brho@google.com> Cc: David Arcari <darcari@redhat.com> Cc: Jessica Yu <jeyu@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Jessica Yu <jeyu@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06ftrace: Enable trampoline when rec count returns back to oneCheng Jian
[ Upstream commit a124692b698b00026a58d89831ceda2331b2e1d0 ] Custom trampolines can only be enabled if there is only a single ops attached to it. If there's only a single callback registered to a function, and the ops has a trampoline registered for it, then we can call the trampoline directly. This is very useful for improving the performance of ftrace and livepatch. If more than one callback is registered to a function, the general trampoline is used, and the custom trampoline is not restored back to the direct call even if all the other callbacks were unregistered and we are back to one callback for the function. To fix this, set FTRACE_FL_TRAMP flag if rec count is decremented to one, and the ops that left has a trampoline. Testing After this patch : insmod livepatch_unshare_files.ko cat /sys/kernel/debug/tracing/enabled_functions unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0 echo unshare_files > /sys/kernel/debug/tracing/set_ftrace_filter echo function > /sys/kernel/debug/tracing/current_tracer cat /sys/kernel/debug/tracing/enabled_functions unshare_files (2) R I ->ftrace_ops_list_func+0x0/0x150 echo nop > /sys/kernel/debug/tracing/current_tracer cat /sys/kernel/debug/tracing/enabled_functions unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0 Link: http://lkml.kernel.org/r/1556969979-111047-1-git-send-email-cj.chengjian@huawei.com Signed-off-by: Cheng Jian <cj.chengjian@huawei.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-04sched/fair: Don't free p->numa_faults with concurrent readersJann Horn
commit 16d51a590a8ce3befb1308e0e7ab77f3b661af33 upstream. When going through execve(), zero out the NUMA fault statistics instead of freeing them. During execve, the task is reachable through procfs and the scheduler. A concurrent /proc/*/sched reader can read data from a freed ->numa_faults allocation (confirmed by KASAN) and write it back to userspace. I believe that it would also be possible for a use-after-free read to occur through a race between a NUMA fault and execve(): task_numa_fault() can lead to task_numa_compare(), which invokes task_weight() on the currently running task of a different CPU. Another way to fix this would be to make ->numa_faults RCU-managed or add extra locking, but it seems easier to wipe the NUMA fault statistics on execve. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()") Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31access: avoid the RCU grace period for the temporary subjective credentialsLinus Torvalds
commit d7852fbd0f0423937fa287a598bfde188bb68c22 upstream. It turns out that 'access()' (and 'faccessat()') can cause a lot of RCU work because it installs a temporary credential that gets allocated and freed for each system call. The allocation and freeing overhead is mostly benign, but because credentials can be accessed under the RCU read lock, the freeing involves a RCU grace period. Which is not a huge deal normally, but if you have a lot of access() calls, this causes a fair amount of seconday damage: instead of having a nice alloc/free patterns that hits in hot per-CPU slab caches, you have all those delayed free's, and on big machines with hundreds of cores, the RCU overhead can end up being enormous. But it turns out that all of this is entirely unnecessary. Exactly because access() only installs the credential as the thread-local subjective credential, the temporary cred pointer doesn't actually need to be RCU free'd at all. Once we're done using it, we can just free it synchronously and avoid all the RCU overhead. So add a 'non_rcu' flag to 'struct cred', which can be set by users that know they only use it in non-RCU context (there are other potential users for this). We can make it a union with the rcu freeing list head that we need for the RCU case, so this doesn't need any extra storage. Note that this also makes 'get_current_cred()' clear the new non_rcu flag, in case we have filesystems that take a long-term reference to the cred and then expect the RCU delayed freeing afterwards. It's not entirely clear that this is required, but it makes for clear semantics: the subjective cred remains non-RCU as long as you only access it synchronously using the thread-local accessors, but you _can_ use it as a generic cred if you want to. It is possible that we should just remove the whole RCU markings for ->cred entirely. Only ->real_cred is really supposed to be accessed through RCU, and the long-term cred copies that nfs uses might want to explicitly re-enable RCU freeing if required, rather than have get_current_cred() do it implicitly. But this is a "minimal semantic changes" change for the immediate problem. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jan Glauber <jglauber@marvell.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Jayachandran Chandrasekharan Nair <jnair@marvell.com> Cc: Greg KH <greg@kroah.com> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31locking/lockdep: Hide unused 'class' variableArnd Bergmann
[ Upstream commit 68037aa78208f34bda4e5cd76c357f718b838cbb ] The usage is now hidden in an #ifdef, so we need to move the variable itself in there as well to avoid this warning: kernel/locking/lockdep_proc.c:203:21: error: unused variable 'class' [-Werror,-Wunused-variable] Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Yuyang Du <duyuyang@gmail.com> Cc: frederic@kernel.org Fixes: 68d41d8c94a3 ("locking/lockdep: Fix lock used or unused stats error") Link: https://lkml.kernel.org/r/20190715092809.736834-1-arnd@arndb.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31locking/lockdep: Fix lock used or unused stats errorYuyang Du
[ Upstream commit 68d41d8c94a31dfb8233ab90b9baf41a2ed2da68 ] The stats variable nr_unused_locks is incremented every time a new lock class is register and decremented when the lock is first used in __lock_acquire(). And after all, it is shown and checked in lockdep_stats. However, under configurations that either CONFIG_TRACE_IRQFLAGS or CONFIG_PROVE_LOCKING is not defined: The commit: 091806515124b20 ("locking/lockdep: Consolidate lock usage bit initialization") missed marking the LOCK_USED flag at IRQ usage initialization because as mark_usage() is not called. And the commit: 886532aee3cd42d ("locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING") further made mark_lock() not defined such that the LOCK_USED cannot be marked at all when the lock is first acquired. As a result, we fix this by not showing and checking the stats under such configurations for lockdep_stats. Reported-by: Qian Cai <cai@lca.pw> Signed-off-by: Yuyang Du <duyuyang@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: arnd@arndb.de Cc: frederic@kernel.org Link: https://lkml.kernel.org/r/20190709101522.9117-1-duyuyang@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31padata: use smp_mb in padata_reorder to avoid orphaned padata jobsDaniel Jordan
commit cf144f81a99d1a3928f90b0936accfd3f45c9a0a upstream. Testing padata with the tcrypt module on a 5.2 kernel... # modprobe tcrypt alg="pcrypt(rfc4106(gcm(aes)))" type=3 # modprobe tcrypt mode=211 sec=1 ...produces this splat: INFO: task modprobe:10075 blocked for more than 120 seconds. Not tainted 5.2.0-base+ #16 modprobe D 0 10075 10064 0x80004080 Call Trace: ? __schedule+0x4dd/0x610 ? ring_buffer_unlock_commit+0x23/0x100 schedule+0x6c/0x90 schedule_timeout+0x3b/0x320 ? trace_buffer_unlock_commit_regs+0x4f/0x1f0 wait_for_common+0x160/0x1a0 ? wake_up_q+0x80/0x80 { crypto_wait_req } # entries in braces added by hand { do_one_aead_op } { test_aead_jiffies } test_aead_speed.constprop.17+0x681/0xf30 [tcrypt] do_test+0x4053/0x6a2b [tcrypt] ? 0xffffffffa00f4000 tcrypt_mod_init+0x50/0x1000 [tcrypt] ... The second modprobe command never finishes because in padata_reorder, CPU0's load of reorder_objects is executed before the unlocking store in spin_unlock_bh(pd->lock), causing CPU0 to miss CPU1's increment: CPU0 CPU1 padata_reorder padata_do_serial LOAD reorder_objects // 0 INC reorder_objects // 1 padata_reorder TRYLOCK pd->lock // failed UNLOCK pd->lock CPU0 deletes the timer before returning from padata_reorder and since no other job is submitted to padata, modprobe waits indefinitely. Add a pair of full barriers to guarantee proper ordering: CPU0 CPU1 padata_reorder padata_do_serial UNLOCK pd->lock smp_mb() LOAD reorder_objects INC reorder_objects smp_mb__after_atomic() padata_reorder TRYLOCK pd->lock smp_mb__after_atomic is needed so the read part of the trylock operation comes after the INC, as Andrea points out. Thanks also to Andrea for help with writing a litmus test. Fixes: 16295bec6398 ("padata: Generic parallelization/serialization interface") Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: <stable@vger.kernel.org> Cc: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: linux-arch@vger.kernel.org Cc: linux-crypto@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31timer_list: Guard procfs specific codeNathan Huckleberry
[ Upstream commit a9314773a91a1d3b36270085246a6715a326ff00 ] With CONFIG_PROC_FS=n the following warning is emitted: kernel/time/timer_list.c:361:36: warning: unused variable 'timer_list_sops' [-Wunused-const-variable] static const struct seq_operations timer_list_sops = { Add #ifdef guard around procfs specific code. Signed-off-by: Nathan Huckleberry <nhuck@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Cc: john.stultz@linaro.org Cc: sboyd@kernel.org Cc: clang-built-linux@googlegroups.com Link: https://github.com/ClangBuiltLinux/linux/issues/534 Link: https://lkml.kernel.org/r/20190614181604.112297-1-nhuck@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31ntp: Limit TAI-UTC offsetMiroslav Lichvar
[ Upstream commit d897a4ab11dc8a9fda50d2eccc081a96a6385998 ] Don't allow the TAI-UTC offset of the system clock to be set by adjtimex() to a value larger than 100000 seconds. This prevents an overflow in the conversion to int, prevents the CLOCK_TAI clock from getting too far ahead of the CLOCK_REALTIME clock, and it is still large enough to allow leap seconds to be inserted at the maximum rate currently supported by the kernel (once per day) for the next ~270 years, however unlikely it is that someone can survive a catastrophic event which slowed down the rotation of the Earth so much. Reported-by: Weikang shi <swkhack@gmail.com> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <sboyd@kernel.org> Link: https://lkml.kernel.org/r/20190618154713.20929-1-mlichvar@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31sched/core: Add __sched tag for io_schedule()Gao Xiang
[ Upstream commit e3b929b0a184edb35531153c5afcaebb09014f9d ] Non-inline io_schedule() was introduced in: commit 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()") Keep in line with io_schedule_timeout(), otherwise "/proc/<pid>/wchan" will report io_schedule() rather than its callers when waiting for IO. Reported-by: Jilong Kou <koujilong@huawei.com> Signed-off-by: Gao Xiang <gaoxiang25@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miao Xie <miaoxie@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 10ab56434f2f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()") Link: https://lkml.kernel.org/r/20190603091338.2695-1-gaoxiang25@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31bpf: silence warning messages in coreValdis Klētnieks
[ Upstream commit aee450cbe482a8c2f6fa5b05b178ef8b8ff107ca ] Compiling kernel/bpf/core.c with W=1 causes a flood of warnings: kernel/bpf/core.c:1198:65: warning: initialized field overwritten [-Woverride-init] 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true | ^~~~ kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL' 1087 | INSN_3(ALU, ADD, X), \ | ^~~~~~ kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP' 1202 | BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), | ^~~~~~~~~~~~ kernel/bpf/core.c:1198:65: note: (near initialization for 'public_insntable[12]') 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true | ^~~~ kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL' 1087 | INSN_3(ALU, ADD, X), \ | ^~~~~~ kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP' 1202 | BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), | ^~~~~~~~~~~~ 98 copies of the above. The attached patch silences the warnings, because we *know* we're overwriting the default initializer. That leaves bpf/core.c with only 6 other warnings, which become more visible in comparison. Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31locking/lockdep: Fix merging of hlocks with non-zero referencesImre Deak
[ Upstream commit d9349850e188b8b59e5322fda17ff389a1c0cd7d ] The sequence static DEFINE_WW_CLASS(test_ww_class); struct ww_acquire_ctx ww_ctx; struct ww_mutex ww_lock_a; struct ww_mutex ww_lock_b; struct ww_mutex ww_lock_c; struct mutex lock_c; ww_acquire_init(&ww_ctx, &test_ww_class); ww_mutex_init(&ww_lock_a, &test_ww_class); ww_mutex_init(&ww_lock_b, &test_ww_class); ww_mutex_init(&ww_lock_c, &test_ww_class); mutex_init(&lock_c); ww_mutex_lock(&ww_lock_a, &ww_ctx); mutex_lock(&lock_c); ww_mutex_lock(&ww_lock_b, &ww_ctx); ww_mutex_lock(&ww_lock_c, &ww_ctx); mutex_unlock(&lock_c); (*) ww_mutex_unlock(&ww_lock_c); ww_mutex_unlock(&ww_lock_b); ww_mutex_unlock(&ww_lock_a); ww_acquire_fini(&ww_ctx); (**) will trigger the following error in __lock_release() when calling mutex_release() at **: DEBUG_LOCKS_WARN_ON(depth <= 0) The problem is that the hlock merging happening at * updates the references for test_ww_class incorrectly to 3 whereas it should've updated it to 4 (representing all the instances for ww_ctx and ww_lock_[abc]). Fix this by updating the references during merging correctly taking into account that we can have non-zero references (both for the hlock that we merge into another hlock or for the hlock we are merging into). Signed-off-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: =?UTF-8?q?Ville=20Syrj=C3=A4l=C3=A4?= <ville.syrjala@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/r/20190524201509.9199-2-imre.deak@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31signal/pid_namespace: Fix reboot_pid_ns to use send_sig not force_sigEric W. Biederman
[ Upstream commit f9070dc94542093fd516ae4ccea17ef46a4362c5 ] The locking in force_sig_info is not prepared to deal with a task that exits or execs (as sighand may change). The is not a locking problem in force_sig as force_sig is only built to handle synchronous exceptions. Further the function force_sig_info changes the signal state if the signal is ignored, or blocked or if SIGNAL_UNKILLABLE will prevent the delivery of the signal. The signal SIGKILL can not be ignored and can not be blocked and SIGNAL_UNKILLABLE won't prevent it from being delivered. So using force_sig rather than send_sig for SIGKILL is confusing and pointless. Because it won't impact the sending of the signal and and because using force_sig is wrong, replace force_sig with send_sig. Cc: Daniel Lezcano <daniel.lezcano@free.fr> Cc: Serge Hallyn <serge@hallyn.com> Cc: Oleg Nesterov <oleg@redhat.com> Fixes: cf3f89214ef6 ("pidns: add reboot_pid_ns() to handle the reboot syscall") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-21cpu/hotplug: Fix out-of-bounds read when setting fail stateEiichi Tsukata
[ Upstream commit 33d4a5a7a5b4d02915d765064b2319e90a11cbde ] Setting invalid value to /sys/devices/system/cpu/cpuX/hotplug/fail can control `struct cpuhp_step *sp` address, results in the following global-out-of-bounds read. Reproducer: # echo -2 > /sys/devices/system/cpu/cpu0/hotplug/fail KASAN report: BUG: KASAN: global-out-of-bounds in write_cpuhp_fail+0x2cd/0x2e0 Read of size 8 at addr ffffffff89734438 by task bash/1941 CPU: 0 PID: 1941 Comm: bash Not tainted 5.2.0-rc6+ #31 Call Trace: write_cpuhp_fail+0x2cd/0x2e0 dev_attr_store+0x58/0x80 sysfs_kf_write+0x13d/0x1a0 kernfs_fop_write+0x2bc/0x460 vfs_write+0x1e1/0x560 ksys_write+0x126/0x250 do_syscall_64+0xc1/0x390 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f05e4f4c970 The buggy address belongs to the variable: cpu_hotplug_lock+0x98/0xa0 Memory state around the buggy address: ffffffff89734300: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00 ffffffff89734380: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00 >ffffffff89734400: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa ^ ffffffff89734480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffffff89734500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Add a sanity check for the value written from user space. Fixes: 1db49484f21ed ("smp/hotplug: Hotplug state fail injection") Signed-off-by: Eiichi Tsukata <devel@etsukata.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: peterz@infradead.org Link: https://lkml.kernel.org/r/20190627024732.31672-1-devel@etsukata.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-21perf/core: Fix perf_sample_regs_user() mm checkPeter Zijlstra
[ Upstream commit 085ebfe937d7a7a5df1729f35a12d6d655fea68c ] perf_sample_regs_user() uses 'current->mm' to test for the presence of userspace, but this is insufficient, consider use_mm(). A better test is: '!(current->flags & PF_KTHREAD)', exec() clears PF_KTHREAD after it sets the new ->mm but before it drops to userspace for the first time. Possibly obsoletes: bf05fc25f268 ("powerpc/perf: Fix oops when kthread execs user process") Reported-by: Ravi Bangoria <ravi.bangoria@linux.vnet.ibm.com> Reported-by: Young Xiao <92siuyang@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 4018994f3d87 ("perf: Add ability to attach user level registers dump to sample") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10ftrace/x86: Remove possible deadlock between register_kprobe() and ↵Petr Mladek
ftrace_run_update_code() commit d5b844a2cf507fc7642c9ae80a9d585db3065c28 upstream. The commit 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module text permissions race") causes a possible deadlock between register_kprobe() and ftrace_run_update_code() when ftrace is using stop_machine(). The existing dependency chain (in reverse order) is: -> #1 (text_mutex){+.+.}: validate_chain.isra.21+0xb32/0xd70 __lock_acquire+0x4b8/0x928 lock_acquire+0x102/0x230 __mutex_lock+0x88/0x908 mutex_lock_nested+0x32/0x40 register_kprobe+0x254/0x658 init_kprobes+0x11a/0x168 do_one_initcall+0x70/0x318 kernel_init_freeable+0x456/0x508 kernel_init+0x22/0x150 ret_from_fork+0x30/0x34 kernel_thread_starter+0x0/0xc -> #0 (cpu_hotplug_lock.rw_sem){++++}: check_prev_add+0x90c/0xde0 validate_chain.isra.21+0xb32/0xd70 __lock_acquire+0x4b8/0x928 lock_acquire+0x102/0x230 cpus_read_lock+0x62/0xd0 stop_machine+0x2e/0x60 arch_ftrace_update_code+0x2e/0x40 ftrace_run_update_code+0x40/0xa0 ftrace_startup+0xb2/0x168 register_ftrace_function+0x64/0x88 klp_patch_object+0x1a2/0x290 klp_enable_patch+0x554/0x980 do_one_initcall+0x70/0x318 do_init_module+0x6e/0x250 load_module+0x1782/0x1990 __s390x_sys_finit_module+0xaa/0xf0 system_call+0xd8/0x2d0 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(text_mutex); lock(cpu_hotplug_lock.rw_sem); lock(text_mutex); lock(cpu_hotplug_lock.rw_sem); It is similar problem that has been solved by the commit 2d1e38f56622b9b ("kprobes: Cure hotplug lock ordering issues"). Many locks are involved. To be on the safe side, text_mutex must become a low level lock taken after cpu_hotplug_lock.rw_sem. This can't be achieved easily with the current ftrace design. For example, arm calls set_all_modules_text_rw() already in ftrace_arch_code_modify_prepare(), see arch/arm/kernel/ftrace.c. This functions is called: + outside stop_machine() from ftrace_run_update_code() + without stop_machine() from ftrace_module_enable() Fortunately, the problematic fix is needed only on x86_64. It is the only architecture that calls set_all_modules_text_rw() in ftrace path and supports livepatching at the same time. Therefore it is enough to move text_mutex handling from the generic kernel/trace/ftrace.c into arch/x86/kernel/ftrace.c: ftrace_arch_code_modify_prepare() ftrace_arch_code_modify_post_process() This patch basically reverts the ftrace part of the problematic commit 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module text permissions race"). And provides x86_64 specific-fix. Some refactoring of the ftrace code will be needed when livepatching is implemented for arm or nds32. These architectures call set_all_modules_text_rw() and use stop_machine() at the same time. Link: http://lkml.kernel.org/r/20190627081334.12793-1-pmladek@suse.com Fixes: 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module text permissions race") Acked-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Petr Mladek <pmladek@suse.com> [ As reviewed by Miroslav Benes <mbenes@suse.cz>, removed return value of ftrace_run_update_code() as it is a void function. ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-10tracing/snapshot: Resize spare buffer if size changedEiichi Tsukata
commit 46cc0b44428d0f0e81f11ea98217fc0edfbeab07 upstream. Current snapshot implementation swaps two ring_buffers even though their sizes are different from each other, that can cause an inconsistency between the contents of buffer_size_kb file and the current buffer size. For example: # cat buffer_size_kb 7 (expanded: 1408) # echo 1 > events/enable # grep bytes per_cpu/cpu0/stats bytes: 1441020 # echo 1 > snapshot // current:1408, spare:1408 # echo 123 > buffer_size_kb // current:123, spare:1408 # echo 1 > snapshot // current:1408, spare:123 # grep bytes per_cpu/cpu0/stats bytes: 1443700 # cat buffer_size_kb 123 // != current:1408 And also, a similar per-cpu case hits the following WARNING: Reproducer: # echo 1 > per_cpu/cpu0/snapshot # echo 123 > buffer_size_kb # echo 1 > per_cpu/cpu0/snapshot WARNING: WARNING: CPU: 0 PID: 1946 at kernel/trace/trace.c:1607 update_max_tr_single.part.0+0x2b8/0x380 Modules linked in: CPU: 0 PID: 1946 Comm: bash Not tainted 5.2.0-rc6 #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014 RIP: 0010:update_max_tr_single.part.0+0x2b8/0x380 Code: ff e8 dc da f9 ff 0f 0b e9 88 fe ff ff e8 d0 da f9 ff 44 89 ee bf f5 ff ff ff e8 33 dc f9 ff 41 83 fd f5 74 96 e8 b8 da f9 ff <0f> 0b eb 8d e8 af da f9 ff 0f 0b e9 bf fd ff ff e8 a3 da f9 ff 48 RSP: 0018:ffff888063e4fca0 EFLAGS: 00010093 RAX: ffff888066214380 RBX: ffffffff99850fe0 RCX: ffffffff964298a8 RDX: 0000000000000000 RSI: 00000000fffffff5 RDI: 0000000000000005 RBP: 1ffff1100c7c9f96 R08: ffff888066214380 R09: ffffed100c7c9f9b R10: ffffed100c7c9f9a R11: 0000000000000003 R12: 0000000000000000 R13: 00000000ffffffea R14: ffff888066214380 R15: ffffffff99851060 FS: 00007f9f8173c700(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000714dc0 CR3: 0000000066fa6000 CR4: 00000000000006f0 Call Trace: ? trace_array_printk_buf+0x140/0x140 ? __mutex_lock_slowpath+0x10/0x10 tracing_snapshot_write+0x4c8/0x7f0 ? trace_printk_init_buffers+0x60/0x60 ? selinux_file_permission+0x3b/0x540 ? tracer_preempt_off+0x38/0x506 ? trace_printk_init_buffers+0x60/0x60 __vfs_write+0x81/0x100 vfs_write+0x1e1/0x560 ksys_write+0x126/0x250 ? __ia32_sys_read+0xb0/0xb0 ? do_syscall_64+0x1f/0x390 do_syscall_64+0xc1/0x390 entry_SYSCALL_64_after_hwframe+0x49/0xbe This patch adds resize_buffer_duplicate_size() to check if there is a difference between current/spare buffer sizes and resize a spare buffer if necessary. Link: http://lkml.kernel.org/r/20190625012910.13109-1-devel@etsukata.com Cc: stable@vger.kernel.org Fixes: ad909e21bbe69 ("tracing: Add internal tracing_snapshot() functions") Signed-off-by: Eiichi Tsukata <devel@etsukata.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-10ptrace: Fix ->ptracer_cred handling for PTRACE_TRACEMEJann Horn
commit 6994eefb0053799d2e07cd140df6c2ea106c41ee upstream. Fix two issues: When called for PTRACE_TRACEME, ptrace_link() would obtain an RCU reference to the parent's objective credentials, then give that pointer to get_cred(). However, the object lifetime rules for things like struct cred do not permit unconditionally turning an RCU reference into a stable reference. PTRACE_TRACEME records the parent's credentials as if the parent was acting as the subject, but that's not the case. If a malicious unprivileged child uses PTRACE_TRACEME and the parent is privileged, and at a later point, the parent process becomes attacker-controlled (because it drops privileges and calls execve()), the attacker ends up with control over two processes with a privileged ptrace relationship, which can be abused to ptrace a suid binary and obtain root privileges. Fix both of these by always recording the credentials of the process that is requesting the creation of the ptrace relationship: current_cred() can't change under us, and current is the proper subject for access control. This change is theoretically userspace-visible, but I am not aware of any code that it will actually break. Fixes: 64b875f7ac8a ("ptrace: Capture the ptracer's creds not PT_PTRACE_CAP") Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-10ftrace: Fix NULL pointer dereference in free_ftrace_func_mapper()Wei Li
[ Upstream commit 04e03d9a616c19a47178eaca835358610e63a1dd ] The mapper may be NULL when called from register_ftrace_function_probe() with probe->data == NULL. This issue can be reproduced as follow (it may be covered by compiler optimization sometime): / # cat /sys/kernel/debug/tracing/set_ftrace_filter #### all functions enabled #### / # echo foo_bar:dump > /sys/kernel/debug/tracing/set_ftrace_filter [ 206.949100] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 206.952402] Mem abort info: [ 206.952819] ESR = 0x96000006 [ 206.955326] Exception class = DABT (current EL), IL = 32 bits [ 206.955844] SET = 0, FnV = 0 [ 206.956272] EA = 0, S1PTW = 0 [ 206.956652] Data abort info: [ 206.957320] ISV = 0, ISS = 0x00000006 [ 206.959271] CM = 0, WnR = 0 [ 206.959938] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000419f3a000 [ 206.960483] [0000000000000000] pgd=0000000411a87003, pud=0000000411a83003, pmd=0000000000000000 [ 206.964953] Internal error: Oops: 96000006 [#1] SMP [ 206.971122] Dumping ftrace buffer: [ 206.973677] (ftrace buffer empty) [ 206.975258] Modules linked in: [ 206.976631] Process sh (pid: 281, stack limit = 0x(____ptrval____)) [ 206.978449] CPU: 10 PID: 281 Comm: sh Not tainted 5.2.0-rc1+ #17 [ 206.978955] Hardware name: linux,dummy-virt (DT) [ 206.979883] pstate: 60000005 (nZCv daif -PAN -UAO) [ 206.980499] pc : free_ftrace_func_mapper+0x2c/0x118 [ 206.980874] lr : ftrace_count_free+0x68/0x80 [ 206.982539] sp : ffff0000182f3ab0 [ 206.983102] x29: ffff0000182f3ab0 x28: ffff8003d0ec1700 [ 206.983632] x27: ffff000013054b40 x26: 0000000000000001 [ 206.984000] x25: ffff00001385f000 x24: 0000000000000000 [ 206.984394] x23: ffff000013453000 x22: ffff000013054000 [ 206.984775] x21: 0000000000000000 x20: ffff00001385fe28 [ 206.986575] x19: ffff000013872c30 x18: 0000000000000000 [ 206.987111] x17: 0000000000000000 x16: 0000000000000000 [ 206.987491] x15: ffffffffffffffb0 x14: 0000000000000000 [ 206.987850] x13: 000000000017430e x12: 0000000000000580 [ 206.988251] x11: 0000000000000000 x10: cccccccccccccccc [ 206.988740] x9 : 0000000000000000 x8 : ffff000013917550 [ 206.990198] x7 : ffff000012fac2e8 x6 : ffff000012fac000 [ 206.991008] x5 : ffff0000103da588 x4 : 0000000000000001 [ 206.991395] x3 : 0000000000000001 x2 : ffff000013872a28 [ 206.991771] x1 : 0000000000000000 x0 : 0000000000000000 [ 206.992557] Call trace: [ 206.993101] free_ftrace_func_mapper+0x2c/0x118 [ 206.994827] ftrace_count_free+0x68/0x80 [ 206.995238] release_probe+0xfc/0x1d0 [ 206.995555] register_ftrace_function_probe+0x4a8/0x868 [ 206.995923] ftrace_trace_probe_callback.isra.4+0xb8/0x180 [ 206.996330] ftrace_dump_callback+0x50/0x70 [ 206.996663] ftrace_regex_write.isra.29+0x290/0x3a8 [ 206.997157] ftrace_filter_write+0x44/0x60 [ 206.998971] __vfs_write+0x64/0xf0 [ 206.999285] vfs_write+0x14c/0x2f0 [ 206.999591] ksys_write+0xbc/0x1b0 [ 206.999888] __arm64_sys_write+0x3c/0x58 [ 207.000246] el0_svc_common.constprop.0+0x408/0x5f0 [ 207.000607] el0_svc_handler+0x144/0x1c8 [ 207.000916] el0_svc+0x8/0xc [ 207.003699] Code: aa0003f8 a9025bf5 aa0103f5 f946ea80 (f9400303) [ 207.008388] ---[ end trace 7b6d11b5f542bdf1 ]--- [ 207.010126] Kernel panic - not syncing: Fatal exception [ 207.011322] SMP: stopping secondary CPUs [ 207.013956] Dumping ftrace buffer: [ 207.014595] (ftrace buffer empty) [ 207.015632] Kernel Offset: disabled [ 207.017187] CPU features: 0x002,20006008 [ 207.017985] Memory Limit: none [ 207.019825] ---[ end Kernel panic - not syncing: Fatal exception ]--- Link: http://lkml.kernel.org/r/20190606031754.10798-1-liwei391@huawei.com Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10module: Fix livepatch/ftrace module text permissions raceJosh Poimboeuf
[ Upstream commit 9f255b632bf12c4dd7fc31caee89aa991ef75176 ] It's possible for livepatch and ftrace to be toggling a module's text permissions at the same time, resulting in the following panic: BUG: unable to handle page fault for address: ffffffffc005b1d9 #PF: supervisor write access in kernel mode #PF: error_code(0x0003) - permissions violation PGD 3ea0c067 P4D 3ea0c067 PUD 3ea0e067 PMD 3cc13067 PTE 3b8a1061 Oops: 0003 [#1] PREEMPT SMP PTI CPU: 1 PID: 453 Comm: insmod Tainted: G O K 5.2.0-rc1-a188339ca5 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014 RIP: 0010:apply_relocate_add+0xbe/0x14c Code: fa 0b 74 21 48 83 fa 18 74 38 48 83 fa 0a 75 40 eb 08 48 83 38 00 74 33 eb 53 83 38 00 75 4e 89 08 89 c8 eb 0a 83 38 00 75 43 <89> 08 48 63 c1 48 39 c8 74 2e eb 48 83 38 00 75 32 48 29 c1 89 08 RSP: 0018:ffffb223c00dbb10 EFLAGS: 00010246 RAX: ffffffffc005b1d9 RBX: 0000000000000000 RCX: ffffffff8b200060 RDX: 000000000000000b RSI: 0000004b0000000b RDI: ffff96bdfcd33000 RBP: ffffb223c00dbb38 R08: ffffffffc005d040 R09: ffffffffc005c1f0 R10: ffff96bdfcd33c40 R11: ffff96bdfcd33b80 R12: 0000000000000018 R13: ffffffffc005c1f0 R14: ffffffffc005e708 R15: ffffffff8b2fbc74 FS: 00007f5f447beba8(0000) GS:ffff96bdff900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffc005b1d9 CR3: 000000003cedc002 CR4: 0000000000360ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: klp_init_object_loaded+0x10f/0x219 ? preempt_latency_start+0x21/0x57 klp_enable_patch+0x662/0x809 ? virt_to_head_page+0x3a/0x3c ? kfree+0x8c/0x126 patch_init+0x2ed/0x1000 [livepatch_test02] ? 0xffffffffc0060000 do_one_initcall+0x9f/0x1c5 ? kmem_cache_alloc_trace+0xc4/0xd4 ? do_init_module+0x27/0x210 do_init_module+0x5f/0x210 load_module+0x1c41/0x2290 ? fsnotify_path+0x3b/0x42 ? strstarts+0x2b/0x2b ? kernel_read+0x58/0x65 __do_sys_finit_module+0x9f/0xc3 ? __do_sys_finit_module+0x9f/0xc3 __x64_sys_finit_module+0x1a/0x1c do_syscall_64+0x52/0x61 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The above panic occurs when loading two modules at the same time with ftrace enabled, where at least one of the modules is a livepatch module: CPU0 CPU1 klp_enable_patch() klp_init_object_loaded() module_disable_ro() ftrace_module_enable() ftrace_arch_code_modify_post_process() set_all_modules_text_ro() klp_write_object_relocations() apply_relocate_add() *patches read-only code* - BOOM A similar race exists when toggling ftrace while loading a livepatch module. Fix it by ensuring that the livepatch and ftrace code patching operations -- and their respective permissions changes -- are protected by the text_mutex. Link: http://lkml.kernel.org/r/ab43d56ab909469ac5d2520c5d944ad6d4abd476.1560474114.git.jpoimboe@redhat.com Reported-by: Johannes Erdfelt <johannes@erdfelt.com> Fixes: 444d13ff10fb ("modules: add ro_after_init support") Acked-by: Jessica Yu <jeyu@kernel.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10cpuset: restore sanity to cpuset_cpus_allowed_fallback()Joel Savitz
[ Upstream commit d477f8c202d1f0d4791ab1263ca7657bbe5cf79e ] In the case that a process is constrained by taskset(1) (i.e. sched_setaffinity(2)) to a subset of available cpus, and all of those are subsequently offlined, the scheduler will set tsk->cpus_allowed to the current value of task_cs(tsk)->effective_cpus. This is done via a call to do_set_cpus_allowed() in the context of cpuset_cpus_allowed_fallback() made by the scheduler when this case is detected. This is the only call made to cpuset_cpus_allowed_fallback() in the latest mainline kernel. However, this is not sane behavior. I will demonstrate this on a system running the latest upstream kernel with the following initial configuration: # grep -i cpu /proc/$$/status Cpus_allowed: ffffffff,fffffff Cpus_allowed_list: 0-63 (Where cpus 32-63 are provided via smt.) If we limit our current shell process to cpu2 only and then offline it and reonline it: # taskset -p 4 $$ pid 2272's current affinity mask: ffffffffffffffff pid 2272's new affinity mask: 4 # echo off > /sys/devices/system/cpu/cpu2/online # dmesg | tail -3 [ 2195.866089] process 2272 (bash) no longer affine to cpu2 [ 2195.872700] IRQ 114: no longer affine to CPU2 [ 2195.879128] smpboot: CPU 2 is now offline # echo on > /sys/devices/system/cpu/cpu2/online # dmesg | tail -1 [ 2617.043572] smpboot: Booting Node 0 Processor 2 APIC 0x4 We see that our current process now has an affinity mask containing every cpu available on the system _except_ the one we originally constrained it to: # grep -i cpu /proc/$$/status Cpus_allowed: ffffffff,fffffffb Cpus_allowed_list: 0-1,3-63 This is not sane behavior, as the scheduler can now not only place the process on previously forbidden cpus, it can't even schedule it on the cpu it was originally constrained to! Other cases result in even more exotic affinity masks. Take for instance a process with an affinity mask containing only cpus provided by smt at the moment that smt is toggled, in a configuration such as the following: # taskset -p f000000000 $$ # grep -i cpu /proc/$$/status Cpus_allowed: 000000f0,00000000 Cpus_allowed_list: 36-39 A double toggle of smt results in the following behavior: # echo off > /sys/devices/system/cpu/smt/control # echo on > /sys/devices/system/cpu/smt/control # grep -i cpus /proc/$$/status Cpus_allowed: ffffff00,ffffffff Cpus_allowed_list: 0-31,40-63 This is even less sane than the previous case, as the new affinity mask excludes all smt-provided cpus with ids less than those that were previously in the affinity mask, as well as those that were actually in the mask. With this patch applied, both of these cases end in the following state: # grep -i cpu /proc/$$/status Cpus_allowed: ffffffff,ffffffff Cpus_allowed_list: 0-63 The original policy is discarded. Though not ideal, it is the simplest way to restore sanity to this fallback case without reinventing the cpuset wheel that rolls down the kernel just fine in cgroup v2. A user who wishes for the previous affinity mask to be restored in this fallback case can use that mechanism instead. This patch modifies scheduler behavior by instead resetting the mask to task_cs(tsk)->cpus_allowed by default, and cpu_possible mask in legacy mode. I tested the cases above on both modes. Note that the scheduler uses this fallback mechanism if and only if _every_ other valid avenue has been traveled, and it is the last resort before calling BUG(). Suggested-by: Waiman Long <longman@redhat.com> Suggested-by: Phil Auld <pauld@redhat.com> Signed-off-by: Joel Savitz <jsavitz@redhat.com> Acked-by: Phil Auld <pauld@redhat.com> Acked-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-03cpu/speculation: Warn on unsupported mitigations= parameterGeert Uytterhoeven
commit 1bf72720281770162c87990697eae1ba2f1d917a upstream. Currently, if the user specifies an unsupported mitigation strategy on the kernel command line, it will be ignored silently. The code will fall back to the default strategy, possibly leaving the system more vulnerable than expected. This may happen due to e.g. a simple typo, or, for a stable kernel release, because not all mitigation strategies have been backported. Inform the user by printing a message. Fixes: 98af8452945c5565 ("cpu/speculation: Add 'mitigations=' cmdline option") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190516070935.22546-1-geert@linux-m68k.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-03Revert "x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP"Sasha Levin
This reverts commit 8190d6fbb1e9b7fa4eb41fe7aa337c46ca514e79, which was upstream commit 4a6c91fbdef846ec7250b82f2eeeb87ac5f18cf9. On Tue, Jun 25, 2019 at 09:39:45AM +0200, Sebastian Andrzej Siewior wrote: >Please backport commit e74deb11931ff682b59d5b9d387f7115f689698e to >stable _or_ revert the backport of commit 4a6c91fbdef84 ("x86/uaccess, >ftrace: Fix ftrace_likely_update() vs. SMAP"). It uses >user_access_{save|restore}() which has been introduced in the following >commit. Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-25tracing: Silence GCC 9 array bounds warningMiguel Ojeda
commit 0c97bf863efce63d6ab7971dad811601e6171d2f upstream. Starting with GCC 9, -Warray-bounds detects cases when memset is called starting on a member of a struct but the size to be cleared ends up writing over further members. Such a call happens in the trace code to clear, at once, all members after and including `seq` on struct trace_iterator: In function 'memset', inlined from 'ftrace_dump' at kernel/trace/trace.c:8914:3: ./include/linux/string.h:344:9: warning: '__builtin_memset' offset [8505, 8560] from the object at 'iter' is out of the bounds of referenced subobject 'seq' with type 'struct trace_seq' at offset 4368 [-Warray-bounds] 344 | return __builtin_memset(p, c, size); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ In order to avoid GCC complaining about it, we compute the address ourselves by adding the offsetof distance instead of referring directly to the member. Since there are two places doing this clear (trace.c and trace_kdb.c), take the chance to move the workaround into a single place in the internal header. Link: http://lkml.kernel.org/r/20190523124535.GA12931@gmail.com Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> [ Removed unnecessary parenthesis around "iter" ] Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-22perf/ring-buffer: Always use {READ,WRITE}_ONCE() for rb->user_page dataPeter Zijlstra
[ Upstream commit 4d839dd9e4356bbacf3eb0ab13a549b83b008c21 ] We must use {READ,WRITE}_ONCE() on rb->user_page data such that concurrent usage will see whole values. A few key sites were missing this. Suggested-by: Yabin Cui <yabinc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: mark.rutland@arm.com Cc: namhyung@kernel.org Fixes: 7b732a750477 ("perf_counter: new output ABI - part 1") Link: http://lkml.kernel.org/r/20190517115418.394192145@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-22perf/ring_buffer: Add ordering to rb->nest incrementPeter Zijlstra
[ Upstream commit 3f9fbe9bd86c534eba2faf5d840fd44c6049f50e ] Similar to how decrementing rb->next too early can cause data_head to (temporarily) be observed to go backward, so too can this happen when we increment too late. This barrier() ensures the rb->head load happens after the increment, both the one in the 'goto again' path, as the one from perf_output_get_handle() -- albeit very unlikely to matter for the latter. Suggested-by: Yabin Cui <yabinc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: mark.rutland@arm.com Cc: namhyung@kernel.org Fixes: ef60777c9abd ("perf: Optimize the perf_output() path by removing IRQ-disables") Link: http://lkml.kernel.org/r/20190517115418.309516009@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-22perf/ring_buffer: Fix exposing a temporarily decreased data_headYabin Cui
[ Upstream commit 1b038c6e05ff70a1e66e3e571c2e6106bdb75f53 ] In perf_output_put_handle(), an IRQ/NMI can happen in below location and write records to the same ring buffer: ... local_dec_and_test(&rb->nest) ... <-- an IRQ/NMI can happen here rb->user_page->data_head = head; ... In this case, a value A is written to data_head in the IRQ, then a value B is written to data_head after the IRQ. And A > B. As a result, data_head is temporarily decreased from A to B. And a reader may see data_head < data_tail if it read the buffer frequently enough, which creates unexpected behaviors. This can be fixed by moving dec(&rb->nest) to after updating data_head, which prevents the IRQ/NMI above from updating data_head. [ Split up by peterz. ] Signed-off-by: Yabin Cui <yabinc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: mark.rutland@arm.com Fixes: ef60777c9abd ("perf: Optimize the perf_output() path by removing IRQ-disables") Link: http://lkml.kernel.org/r/20190517115418.224478157@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-19x86/uaccess, kcov: Disable stack protectorPeter Zijlstra
[ Upstream commit 40ea97290b08be2e038b31cbb33097d1145e8169 ] New tooling noticed this mishap: kernel/kcov.o: warning: objtool: write_comp_data()+0x138: call to __stack_chk_fail() with UACCESS enabled kernel/kcov.o: warning: objtool: __sanitizer_cov_trace_pc()+0xd9: call to __stack_chk_fail() with UACCESS enabled All the other instrumentation (KASAN,UBSAN) also have stack protector disabled. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-19ptrace: restore smp_rmb() in __ptrace_may_access()Jann Horn
commit f6581f5b55141a95657ef5742cf6a6bfa20a109f upstream. Restore the read memory barrier in __ptrace_may_access() that was deleted a couple years ago. Also add comments on this barrier and the one it pairs with to explain why they're there (as far as I understand). Fixes: bfedb589252c ("mm: Add a user_ns owner to mm_struct and fix ptrace permission checks") Cc: stable@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19signal/ptrace: Don't leak unitialized kernel memory with PTRACE_PEEK_SIGINFOEric W. Biederman
[ Upstream commit f6e2aa91a46d2bc79fce9b93a988dbe7655c90c0 ] Recently syzbot in conjunction with KMSAN reported that ptrace_peek_siginfo can copy an uninitialized siginfo to userspace. Inspecting ptrace_peek_siginfo confirms this. The problem is that off when initialized from args.off can be initialized to a negaive value. At which point the "if (off >= 0)" test to see if off became negative fails because off started off negative. Prevent the core problem by adding a variable found that is only true if a siginfo is found and copied to a temporary in preparation for being copied to userspace. Prevent args.off from being truncated when being assigned to off by testing that off is <= the maximum possible value of off. Convert off to an unsigned long so that we should not have to truncate args.off, we have well defined overflow behavior so if we add another check we won't risk fighting undefined compiler behavior, and so that we have a type whose maximum value is easy to test for. Cc: Andrei Vagin <avagin@gmail.com> Cc: stable@vger.kernel.org Reported-by: syzbot+0d602a1b0d8c95bdf299@syzkaller.appspotmail.com Fixes: 84c751bd4aeb ("ptrace: add ability to retrieve signals without removing from a queue (v4)") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-15ntp: Allow TAI-UTC offset to be set to zeroMiroslav Lichvar
[ Upstream commit fdc6bae940ee9eb869e493990540098b8c0fd6ab ] The ADJ_TAI adjtimex mode sets the TAI-UTC offset of the system clock. It is typically set by NTP/PTP implementations and it is automatically updated by the kernel on leap seconds. The initial value is zero (which applications may interpret as unknown), but this value cannot be set by adjtimex. This limitation seems to go back to the original "nanokernel" implementation by David Mills. Change the ADJ_TAI check to accept zero as a valid TAI-UTC offset in order to allow setting it back to the initial value. Fixes: 153b5d054ac2 ("ntp: support for TAI") Suggested-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Link: https://lkml.kernel.org/r/20190417084833.7401-1-mlichvar@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-15kernel/sys.c: prctl: fix false positive in validate_prctl_map()Cyrill Gorcunov
[ Upstream commit a9e73998f9d705c94a8dca9687633adc0f24a19a ] While validating new map we require the @start_data to be strictly less than @end_data, which is fine for regular applications (this is why this nit didn't trigger for that long). These members are set from executable loaders such as elf handers, still it is pretty valid to have a loadable data section with zero size in file, in such case the start_data is equal to end_data once kernel loader finishes. As a result when we're trying to restore such programs the procedure fails and the kernel returns -EINVAL. From the image dump of a program: | "mm_start_code": "0x400000", | "mm_end_code": "0x8f5fb4", | "mm_start_data": "0xf1bfb0", | "mm_end_data": "0xf1bfb0", Thus we need to change validate_prctl_map from strictly less to less or equal operator use. Link: http://lkml.kernel.org/r/20190408143554.GY1421@uranus.lan Fixes: f606b77f1a9e3 ("prctl: PR_SET_MM -- introduce PR_SET_MM_MAP operation") Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Andrey Vagin <avagin@gmail.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-15sysctl: return -EINVAL if val violates minmaxChristian Brauner
[ Upstream commit e260ad01f0aa9e96b5386d5cd7184afd949dc457 ] Currently when userspace gives us a values that overflow e.g. file-max and other callers of __do_proc_doulongvec_minmax() we simply ignore the new value and leave the current value untouched. This can be problematic as it gives the illusion that the limit has indeed be bumped when in fact it failed. This commit makes sure to return EINVAL when an overflow is detected. Please note that this is a userspace facing change. Link: http://lkml.kernel.org/r/20190210203943.8227-4-christian@brauner.io Signed-off-by: Christian Brauner <christian@brauner.io> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Joe Lawrence <joe.lawrence@redhat.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-11x86/power: Fix 'nosmt' vs hibernation triple fault during resumeJiri Kosina
commit ec527c318036a65a083ef68d8ba95789d2212246 upstream. As explained in 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") we always, no matter what, have to bring up x86 HT siblings during boot at least once in order to avoid first MCE bringing the system to its knees. That means that whenever 'nosmt' is supplied on the kernel command-line, all the HT siblings are as a result sitting in mwait or cpudile after going through the online-offline cycle at least once. This causes a serious issue though when a kernel, which saw 'nosmt' on its commandline, is going to perform resume from hibernation: if the resume from the hibernated image is successful, cr3 is flipped in order to point to the address space of the kernel that is being resumed, which in turn means that all the HT siblings are all of a sudden mwaiting on address which is no longer valid. That results in triple fault shortly after cr3 is switched, and machine reboots. Fix this by always waking up all the SMT siblings before initiating the 'restore from hibernation' process; this guarantees that all the HT siblings will be properly carried over to the resumed kernel waiting in resume_play_dead(), and acted upon accordingly afterwards, based on the target kernel configuration. Symmetricaly, the resumed kernel has to push the SMT siblings to mwait again in case it has SMT disabled; this means it has to online all the siblings when resuming (so that they come out of hlt) and offline them again to let them reach mwait. Cc: 4.19+ <stable@vger.kernel.org> # v4.19+ Debugged-by: Thomas Gleixner <tglx@linutronix.de> Fixes: 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") Signed-off-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Pavel Machek <pavel@ucw.cz> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-09kernel/signal.c: trace_signal_deliver when signal_group_exitZhenliang Wei
commit 98af37d624ed8c83f1953b1b6b2f6866011fc064 upstream. In the fixes commit, removing SIGKILL from each thread signal mask and executing "goto fatal" directly will skip the call to "trace_signal_deliver". At this point, the delivery tracking of the SIGKILL signal will be inaccurate. Therefore, we need to add trace_signal_deliver before "goto fatal" after executing sigdelset. Note: SEND_SIG_NOINFO matches the fact that SIGKILL doesn't have any info. Link: http://lkml.kernel.org/r/20190425025812.91424-1-weizhenliang@huawei.com Fixes: cf43a757fd4944 ("signal: Restore the stop PTRACE_EVENT_EXIT") Signed-off-by: Zhenliang Wei <weizhenliang@huawei.com> Reviewed-by: Christian Brauner <christian@brauner.io> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Ivan Delalande <colona@arista.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Deepa Dinamani <deepa.kernel@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31rcuperf: Fix cleanup path for invalid perf_type stringsPaul E. McKenney
[ Upstream commit ad092c027713a68a34168942a5ef422e42e039f4 ] If the specified rcuperf.perf_type is not in the rcu_perf_init() function's perf_ops[] array, rcuperf prints some console messages and then invokes rcu_perf_cleanup() to set state so that a future torture test can run. However, rcu_perf_cleanup() also attempts to end the test that didn't actually start, and in doing so relies on the value of cur_ops, a value that is not particularly relevant in this case. This can result in confusing output or even follow-on failures due to attempts to use facilities that have not been properly initialized. This commit therefore sets the value of cur_ops to NULL in this case and inserts a check near the beginning of rcu_perf_cleanup(), thus avoiding relying on an irrelevant cur_ops value. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31rcutorture: Fix cleanup path for invalid torture_type stringsPaul E. McKenney
[ Upstream commit b813afae7ab6a5e91b4e16cc567331d9c2ae1f04 ] If the specified rcutorture.torture_type is not in the rcu_torture_init() function's torture_ops[] array, rcutorture prints some console messages and then invokes rcu_torture_cleanup() to set state so that a future torture test can run. However, rcu_torture_cleanup() also attempts to end the test that didn't actually start, and in doing so relies on the value of cur_ops, a value that is not particularly relevant in this case. This can result in confusing output or even follow-on failures due to attempts to use facilities that have not been properly initialized. This commit therefore sets the value of cur_ops to NULL in this case and inserts a check near the beginning of rcu_torture_cleanup(), thus avoiding relying on an irrelevant cur_ops value. Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAPPeter Zijlstra
[ Upstream commit 4a6c91fbdef846ec7250b82f2eeeb87ac5f18cf9 ] For CONFIG_TRACE_BRANCH_PROFILING=y the likely/unlikely things get overloaded and generate callouts to this code, and thus also when AC=1. Make it safe. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31sched/core: Handle overflow in cpu_shares_write_u64Konstantin Khlebnikov
[ Upstream commit 5b61d50ab4ef590f5e1d4df15cd2cea5f5715308 ] Bit shift in scale_load() could overflow shares. This patch saturates it to MAX_SHARES like following sched_group_set_shares(). Example: # echo 9223372036854776832 > cpu.shares # cat cpu.shares Before patch: 1024 After pattch: 262144 Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/155125501891.293431.3345233332801109696.stgit@buzz Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31sched/rt: Check integer overflow at usec to nsec conversionKonstantin Khlebnikov
[ Upstream commit 1a010e29cfa00fee2888fd2fd4983f848cbafb58 ] Example of unhandled overflows: # echo 18446744073709651 > cpu.rt_runtime_us # cat cpu.rt_runtime_us 99 # echo 18446744073709900 > cpu.rt_period_us # cat cpu.rt_period_us 348 After this patch they will fail with -EINVAL. Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/155125501739.293431.5252197504404771496.stgit@buzz Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31sched/core: Check quota and period overflow at usec to nsec conversionKonstantin Khlebnikov
[ Upstream commit 1a8b4540db732ca16c9e43ac7c08b1b8f0b252d8 ] Large values could overflow u64 and pass following sanity checks. # echo 18446744073750000 > cpu.cfs_period_us # cat cpu.cfs_period_us 40448 # echo 18446744073750000 > cpu.cfs_quota_us # cat cpu.cfs_quota_us 40448 After this patch they will fail with -EINVAL. Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/155125502079.293431.3947497929372138600.stgit@buzz Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31cgroup: protect cgroup->nr_(dying_)descendants by css_set_lockRoman Gushchin
[ Upstream commit 4dcabece4c3a9f9522127be12cc12cc120399b2f ] The number of descendant cgroups and the number of dying descendant cgroups are currently synchronized using the cgroup_mutex. The number of descendant cgroups will be required by the cgroup v2 freezer, which will use it to determine if a cgroup is frozen (depending on total number of descendants and number of frozen descendants). It's not always acceptable to grab the cgroup_mutex, especially from quite hot paths (e.g. exit()). To avoid this, let's additionally synchronize these counters using the css_set_lock. So, it's safe to read these counters with either cgroup_mutex or css_set_lock locked, and for changing both locks should be acquired. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kernel-team@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31audit: fix a memory leak bugWenwen Wang
[ Upstream commit 70c4cf17e445264453bc5323db3e50aa0ac9e81f ] In audit_rule_change(), audit_data_to_entry() is firstly invoked to translate the payload data to the kernel's rule representation. In audit_data_to_entry(), depending on the audit field type, an audit tree may be created in audit_make_tree(), which eventually invokes kmalloc() to allocate the tree. Since this tree is a temporary tree, it will be then freed in the following execution, e.g., audit_add_rule() if the message type is AUDIT_ADD_RULE or audit_del_rule() if the message type is AUDIT_DEL_RULE. However, if the message type is neither AUDIT_ADD_RULE nor AUDIT_DEL_RULE, i.e., the default case of the switch statement, this temporary tree is not freed. To fix this issue, only allocate the tree when the type is AUDIT_ADD_RULE or AUDIT_DEL_RULE. Signed-off-by: Wenwen Wang <wang6495@umn.edu> Reviewed-by: Richard Guy Briggs <rgb@redhat.com> Signed-off-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31bpf: devmap: fix use-after-free Read in __dev_map_entry_freeEric Dumazet
commit 2baae3545327632167c0180e9ca1d467416f1919 upstream. synchronize_rcu() is fine when the rcu callbacks only need to free memory (kfree_rcu() or direct kfree() call rcu call backs) __dev_map_entry_free() is a bit more complex, so we need to make sure that call queued __dev_map_entry_free() callbacks have completed. sysbot report: BUG: KASAN: use-after-free in dev_map_flush_old kernel/bpf/devmap.c:365 [inline] BUG: KASAN: use-after-free in __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 Read of size 8 at addr ffff8801b8da38c8 by task ksoftirqd/1/18 CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.17.0+ #39 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:433 dev_map_flush_old kernel/bpf/devmap.c:365 [inline] __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 __rcu_reclaim kernel/rcu/rcu.h:178 [inline] rcu_do_batch kernel/rcu/tree.c:2558 [inline] invoke_rcu_callbacks kernel/rcu/tree.c:2818 [inline] __rcu_process_callbacks kernel/rcu/tree.c:2785 [inline] rcu_process_callbacks+0xe9d/0x1760 kernel/rcu/tree.c:2802 __do_softirq+0x2e0/0xaf5 kernel/softirq.c:284 run_ksoftirqd+0x86/0x100 kernel/softirq.c:645 smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 Allocated by task 6675: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553 kmem_cache_alloc_trace+0x152/0x780 mm/slab.c:3620 kmalloc include/linux/slab.h:513 [inline] kzalloc include/linux/slab.h:706 [inline] dev_map_alloc+0x208/0x7f0 kernel/bpf/devmap.c:102 find_and_alloc_map kernel/bpf/syscall.c:129 [inline] map_create+0x393/0x1010 kernel/bpf/syscall.c:453 __do_sys_bpf kernel/bpf/syscall.c:2351 [inline] __se_sys_bpf kernel/bpf/syscall.c:2328 [inline] __x64_sys_bpf+0x303/0x510 kernel/bpf/syscall.c:2328 do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 26: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kfree+0xd9/0x260 mm/slab.c:3813 dev_map_free+0x4fa/0x670 kernel/bpf/devmap.c:191 bpf_map_free_deferred+0xba/0xf0 kernel/bpf/syscall.c:262 process_one_work+0xc64/0x1b70 kernel/workqueue.c:2153 worker_thread+0x181/0x13a0 kernel/workqueue.c:2296 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 The buggy address belongs to the object at ffff8801b8da37c0 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 264 bytes inside of 512-byte region [ffff8801b8da37c0, ffff8801b8da39c0) The buggy address belongs to the page: page:ffffea0006e368c0 count:1 mapcount:0 mapping:ffff8801da800940 index:0xffff8801b8da3540 flags: 0x2fffc0000000100(slab) raw: 02fffc0000000100 ffffea0007217b88 ffffea0006e30cc8 ffff8801da800940 raw: ffff8801b8da3540 ffff8801b8da3040 0000000100000004 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8801b8da3780: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ffff8801b8da3800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff8801b8da3880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8801b8da3900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8801b8da3980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot+457d3e2ffbcf31aee5c0@syzkaller.appspotmail.com Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25bpf, lru: avoid messing with eviction heuristics upon syscall lookupDaniel Borkmann
commit 50b045a8c0ccf44f76640ac3eea8d80ca53979a3 upstream. One of the biggest issues we face right now with picking LRU map over regular hash table is that a map walk out of user space, for example, to just dump the existing entries or to remove certain ones, will completely mess up LRU eviction heuristics and wrong entries such as just created ones will get evicted instead. The reason for this is that we mark an entry as "in use" via bpf_lru_node_set_ref() from system call lookup side as well. Thus upon walk, all entries are being marked, so information of actual least recently used ones are "lost". In case of Cilium where it can be used (besides others) as a BPF based connection tracker, this current behavior causes disruption upon control plane changes that need to walk the map from user space to evict certain entries. Discussion result from bpfconf [0] was that we should simply just remove marking from system call side as no good use case could be found where it's actually needed there. Therefore this patch removes marking for regular LRU and per-CPU flavor. If there ever should be a need in future, the behavior could be selected via map creation flag, but due to mentioned reason we avoid this here. [0] http://vger.kernel.org/bpfconf.html Fixes: 29ba732acbee ("bpf: Add BPF_MAP_TYPE_LRU_HASH") Fixes: 8f8449384ec3 ("bpf: Add BPF_MAP_TYPE_LRU_PERCPU_HASH") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>