Age | Commit message (Collapse) | Author |
|
Add more detail on the rationale for bounding the clocksource
->uncertainty_margin below at about 500ppm.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802154618.4149953-1-paulmck@kernel.org
|
|
The current "nretries > 1 || nretries >= max_retries" check in
cs_watchdog_read() will always evaluate to true, and thus pr_warn(), if
nretries is greater than 1. The intent is instead to never warn on the
first try, but otherwise warn if the successful retry was the last retry.
Therefore, change that "||" to "&&".
Fixes: db3a34e17433 ("clocksource: Retry clock read if long delays detected")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240802154618.4149953-2-paulmck@kernel.org
|
|
The recent fix for making the take over of the broadcast timer more
reliable retrieves a per CPU pointer in preemptible context.
This went unnoticed as compilers hoist the access into the non-preemptible
region where the pointer is actually used. But of course it's valid that
the compiler keeps it at the place where the code puts it which rightfully
triggers:
BUG: using smp_processor_id() in preemptible [00000000] code:
caller is hotplug_cpu__broadcast_tick_pull+0x1c/0xc0
Move it to the actual usage site which is in a non-preemptible region.
Fixes: f7d43dd206e7 ("tick/broadcast: Make takeover of broadcast hrtimer reliable")
Reported-by: David Wang <00107082@163.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Yu Liao <liaoyu15@huawei.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/87ttg56ers.ffs@tglx
|
|
Rename posix_timer_event() to posix_timer_queue_signal() as this is what
the function is about.
Consolidate the requeue pending and deactivation updates into that function
as there is no point in doing this in all incarnations of posix timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Posix CPU timers are not updating k_itimer::it_active which makes it
impossible to base decisions in the common posix timer code on it.
Update it when queueing or dequeueing posix CPU timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
hrtimer based and CPU timers have their own way to install the new interval
and to reset overrun and signal handling related data.
Create a helper function and do the same operation for all variants.
This also makes the handling of the interval consistent. It's only stored
when the timer is actually armed, i.e. timer->it_value != 0. Before that it
was stored unconditionally for posix CPU timers and conditionally for the
other posix timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
No requirement for a real list. Spare a few bytes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Keeping the overrun count of the previous setup around is just wrong. The
new setting has nothing to do with the previous one and has to start from a
clean slate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
No point in doing this all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Avoid the late sighand lock/unlock dance when a timer is not armed to
enforce reevaluation of the timer base so that the process wide CPU timer
sampling can be disabled.
Do it right at the point where the arming decision is made which already
has sighand locked.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
A leftover from historical code which describes fiction.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
posix_cpu_timer_set() uses @val as variable for the current time. That's
confusing at best.
Use @now as anywhere else and rewrite the confusing comment about clock
sampling.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
There is no point in arming SIGEV_NONE timers as they never deliver a
signal. timer_gettime() is handling the expiry time correctly and that's
all SIGEV_NONE timers care about.
Prevent arming them and remove the expiry handler code which just disarms
them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Reuse the split out __posix_cpu_timer_get() function which does already the
right thing.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Expired SIGEV_NONE oneshot timers must return 0 nsec for the expiry time in
timer_get(), but the posix CPU timer implementation returns 1 nsec.
Add the missing conditional.
This will be cleaned up in a follow up patch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Expired SIGEV_NONE oneshot timers must return 0 nsec for the expiry time in
timer_get(), but the posix CPU timer implementation returns 1 nsec.
Add the missing conditional.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
timer_gettime() must return the remaining time to the next expiry of a
timer or 0 if the timer is not armed and no signal pending, but posix CPU
timers fail to forward a timer which is already expired.
Add the required logic to address that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
There is no point to return the interval for timers which have been
disarmed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
In preparation for addressing issues in the timer_get() and timer_set()
functions of posix CPU timers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer migration updates from Thomas Gleixner:
"Fixes and minor updates for the timer migration code:
- Stop testing the group->parent pointer as it is not guaranteed to
be stable over a chain of operations by design.
This includes a warning which would be nice to have but it produces
false positives due to the racy nature of the check.
- Plug a race between CPUs going in and out of idle and a CPU hotplug
operation. The latter can create and connect a new hierarchy level
which is missed in the concurrent updates of CPUs which go into
idle. As a result the events of such a CPU might not be processed
and timers go stale.
Cure it by splitting the hotplug operation into a prepare and
online callback. The prepare callback is guaranteed to run on an
online and therefore active CPU. This CPU updates the hierarchy and
being online ensures that there is always at least one migrator
active which handles the modified hierarchy correctly when going
idle. The online callback which runs on the incoming CPU then just
marks the CPU active and brings it into operation.
- Improve tracing and polish the code further so it is more obvious
what's going on"
* tag 'timers-urgent-2024-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers/migration: Fix grammar in comment
timers/migration: Spare write when nothing changed
timers/migration: Rename childmask by groupmask to make naming more obvious
timers/migration: Read childmask and parent pointer in a single place
timers/migration: Use a single struct for hierarchy walk data
timers/migration: Improve tracing
timers/migration: Move hierarchy setup into cpuhotplug prepare callback
timers/migration: Do not rely always on group->parent
|
|
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
|
|
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-8-757baa7803fe@linutronix.de
|
|
The wakeup value is written unconditionally in tmigr_cpu_new_timer(). When
there was no new next timer expiry that needs to be propagated, then the
value that was read before is written. This is not required.
Move the write to the place where wakeup value is changed changed.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-7-757baa7803fe@linutronix.de
|
|
childmask in the group reflects the mask that is required to 'reference'
this group in the parent. When reading childmask, this might be confusing,
as this suggests, that this is the mask of the child of the group.
Clarify this by renaming childmask in the tmigr_group and tmc_group by
groupmask.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-6-757baa7803fe@linutronix.de
|
|
Reading the childmask and parent pointer is required when propagating
changes through the hierarchy. At the moment this reads are spread all over
the place which makes it harder to follow.
Move those reads to a single place to keep code clean.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-5-757baa7803fe@linutronix.de
|
|
Two different structs are defined for propagating data from one to another
level when walking the hierarchy. Several struct members exist in both
structs which makes generalization harder.
Merge those two structs into a single one and use it directly in
walk_groups() and the corresponding function pointers instead of
introducing pointer casting all over the place.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-4-757baa7803fe@linutronix.de
|
|
Trace points of inactive and active propagation are located at the end of
the related functions. The interesting information of those trace points is
the updated group state. When trace points are not located directly at the
place where group state changed, order of trace points in traces could be
confusing.
Move inactive and active propagation trace points directly after update of
group state values.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-3-757baa7803fe@linutronix.de
|
|
When a CPU comes online the first time, it is possible that a new top level
group will be created. In general all propagation is done from the bottom
to top. This minimizes complexity and prevents possible races. But when a
new top level group is created, the formely top level group needs to be
connected to the new level. This is the only time, when the direction to
propagate changes is changed: the changes are propagated from top (new top
level group) to bottom (formerly top level group).
This introduces two races (see (A) and (B)) as reported by Frederic:
(A) This race happens, when marking the formely top level group as active,
but the last active CPU of the formerly top level group goes idle. Then
it's likely that formerly group is no longer active, but marked
nevertheless as active in new top level group:
[GRP0:0]
migrator = 0
active = 0
nextevt = KTIME_MAX
/ \
0 1 .. 7
active idle
0) Hierarchy has for now only 8 CPUs and CPU 0 is the only active CPU.
[GRP1:0]
migrator = TMIGR_NONE
active = NONE
nextevt = KTIME_MAX
\
[GRP0:0] [GRP0:1]
migrator = 0 migrator = TMIGR_NONE
active = 0 active = NONE
nextevt = KTIME_MAX nextevt = KTIME_MAX
/ \
0 1 .. 7 8
active idle !online
1) CPU 8 is booting and creates a new group in first level GRP0:1 and
therefore also a new top group GRP1:0. For now the setup code proceeded
only until the connected between GRP0:1 to the new top group. The
connection between CPU8 and GRP0:1 is not yet established and CPU 8 is
still !online.
[GRP1:0]
migrator = TMIGR_NONE
active = NONE
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = 0 migrator = TMIGR_NONE
active = 0 active = NONE
nextevt = KTIME_MAX nextevt = KTIME_MAX
/ \
0 1 .. 7 8
active idle !online
2) Setup code now connects GRP0:0 to GRP1:0 and observes while in
tmigr_connect_child_parent() that GRP0:0 is not TMIGR_NONE. So it
prepares to call tmigr_active_up() on it. It hasn't done it yet.
[GRP1:0]
migrator = TMIGR_NONE
active = NONE
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = TMIGR_NONE
active = NONE active = NONE
nextevt = KTIME_MAX nextevt = KTIME_MAX
/ \
0 1 .. 7 8
idle idle !online
3) CPU 0 goes idle. Since GRP0:0->parent has been updated by CPU 8 with
GRP0:0->lock held, CPU 0 observes GRP1:0 after calling
tmigr_update_events() and it propagates the change to the top (no change
there and no wakeup programmed since there is no timer).
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = TMIGR_NONE
active = NONE active = NONE
nextevt = KTIME_MAX nextevt = KTIME_MAX
/ \
0 1 .. 7 8
idle idle !online
4) Now the setup code finally calls tmigr_active_up() to and sets GRP0:0
active in GRP1:0
[GRP1:0]
migrator = GRP0:0
active = GRP0:0, GRP0:1
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = 8
active = NONE active = 8
nextevt = KTIME_MAX nextevt = KTIME_MAX
/ \ |
0 1 .. 7 8
idle idle active
5) Now CPU 8 is connected with GRP0:1 and CPU 8 calls tmigr_active_up() out
of tmigr_cpu_online().
[GRP1:0]
migrator = GRP0:0
active = GRP0:0
nextevt = T8
/ \
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = TMIGR_NONE
active = NONE active = NONE
nextevt = KTIME_MAX nextevt = T8
/ \ |
0 1 .. 7 8
idle idle idle
5) CPU 8 goes idle with a timer T8 and relies on GRP0:0 as the migrator.
But it's not really active, so T8 gets ignored.
--> The update which is done in third step is not noticed by setup code. So
a wrong migrator is set to top level group and a timer could get
ignored.
(B) Reading group->parent and group->childmask when an hierarchy update is
ongoing and reaches the formerly top level group is racy as those values
could be inconsistent. (The notation of migrator and active now slightly
changes in contrast to the above example, as now the childmasks are used.)
[GRP1:0]
migrator = TMIGR_NONE
active = 0x00
nextevt = KTIME_MAX
\
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = TMIGR_NONE
active = 0x00 active = 0x00
nextevt = KTIME_MAX nextevt = KTIME_MAX
childmask= 0 childmask= 1
parent = NULL parent = GRP1:0
/ \
0 1 .. 7 8
idle idle !online
childmask=1
1) Hierarchy has 8 CPUs. CPU 8 is at the moment in the process of onlining
but did not yet connect GRP0:0 to GRP1:0.
[GRP1:0]
migrator = TMIGR_NONE
active = 0x00
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = TMIGR_NONE migrator = TMIGR_NONE
active = 0x00 active = 0x00
nextevt = KTIME_MAX nextevt = KTIME_MAX
childmask= 0 childmask= 1
parent = GRP1:0 parent = GRP1:0
/ \
0 1 .. 7 8
idle idle !online
childmask=1
2) Setup code (running on CPU 8) now connects GRP0:0 to GRP1:0, updates
parent pointer of GRP0:0 and ...
[GRP1:0]
migrator = TMIGR_NONE
active = 0x00
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = 0x01 migrator = TMIGR_NONE
active = 0x01 active = 0x00
nextevt = KTIME_MAX nextevt = KTIME_MAX
childmask= 0 childmask= 1
parent = GRP1:0 parent = GRP1:0
/ \
0 1 .. 7 8
active idle !online
childmask=1
tmigr_walk.childmask = 0
3) ... CPU 0 comes active in the same time. As migrator in GRP0:0 was
TMIGR_NONE, childmask of GRP0:0 is stored in update propagation data
structure tmigr_walk (as update of childmask is not yet
visible/updated). And now ...
[GRP1:0]
migrator = TMIGR_NONE
active = 0x00
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = 0x01 migrator = TMIGR_NONE
active = 0x01 active = 0x00
nextevt = KTIME_MAX nextevt = KTIME_MAX
childmask= 2 childmask= 1
parent = GRP1:0 parent = GRP1:0
/ \
0 1 .. 7 8
active idle !online
childmask=1
tmigr_walk.childmask = 0
4) ... childmask of GRP0:0 is updated by CPU 8 (still part of setup
code).
[GRP1:0]
migrator = 0x00
active = 0x00
nextevt = KTIME_MAX
/ \
[GRP0:0] [GRP0:1]
migrator = 0x01 migrator = TMIGR_NONE
active = 0x01 active = 0x00
nextevt = KTIME_MAX nextevt = KTIME_MAX
childmask= 2 childmask= 1
parent = GRP1:0 parent = GRP1:0
/ \
0 1 .. 7 8
active idle !online
childmask=1
tmigr_walk.childmask = 0
5) CPU 0 sees the connection to GRP1:0 and now propagates active state to
GRP1:0 but with childmask = 0 as stored in propagation data structure.
--> Now GRP1:0 always has a migrator as 0x00 != TMIGR_NONE and for all CPUs
it looks like GRP1:0 is always active.
To prevent those races, the setup of the hierarchy is moved into the
cpuhotplug prepare callback. The prepare callback is not executed by the
CPU which will come online, it is executed by the CPU which prepares
onlining of the other CPU. This CPU is active while it is connecting the
formerly top level to the new one. This prevents from (A) to happen and it
also prevents from any further walk above the formerly top level until that
active CPU becomes inactive, releasing the new ->parent and ->childmask
updates to be visible by any subsequent walk up above the formerly top
level hierarchy. This prevents from (B) to happen. The direction for the
updates is now forced to look like "from bottom to top".
However if the active CPU prevents from tmigr_cpu_(in)active() to walk up
with the update not-or-half visible, nothing prevents walking up to the new
top with a 0 childmask in tmigr_handle_remote_up() or
tmigr_requires_handle_remote_up() if the active CPU doing the prepare is
not the migrator. But then it looks fine because:
* tmigr_check_migrator() should just return false
* The migrator is active and should eventually observe the new childmask
at some point in a future tick.
Split setup functionality of online callback into the cpuhotplug prepare
callback and setup hotplug state. Change init call into early_initcall() to
make sure an already active CPU prepares everything for newly upcoming
CPUs. Reorder the code, that all prepare related functions are close to
each other and online and offline callbacks are also close together.
Fixes: 7ee988770326 ("timers: Implement the hierarchical pull model")
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240717094940.18687-1-anna-maria@linutronix.de
|
|
When reading group->parent without holding the group lock it is racy
against CPUs coming online the first time and thereby creating another
level of the hierarchy. This is not a problem when this value is read once
to decide whether to abort a propagation or not. The worst outcome is an
unnecessary/early CPU wake up. But it is racy when reading it several times
during a single 'action' (like activation, deactivation, checking for
remote timer expiry,...) and relying on the consitency of this value
without holding the lock. This happens at the moment e.g. in
tmigr_inactive_up() which is also calling tmigr_udpate_events(). Code relys
on group->parent not to change during this 'action'.
Update parent struct member description to explain the above only
once. Remove parent pointer checks when they are not mandatory (like update
of data->childmask). Remove a warning, which would be nice but the trigger
of this warning is not reliable and add expand the data structure member
description instead. Expand a comment, why it is safe to rely on parent
pointer here (inside hierarchy update).
Fixes: 7ee988770326 ("timers: Implement the hierarchical pull model")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240716-tmigr-fixes-v4-1-757baa7803fe@linutronix.de
|
|
https://git.linaro.org/people/daniel.lezcano/linux into timers/core
Pull clocksource/event driver updates from Daniel Lezcano:
- Remove unnecessary local variables initialization as they will be
initialized in the code path anyway right after on the ARM arch
timer and the ARM global timer (Li kunyu)
- Fix a race condition in the interrupt leading to a deadlock on the
SH CMT driver. Note that this fix was not tested on the platform
using this timer but the fix seems reasonable enough to be picked
confidently (Niklas Söderlund)
- Increase the rating of the gic-timer and use the configured width
clocksource register on the MIPS architecture (Jiaxun Yang)
- Add the DT bindings for the TMU on the Renesas platforms (Geert
Uytterhoeven)
- Add the DT bindings for the SOPHGO SG2002 clint on RiscV (Thomas
Bonnefille)
- Add the rtl-otto timer driver along with the DT bindings for the
Realtek platform (Chris Packham)
Link: https://lore.kernel.org/all/91cd05de-4c5d-4242-a381-3b8a4fe6a2a2@linaro.org
|
|
Running the LTP hotplug stress test on a aarch64 machine results in
rcu_sched stall warnings when the broadcast hrtimer was owned by the
un-plugged CPU. The issue is the following:
CPU1 (owns the broadcast hrtimer) CPU2
tick_broadcast_enter()
// shutdown local timer device
broadcast_shutdown_local()
...
tick_broadcast_exit()
clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT)
// timer device is not programmed
cpumask_set_cpu(cpu, tick_broadcast_force_mask)
initiates offlining of CPU1
take_cpu_down()
/*
* CPU1 shuts down and does not
* send broadcast IPI anymore
*/
takedown_cpu()
hotplug_cpu__broadcast_tick_pull()
// move broadcast hrtimer to this CPU
clockevents_program_event()
bc_set_next()
hrtimer_start()
/*
* timer device is not programmed
* because only the first expiring
* timer will trigger clockevent
* device reprogramming
*/
What happens is that CPU2 exits broadcast mode with force bit set, then the
local timer device is not reprogrammed and CPU2 expects to receive the
expired event by the broadcast IPI. But this does not happen because CPU1
is offlined by CPU2. CPU switches the clockevent device to ONESHOT state,
but does not reprogram the device.
The subsequent reprogramming of the hrtimer broadcast device does not
program the clockevent device of CPU2 either because the pending expiry
time is already in the past and the CPU expects the event to be delivered.
As a consequence all CPUs which wait for a broadcast event to be delivered
are stuck forever.
Fix this issue by reprogramming the local timer device if the broadcast
force bit of the CPU is set so that the broadcast hrtimer is delivered.
[ tglx: Massage comment and change log. Add Fixes tag ]
Fixes: 989dcb645ca7 ("tick: Handle broadcast wakeup of multiple cpus")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240711124843.64167-1-liaoyu15@huawei.com
|
|
When the WARN_ON_ONCE() triggers, the printk() of the additional
information related to the warning will not happen in print level
"warn". When reading dmesg with a restriction to level "warn", the
information published by the printk_once() will not show up there.
Transform WARN_ON_ONCE() and printk_once() into a WARN_ONCE().
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240610103552.25252-1-anna-maria@linutronix.de
|
|
The hrtimer function callback must not be NULL. It has to be specified by
the call side but it is not validated by the hrtimer code. When a hrtimer
is queued without a function callback, the kernel crashes with a null
pointer dereference when trying to execute the callback in __run_hrtimer().
Introduce a validation before queuing the hrtimer in
hrtimer_start_range_ns().
[anna-maria: Rephrase commit message]
Signed-off-by: Phil Chang <phil.chang@mediatek.com>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
|
|
Fixup the incomplete kernel-doc style comments for do_adjtimex() and
hardpps() by documenting the function parameters.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240607090656.104883-1-yang.lee@linux.alibaba.com
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=9301
|
|
The function returns the idle calls counter for the current cpu and
therefore usually isn't what the caller wants. It is unnused since
commit 466a2b42d676 ("cpufreq: schedutil: Use idle_calls counter of the
remote CPU")
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240617161615.49309-1-christian.loehle@arm.com
|
|
After the recent commit 5097cbcb38e6 ("sched/isolation: Prevent boot crash
when the boot CPU is nohz_full") the kernel no longer crashes, but there is
another problem.
In this case tick_setup_device() calls tick_take_do_timer_from_boot() to
update tick_do_timer_cpu and this triggers the WARN_ON_ONCE(irqs_disabled)
in smp_call_function_single().
Kill tick_take_do_timer_from_boot() and just use WRITE_ONCE(), the new
comment explains why this is safe (thanks Thomas!).
Fixes: 08ae95f4fd3b ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240528122019.GA28794@redhat.com
Link: https://lore.kernel.org/all/20240522151742.GA10400@redhat.com
|
|
PPS (Pulse Per Second) generates a hardware pulse every second based on
CLOCK_REALTIME. This works fine when the pulse is generated in software
from a hrtimer callback function.
For hardware which generates the pulse by programming a timer it is
required to convert CLOCK_REALTIME to the underlying hardware clock.
The X86 Timed IO device is based on the Always Running Timer (ART), which
is the base clock of the TSC, which is usually the system clocksource on
X86.
The core code already has functionality to convert base clock timestamps to
system clocksource timestamps, but there is no support for converting the
other way around.
Provide the required functionality to support such devices in a generic
way to avoid code duplication in drivers:
1) ktime_real_to_base_clock() to convert a CLOCK_REALTIME timestamp to a
base clock timestamp
2) timekeeping_clocksource_has_base() to allow drivers to validate that
the system clocksource is based on a particular clocksource ID.
[ tglx: Simplify timekeeping_clocksource_has_base() and add missing READ_ONCE() ]
Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: Lakshmi Sowjanya D <lakshmi.sowjanya.d@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240513103813.5666-10-lakshmi.sowjanya.d@intel.com
|
|
Hardware time stamps like provided by PTP clock implementations are based
on a clock which feeds both the PCIe device and the system clock. For
further processing the underlying hardwarre clock timestamp must be
converted to the system clock.
Right now this requires drivers to invoke an architecture specific
conversion function, e.g. to convert the ART (Always Running Timer)
timestamp to a TSC timestamp.
As the system clock is aware of the underlying base clock, this can be
moved to the core code by providing a base clock property for the system
clock which contains the conversion factors and assigning a clocksource ID
to the base clock.
Add the required data structures and the conversion infrastructure in the
core code to prepare for converting X86 and the related PTP drivers over.
[ tglx: Added a missing READ_ONCE(). Massaged change log ]
Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: Christopher S. Hall <christopher.s.hall@intel.com>
Signed-off-by: Lakshmi Sowjanya D <lakshmi.sowjanya.d@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240513103813.5666-2-lakshmi.sowjanya.d@intel.com
|
|
Fix the make W=1 warnings:
WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/time/clocksource-wdtest.o
WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/time/test_udelay.o
WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/time/time_test.o
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20240510-time-md-v1-1-44a8a36ac4b0@quicinc.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados:
- Remove sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size
and runtime memory consumed by ~64 bytes per array. Removals for
net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
through their respective subsystems making the next release the most
likely place where the final series that removes the check for
proc_name == NULL will land.
This adds to removals already in arch/, drivers/ and fs/.
- Adjust ctl_table definitions and references to allow constification
- Remove unused ctl_table function arguments
- Move non-const elements from ctl_table to ctl_table_header
- Make ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by
keeping the pointers to proc_handler functions in .rodata. Though no
ctl_tables where made const in this PR, the ground work for making
that possible has started with these changes sent by Thomas
Weißschuh.
* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
sysctl: drop now unnecessary out-of-bounds check
sysctl: move sysctl type to ctl_table_header
sysctl: drop sysctl_is_perm_empty_ctl_table
sysctl: treewide: constify argument ctl_table_root::permissions(table)
sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
bpf: Remove the now superfluous sentinel elements from ctl_table array
delayacct: Remove the now superfluous sentinel elements from ctl_table array
kprobes: Remove the now superfluous sentinel elements from ctl_table array
printk: Remove the now superfluous sentinel elements from ctl_table array
scheduler: Remove the now superfluous sentinel elements from ctl_table array
seccomp: Remove the now superfluous sentinel elements from ctl_table array
timekeeping: Remove the now superfluous sentinel elements from ctl_table array
ftrace: Remove the now superfluous sentinel elements from ctl_table array
umh: Remove the now superfluous sentinel elements from ctl_table array
kernel misc: Remove the now superfluous sentinel elements from ctl_table array
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
"Core code:
- Make timekeeping and VDSO time readouts resilent against math
overflow:
In guest context the kernel is prone to math overflow when the host
defers the timer interrupt due to overload, malfunction or malice.
This can be mitigated by checking the clocksource delta for the
maximum deferrement which is readily available. If that value is
exceeded then the code uses a slowpath function which can handle
the multiplication overflow.
This functionality is enabled unconditionally in the kernel, but
made conditional in the VDSO code. The latter is conditional
because it allows architectures to optimize the check so it is not
causing performance regressions.
On X86 this is achieved by reworking the existing check for
negative TSC deltas as a negative delta obviously exceeds the
maximum deferrement when it is evaluated as an unsigned value. That
avoids two conditionals in the hotpath and allows to hide both the
negative delta and the large delta handling in the same slow path.
- Add an initial minimal ktime_t abstraction for Rust
- The usual boring cleanups and enhancements
Drivers:
- Boring updates to device trees and trivial enhancements in various
drivers"
* tag 'timers-core-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
clocksource/drivers/arm_arch_timer: Mark hisi_161010101_oem_info const
clocksource/drivers/timer-ti-dm: Remove an unused field in struct dmtimer
clocksource/drivers/renesas-ostm: Avoid reprobe after successful early probe
clocksource/drivers/renesas-ostm: Allow OSTM driver to reprobe for RZ/V2H(P) SoC
dt-bindings: timer: renesas: ostm: Document Renesas RZ/V2H(P) SoC
rust: time: doc: Add missing C header links
clocksource: Make the int help prompt unit readable in ncurses
hrtimer: Rename __hrtimer_hres_active() to hrtimer_hres_active()
timerqueue: Remove never used function timerqueue_node_expires()
rust: time: Add Ktime
vdso: Fix powerpc build U64_MAX undeclared error
clockevents: Convert s[n]printf() to sysfs_emit()
clocksource: Convert s[n]printf() to sysfs_emit()
clocksource: Make watchdog and suspend-timing multiplication overflow safe
timekeeping: Let timekeeping_cycles_to_ns() handle both under and overflow
timekeeping: Make delta calculation overflow safe
timekeeping: Prepare timekeeping_cycles_to_ns() for overflow safety
timekeeping: Fold in timekeeping_delta_to_ns()
timekeeping: Consolidate timekeeping helpers
timekeeping: Refactor timekeeping helpers
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/pelt: Remove shift of thermal clock
sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
thermal/cpufreq: Remove arch_update_thermal_pressure()
sched/cpufreq: Take cpufreq feedback into account
cpufreq: Add a cpufreq pressure feedback for the scheduler
sched/fair: Fix update of rd->sg_overutilized
sched/vtime: Do not include <asm/vtime.h> header
s390/irq,nmi: Include <asm/vtime.h> header directly
s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
sched/vtime: Get rid of generic vtime_task_switch() implementation
sched/vtime: Remove confusing arch_vtime_task_switch() declaration
sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
sched/fair: Rename root_domain::overload to ::overloaded
sched/fair: Use helper functions to access root_domain::overload
sched/fair: Check root_domain::overload value before update
sched/fair: Combine EAS check with root_domain::overutilized access
sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
...
|
|
When tmigr_setup_groups() fails the level 0 group allocation, then the
cleanup derefences index -1 of the local stack array.
Prevent this by checking the loop condition first.
Fixes: 7ee988770326 ("timers: Implement the hierarchical pull model")
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20240506041059.86877-1-ppbuk5246@gmail.com
|
|
When doing
make menuconfig
and searching for the CLOCKSOURCE_WATCHDOG_MAX_SKEW_US config item, the
help says:
│ Symbol: CLOCKSOURCE_WATCHDOG_MAX_SKEW_US [=125]
│ Type : integer
│ Range : [50 1000]
│ Defined at kernel/time/Kconfig:204
│ Prompt: Clocksource watchdog maximum allowable skew (in s)
^^^
│ Depends on: GENERIC_CLOCKEVENTS [=y] && CLOCKSOURCE_WATCHDOG [=y]
because on some terminals, it cannot display the 'μ' char, unicode
number 0x3bc.
So simply write it out so that there's no trouble.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/20240428102143.26764-1-bp@kernel.org
|
|
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel element from time_sysctl
Signed-off-by: Joel Granados <j.granados@samsung.com>
|
|
The function hrtimer_hres_active() are defined in the hrtimer.c file, but
not called elsewhere, so rename __hrtimer_hres_active() to
hrtimer_hres_active() and remove the old hrtimer_hres_active() function.
kernel/time/hrtimer.c:653:19: warning: unused function 'hrtimer_hres_active'.
Fixes: 82ccdf062a64 ("hrtimer: Remove unused function")
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Link: https://lore.kernel.org/r/20240418023000.130324-1-jiapeng.chong@linux.alibaba.com
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=8778
|
|
tick_do_timer_cpu is used lockless to check which CPU needs to take care
of the per tick timekeeping duty. This is done to avoid a thundering
herd problem on jiffies_lock.
The read and writes are not annotated so KCSAN complains about data races:
BUG: KCSAN: data-race in tick_nohz_idle_stop_tick / tick_nohz_next_event
write to 0xffffffff8a2bda30 of 4 bytes by task 0 on cpu 26:
tick_nohz_idle_stop_tick+0x3b1/0x4a0
do_idle+0x1e3/0x250
read to 0xffffffff8a2bda30 of 4 bytes by task 0 on cpu 16:
tick_nohz_next_event+0xe7/0x1e0
tick_nohz_get_sleep_length+0xa7/0xe0
menu_select+0x82/0xb90
cpuidle_select+0x44/0x60
do_idle+0x1c2/0x250
value changed: 0x0000001a -> 0xffffffff
Annotate them with READ/WRITE_ONCE() to document the intentional data race.
Reported-by: Mirsad Todorovac <mirsad.todorovac@alu.unizg.hr>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sean Anderson <sean.anderson@seco.com>
Link: https://lore.kernel.org/r/87cyqy7rt3.ffs@tglx
|
|
Per filesystems/sysfs.rst, show() should only use sysfs_emit() or
sysfs_emit_at() when formatting the value to be returned to user space.
coccinelle complains that there are still a couple of functions that use
snprintf(). Convert them to sysfs_emit().
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240314100402.1326582-2-lizhijian@fujitsu.com
|
|
Per filesystems/sysfs.rst, show() should only use sysfs_emit() or
sysfs_emit_at() when formatting the value to be returned to user space.
coccinelle complains that there are still a couple of functions that use
snprintf(). Convert them to sysfs_emit().
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240314100402.1326582-1-lizhijian@fujitsu.com
|
|
Kernel timekeeping is designed to keep the change in cycles (since the last
timer interrupt) below max_cycles, which prevents multiplication overflow
when converting cycles to nanoseconds. However, if timer interrupts stop,
the clocksource_cyc2ns() calculation will eventually overflow.
Add protection against that. Simplify by folding together
clocksource_delta() and clocksource_cyc2ns() into cycles_to_nsec_safe().
Check against max_cycles, falling back to a slower higher precision
calculation.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240325064023.2997-20-adrian.hunter@intel.com
|