summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)Author
2024-09-12membarrier: riscv: Add full memory barrier in switch_mm()Andrea Parri
commit d6cfd1770f20392d7009ae1fdb04733794514fa9 upstream. The membarrier system call requires a full memory barrier after storing to rq->curr, before going back to user-space. The barrier is only needed when switching between processes: the barrier is implied by mmdrop() when switching from kernel to userspace, and it's not needed when switching from userspace to kernel. Rely on the feature/mechanism ARCH_HAS_MEMBARRIER_CALLBACKS and on the primitive membarrier_arch_switch_mm(), already adopted by the PowerPC architecture, to insert the required barrier. Fixes: fab957c11efe2f ("RISC-V: Atomic and Locking Code") Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/r/20240131144936.29190-2-parri.andrea@gmail.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com> Signed-off-by: WangYuli <wangyuli@uniontech.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-29sched/topology: Handle NUMA_NO_NODE in sched_numa_find_nth_cpu()Yury Norov
[ Upstream commit 9ecea9ae4d3127a09fb5dfcea87f248937a39ff5 ] sched_numa_find_nth_cpu() doesn't handle NUMA_NO_NODE properly, and may crash kernel if passed with it. On the other hand, the only user of sched_numa_find_nth_cpu() has to check NUMA_NO_NODE case explicitly. It would be easier for users if this logic will get moved into sched_numa_find_nth_cpu(). Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20230819141239.287290-6-yury.norov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-08-14sched/core: Fix unbalance set_rq_online/offline() in sched_cpu_deactivate()Yang Yingliang
commit fe7a11c78d2a9bdb8b50afc278a31ac177000948 upstream. If cpuset_cpu_inactive() fails, set_rq_online() need be called to rollback. Fixes: 120455c514f7 ("sched: Fix hotplug vs CPU bandwidth control") Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-5-yangyingliang@huaweicloud.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14sched/core: Introduce sched_set_rq_on/offline() helperYang Yingliang
commit 2f027354122f58ee846468a6f6b48672fff92e9b upstream. Introduce sched_set_rq_on/offline() helper, so it can be called in normal or error path simply. No functional changed. Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-4-yangyingliang@huaweicloud.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14sched/smt: Fix unbalance sched_smt_present dec/incYang Yingliang
commit e22f910a26cc2a3ac9c66b8e935ef2a7dd881117 upstream. I got the following warn report while doing stress test: jump label: negative count! WARNING: CPU: 3 PID: 38 at kernel/jump_label.c:263 static_key_slow_try_dec+0x9d/0xb0 Call Trace: <TASK> __static_key_slow_dec_cpuslocked+0x16/0x70 sched_cpu_deactivate+0x26e/0x2a0 cpuhp_invoke_callback+0x3ad/0x10d0 cpuhp_thread_fun+0x3f5/0x680 smpboot_thread_fn+0x56d/0x8d0 kthread+0x309/0x400 ret_from_fork+0x41/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> Because when cpuset_cpu_inactive() fails in sched_cpu_deactivate(), the cpu offline failed, but sched_smt_present is decremented before calling sched_cpu_deactivate(), it leads to unbalanced dec/inc, so fix it by incrementing sched_smt_present in the error path. Fixes: c5511d03ec09 ("sched/smt: Make sched_smt_present track topology") Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Link: https://lore.kernel.org/r/20240703031610.587047-3-yangyingliang@huaweicloud.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14sched/smt: Introduce sched_smt_present_inc/dec() helperYang Yingliang
commit 31b164e2e4af84d08d2498083676e7eeaa102493 upstream. Introduce sched_smt_present_inc/dec() helper, so it can be called in normal or error path simply. No functional changed. Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-2-yangyingliang@huaweicloud.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14sched/cputime: Fix mul_u64_u64_div_u64() precision for cputimeZheng Zucheng
commit 77baa5bafcbe1b2a15ef9c37232c21279c95481c upstream. In extreme test scenarios: the 14th field utime in /proc/xx/stat is greater than sum_exec_runtime, utime = 18446744073709518790 ns, rtime = 135989749728000 ns In cputime_adjust() process, stime is greater than rtime due to mul_u64_u64_div_u64() precision problem. before call mul_u64_u64_div_u64(), stime = 175136586720000, rtime = 135989749728000, utime = 1416780000. after call mul_u64_u64_div_u64(), stime = 135989949653530 unsigned reversion occurs because rtime is less than stime. utime = rtime - stime = 135989749728000 - 135989949653530 = -199925530 = (u64)18446744073709518790 Trigger condition: 1). User task run in kernel mode most of time 2). ARM64 architecture 3). TICK_CPU_ACCOUNTING=y CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set Fix mul_u64_u64_div_u64() conversion precision by reset stime to rtime Fixes: 3dc167ba5729 ("sched/cputime: Improve cputime_adjust()") Signed-off-by: Zheng Zucheng <zhengzucheng@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20240726023235.217771-1-zhengzucheng@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14profiling: remove profile=sleep supportTetsuo Handa
commit b88f55389ad27f05ed84af9e1026aa64dbfabc9a upstream. The kernel sleep profile is no longer working due to a recursive locking bug introduced by commit 42a20f86dc19 ("sched: Add wrapper for get_wchan() to keep task blocked") Booting with the 'profile=sleep' kernel command line option added or executing # echo -n sleep > /sys/kernel/profiling after boot causes the system to lock up. Lockdep reports kthreadd/3 is trying to acquire lock: ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: get_wchan+0x32/0x70 but task is already holding lock: ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: try_to_wake_up+0x53/0x370 with the call trace being lock_acquire+0xc8/0x2f0 get_wchan+0x32/0x70 __update_stats_enqueue_sleeper+0x151/0x430 enqueue_entity+0x4b0/0x520 enqueue_task_fair+0x92/0x6b0 ttwu_do_activate+0x73/0x140 try_to_wake_up+0x213/0x370 swake_up_locked+0x20/0x50 complete+0x2f/0x40 kthread+0xfb/0x180 However, since nobody noticed this regression for more than two years, let's remove 'profile=sleep' support based on the assumption that nobody needs this functionality. Fixes: 42a20f86dc19 ("sched: Add wrapper for get_wchan() to keep task blocked") Cc: stable@vger.kernel.org # v5.16+ Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-03sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE ↵Tejun Heo
tasks commit d329605287020c3d1c3b0dadc63d8208e7251382 upstream. When a task's weight is being changed, set_load_weight() is called with @update_load set. As weight changes aren't trivial for the fair class, set_load_weight() calls fair.c::reweight_task() for fair class tasks. However, set_load_weight() first tests task_has_idle_policy() on entry and skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as SCHED_IDLE tasks are just fair tasks with a very low weight and they would incorrectly skip load, vlag and position updates. Fix it by updating reweight_task() to take struct load_weight as idle weight can't be expressed with prio and making set_load_weight() call reweight_task() for SCHED_IDLE tasks too when @update_load is set. Fixes: 9059393e4ec1 ("sched/fair: Use reweight_entity() for set_user_nice()") Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v4.15+ Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-03rcu/tasks: Fix stale task snaphot for Tasks TraceFrederic Weisbecker
[ Upstream commit 399ced9594dfab51b782798efe60a2376cd5b724 ] When RCU-TASKS-TRACE pre-gp takes a snapshot of the current task running on all online CPUs, no explicit ordering synchronizes properly with a context switch. This lack of ordering can permit the new task to miss pre-grace-period update-side accesses. The following diagram, courtesy of Paul, shows the possible bad scenario: CPU 0 CPU 1 ----- ----- // Pre-GP update side access WRITE_ONCE(*X, 1); smp_mb(); r0 = rq->curr; RCU_INIT_POINTER(rq->curr, TASK_B) spin_unlock(rq) rcu_read_lock_trace() r1 = X; /* ignore TASK_B */ Either r0==TASK_B or r1==1 is needed but neither is guaranteed. One possible solution to solve this is to wait for an RCU grace period at the beginning of the RCU-tasks-trace grace period before taking the current tasks snaphot. However this would introduce large additional latencies to RCU-tasks-trace grace periods. Another solution is to lock the target runqueue while taking the current task snapshot. This ensures that the update side sees the latest context switch and subsequent context switches will see the pre-grace-period update side accesses. This commit therefore adds runqueue locking to cpu_curr_snapshot(). Fixes: e386b6725798 ("rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-07-18sched: Move psi_account_irqtime() out of update_rq_clock_task() hotpathJohn Stultz
commit ddae0ca2a8fe12d0e24ab10ba759c3fbd755ada8 upstream. It was reported that in moving to 6.1, a larger then 10% regression was seen in the performance of clock_gettime(CLOCK_THREAD_CPUTIME_ID,...). Using a simple reproducer, I found: 5.10: 100000000 calls in 24345994193 ns => 243.460 ns per call 100000000 calls in 24288172050 ns => 242.882 ns per call 100000000 calls in 24289135225 ns => 242.891 ns per call 6.1: 100000000 calls in 28248646742 ns => 282.486 ns per call 100000000 calls in 28227055067 ns => 282.271 ns per call 100000000 calls in 28177471287 ns => 281.775 ns per call The cause of this was finally narrowed down to the addition of psi_account_irqtime() in update_rq_clock_task(), in commit 52b1364ba0b1 ("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure"). In my initial attempt to resolve this, I leaned towards moving all accounting work out of the clock_gettime() call path, but it wasn't very pretty, so it will have to wait for a later deeper rework. Instead, Peter shared this approach: Rework psi_account_irqtime() to use its own psi_irq_time base for accounting, and move it out of the hotpath, calling it instead from sched_tick() and __schedule(). In testing this, we found the importance of ensuring psi_account_irqtime() is run under the rq_lock, which Johannes Weiner helpfully explained, so also add some lockdep annotations to make that requirement clear. With this change the performance is back in-line with 5.10: 6.1+fix: 100000000 calls in 24297324597 ns => 242.973 ns per call 100000000 calls in 24318869234 ns => 243.189 ns per call 100000000 calls in 24291564588 ns => 242.916 ns per call Reported-by: Jimmy Shiu <jimmyshiu@google.com> Originally-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: Qais Yousef <qyousef@layalina.io> Link: https://lore.kernel.org/r/20240618215909.4099720-1-jstultz@google.com Fixes: 52b1364ba0b1 ("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure") [jstultz: Fixed up minor collisions w/ 6.6-stable] Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-07-18Revert "sched/fair: Make sure to try to detach at least one movable task"Josh Don
commit 2feab2492deb2f14f9675dd6388e9e2bf669c27a upstream. This reverts commit b0defa7ae03ecf91b8bfd10ede430cff12fcbd06. b0defa7ae03ec changed the load balancing logic to ignore env.max_loop if all tasks examined to that point were pinned. The goal of the patch was to make it more likely to be able to detach a task buried in a long list of pinned tasks. However, this has the unfortunate side effect of creating an O(n) iteration in detach_tasks(), as we now must fully iterate every task on a cpu if all or most are pinned. Since this load balance code is done with rq lock held, and often in softirq context, it is very easy to trigger hard lockups. We observed such hard lockups with a user who affined O(10k) threads to a single cpu. When I discussed this with Vincent he initially suggested that we keep the limit on the number of tasks to detach, but increase the number of tasks we can search. However, after some back and forth on the mailing list, he recommended we instead revert the original patch, as it seems likely no one was actually getting hit by the original issue. Fixes: b0defa7ae03e ("sched/fair: Make sure to try to detach at least one movable task") Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240620214450.316280-1-joshdon@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-12sched/core: Fix incorrect initialization of the 'burst' parameter in ↵Cheng Yu
cpu_max_write() [ Upstream commit 49217ea147df7647cb89161b805c797487783fc0 ] In the cgroup v2 CPU subsystem, assuming we have a cgroup named 'test', and we set cpu.max and cpu.max.burst: # echo 1000000 > /sys/fs/cgroup/test/cpu.max # echo 1000000 > /sys/fs/cgroup/test/cpu.max.burst then we check cpu.max and cpu.max.burst: # cat /sys/fs/cgroup/test/cpu.max 1000000 100000 # cat /sys/fs/cgroup/test/cpu.max.burst 1000000 Next we set cpu.max again and check cpu.max and cpu.max.burst: # echo 2000000 > /sys/fs/cgroup/test/cpu.max # cat /sys/fs/cgroup/test/cpu.max 2000000 100000 # cat /sys/fs/cgroup/test/cpu.max.burst 1000 ... we find that the cpu.max.burst value changed unexpectedly. In cpu_max_write(), the unit of the burst value returned by tg_get_cfs_burst() is microseconds, while in cpu_max_write(), the burst unit used for calculation should be nanoseconds, which leads to the bug. To fix it, get the burst value directly from tg->cfs_bandwidth.burst. Fixes: f4183717b370 ("sched/fair: Introduce the burstable CFS controller") Reported-by: Qixin Liao <liaoqixin@huawei.com> Signed-off-by: Cheng Yu <serein.chengyu@huawei.com> Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240424132438.514720-1-serein.chengyu@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12sched/fair: Allow disabling sched_balance_newidle with sched_relax_domain_levelVitalii Bursov
[ Upstream commit a1fd0b9d751f840df23ef0e75b691fc00cfd4743 ] Change relax_domain_level checks so that it would be possible to include or exclude all domains from newidle balancing. This matches the behavior described in the documentation: -1 no request. use system default or follow request of others. 0 no search. 1 search siblings (hyperthreads in a core). "2" enables levels 0 and 1, level_max excludes the last (level_max) level, and level_max+1 includes all levels. Fixes: 1d3504fcf560 ("sched, cpuset: customize sched domains, core") Signed-off-by: Vitalii Bursov <vitaly@bursov.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/bd6de28e80073c79466ec6401cdeae78f0d4423d.1714488502.git.vitaly@bursov.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12sched/fair: Add EAS checks before updating root_domain::overutilizedShrikanth Hegde
[ Upstream commit be3a51e68f2f1b17250ce40d8872c7645b7a2991 ] root_domain::overutilized is only used for EAS(energy aware scheduler) to decide whether to do load balance or not. It is not used if EAS not possible. Currently enqueue_task_fair and task_tick_fair accesses, sometime updates this field. In update_sd_lb_stats it is updated often. This causes cache contention due to true sharing and burns a lot of cycles. ::overload and ::overutilized are part of the same cacheline. Updating it often invalidates the cacheline. That causes access to ::overload to slow down due to false sharing. Hence add EAS check before accessing/updating this field. EAS check is optimized at compile time or it is a static branch. Hence it shouldn't cost much. With the patch, both enqueue_task_fair and newidle_balance don't show up as hot routines in perf profile. 6.8-rc4: 7.18% swapper [kernel.vmlinux] [k] enqueue_task_fair 6.78% s [kernel.vmlinux] [k] newidle_balance +patch: 0.14% swapper [kernel.vmlinux] [k] enqueue_task_fair 0.00% swapper [kernel.vmlinux] [k] newidle_balance While at it: trace_sched_overutilized_tp expect that second argument to be bool. So do a int to bool conversion for that. Fixes: 2802bf3cd936 ("sched/fair: Add over-utilization/tipping point indicator") Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Qais Yousef <qyousef@layalina.io> Reviewed-by: Srikar Dronamraju <srikar@linux.ibm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240307085725.444486-2-sshegde@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12sched/isolation: Fix boot crash when maxcpus < first housekeeping CPUOleg Nesterov
[ Upstream commit 257bf89d84121280904800acd25cc2c444c717ae ] housekeeping_setup() checks cpumask_intersects(present, online) to ensure that the kernel will have at least one housekeeping CPU after smp_init(), but this doesn't work if the maxcpus= kernel parameter limits the number of processors available after bootup. For example, a kernel with "maxcpus=2 nohz_full=0-2" parameters crashes at boot time on a virtual machine with 4 CPUs. Change housekeeping_setup() to use cpumask_first_and() and check that the returned CPU number is valid and less than setup_max_cpus. Another corner case is "nohz_full=0" on a machine with a single CPU or with the maxcpus=1 kernel argument. In this case non_housekeeping_mask is empty and tick_nohz_full_setup() makes no sense. And indeed, the kernel hits the WARN_ON(tick_nohz_full_running) in tick_sched_do_timer(). And how should the kernel interpret the "nohz_full=" parameter? It should be silently ignored, but currently cpulist_parse() happily returns the empty cpumask and this leads to the same problem. Change housekeeping_setup() to check cpumask_empty(non_housekeeping_mask) and do nothing in this case. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Phil Auld <pauld@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20240413141746.GA10008@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-05-02sched/eevdf: Prevent vlag from going out of bounds in reweight_eevdf()Xuewen Yan
[ Upstream commit 1560d1f6eb6b398bddd80c16676776c0325fe5fe ] It was possible to have pick_eevdf() return NULL, which then causes a NULL-deref. This turned out to be due to entity_eligible() returning falsely negative because of a s64 multiplcation overflow. Specifically, reweight_eevdf() computes the vlag without considering the limit placed upon vlag as update_entity_lag() does, and then the scaling multiplication (remember that weight is 20bit fixed point) can overflow. This then leads to the new vruntime being weird which then causes the above entity_eligible() to go side-ways and claim nothing is eligible. Thus limit the range of vlag accordingly. All this was quite rare, but fatal when it does happen. Closes: https://lore.kernel.org/all/ZhuYyrh3mweP_Kd8@nz.home/ Closes: https://lore.kernel.org/all/CA+9S74ih+45M_2TPUY_mPPVDhNvyYfy1J1ftSix+KjiTVxg8nw@mail.gmail.com/ Closes: https://lore.kernel.org/lkml/202401301012.2ed95df0-oliver.sang@intel.com/ Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Reported-by: Sergei Trofimovich <slyich@gmail.com> Reported-by: Igor Raits <igor@gooddata.com> Reported-by: Breno Leitao <leitao@debian.org> Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Yujie Liu <yujie.liu@intel.com> Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com> Reviewed-and-tested-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240422082238.5784-1-xuewen.yan@unisoc.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-05-02sched/eevdf: Fix miscalculation in reweight_entity() when se is not currTianchen Ding
[ Upstream commit afae8002b4fd3560c8f5f1567f3c3202c30a70fa ] reweight_eevdf() only keeps V unchanged inside itself. When se != cfs_rq->curr, it would be dequeued from rb tree first. So that V is changed and the result is wrong. Pass the original V to reweight_eevdf() to fix this issue. Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> [peterz: flip if() condition for clarity] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Abel Wu <wuyun.abel@bytedance.com> Link: https://lkml.kernel.org/r/20240306022133.81008-3-dtcccc@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-05-02sched/eevdf: Always update V if se->on_rq when reweightingTianchen Ding
[ Upstream commit 11b1b8bc2b98e21ddf47e08b56c21502c685b2c3 ] reweight_eevdf() needs the latest V to do accurate calculation for new ve and vd. So update V unconditionally when se is runnable. Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Suggested-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Abel Wu <wuyun.abel@bytedance.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Tested-by: Chen Yu <yu.c.chen@intel.com> Link: https://lore.kernel.org/r/20240306022133.81008-2-dtcccc@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-27sched: Add missing memory barrier in switch_mm_cidMathieu Desnoyers
commit fe90f3967bdb3e13f133e5f44025e15f943a99c5 upstream. Many architectures' switch_mm() (e.g. arm64) do not have an smp_mb() which the core scheduler code has depended upon since commit: commit 223baf9d17f25 ("sched: Fix performance regression introduced by mm_cid") If switch_mm() doesn't call smp_mb(), sched_mm_cid_remote_clear() can unset the actively used cid when it fails to observe active task after it sets lazy_put. There *is* a memory barrier between storing to rq->curr and _return to userspace_ (as required by membarrier), but the rseq mm_cid has stricter requirements: the barrier needs to be issued between store to rq->curr and switch_mm_cid(), which happens earlier than: - spin_unlock(), - switch_to(). So it's fine when the architecture switch_mm() happens to have that barrier already, but less so when the architecture only provides the full barrier in switch_to() or spin_unlock(). It is a bug in the rseq switch_mm_cid() implementation. All architectures that don't have memory barriers in switch_mm(), but rather have the full barrier either in finish_lock_switch() or switch_to() have them too late for the needs of switch_mm_cid(). Introduce a new smp_mb__after_switch_mm(), defined as smp_mb() in the generic barrier.h header, and use it in switch_mm_cid() for scheduler transitions where switch_mm() is expected to provide a memory barrier. Architectures can override smp_mb__after_switch_mm() if their switch_mm() implementation provides an implicit memory barrier. Override it with a no-op on x86 which implicitly provide this memory barrier by writing to CR3. Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") Reported-by: levi.yun <yeoreum.yun@arm.com> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> # for arm64 Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86 Cc: <stable@vger.kernel.org> # 6.4.x Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20240415152114.59122-2-mathieu.desnoyers@efficios.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03sched: Simplify tg_set_cfs_bandwidth()Peter Zijlstra
[ Upstream commit 6fb45460615358157a6d3c990e74f9c1395247e2 ] Use guards to reduce gotos and simplify control flow. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Stable-dep-of: 1aa09b9379a7 ("powercap: intel_rapl: Fix locking in TPMI RAPL") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26sched/fair: Take the scheduling domain into account in select_idle_core()Keisuke Nishimura
[ Upstream commit 23d04d8c6b8ec339057264659b7834027f3e6a63 ] When picking a CPU on task wakeup, select_idle_core() has to take into account the scheduling domain where the function looks for the CPU. This is because the "isolcpus" kernel command line option can remove CPUs from the domain to isolate them from other SMT siblings. This change replaces the set of CPUs allowed to run the task from p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd) which is stored in the 'cpus' argument provided by select_idle_cpu(). Fixes: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Julia Lawall <julia.lawall@inria.fr> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26sched/fair: Take the scheduling domain into account in select_idle_smt()Keisuke Nishimura
[ Upstream commit 8aeaffef8c6eceab0e1498486fdd4f3dc3b7066c ] When picking a CPU on task wakeup, select_idle_smt() has to take into account the scheduling domain of @target. This is because the "isolcpus" kernel command line option can remove CPUs from the domain to isolate them from other SMT siblings. This fix checks if the candidate CPU is in the target scheduling domain. Commit: df3cb4ea1fb6 ("sched/fair: Fix wrong cpu selecting from isolated domain") ... originally introduced this fix by adding the check of the scheduling domain in the loop. However, commit: 3e6efe87cd5cc ("sched/fair: Remove redundant check in select_idle_smt()") ... accidentally removed the check. Bring it back. Fixes: 3e6efe87cd5c ("sched/fair: Remove redundant check in select_idle_smt()") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Julia Lawall <julia.lawall@inria.fr> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-01sched/rt: Disallow writing invalid values to sched_rt_period_usCyril Hrubis
commit 079be8fc630943d9fc70a97807feb73d169ee3fc upstream. The validation of the value written to sched_rt_period_us was broken because: - the sysclt_sched_rt_period is declared as unsigned int - parsed by proc_do_intvec() - the range is asserted after the value parsed by proc_do_intvec() Because of this negative values written to the file were written into a unsigned integer that were later on interpreted as large positive integers which did passed the check: if (sysclt_sched_rt_period <= 0) return EINVAL; This commit fixes the parsing by setting explicit range for both perid_us and runtime_us into the sched_rt_sysctls table and processes the values with proc_dointvec_minmax() instead. Alternatively if we wanted to use full range of unsigned int for the period value we would have to split the proc_handler and use proc_douintvec() for it however even the Documentation/scheduller/sched-rt-group.rst describes the range as 1 to INT_MAX. As far as I can tell the only problem this causes is that the sysctl file allows writing negative values which when read back may confuse userspace. There is also a LTP test being submitted for these sysctl files at: http://patchwork.ozlabs.org/project/ltp/patch/20230901144433.2526-1-chrubis@suse.cz/ Signed-off-by: Cyril Hrubis <chrubis@suse.cz> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231002115553.3007-2-chrubis@suse.cz Cc: Mahmoud Adam <mngyadam@amazon.com> Signed-off-by: Petr Vorel <pvorel@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23sched/membarrier: reduce the ability to hammer on sys_membarrierLinus Torvalds
commit 944d5fe50f3f03daacfea16300e656a1691c4a23 upstream. On some systems, sys_membarrier can be very expensive, causing overall slowdowns for everything. So put a lock on the path in order to serialize the accesses to prevent the ability for this to be called at too high of a frequency and saturate the machine. Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Borislav Petkov <bp@alien8.de> Fixes: 22e4ebb97582 ("membarrier: Provide expedited private command") Fixes: c5f58bd58f43 ("membarrier: Provide GLOBAL_EXPEDITED command") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25sched/fair: Update min_vruntime for reweight_entity() correctlyYiwei Lin
[ Upstream commit 5068d84054b766efe7c6202fc71b2350d1c326f1 ] Since reweight_entity() may have chance to change the weight of cfs_rq->curr entity, we should also update_min_vruntime() if this is the case Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Signed-off-by: Yiwei Lin <s921975628@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Abel Wu <wuyun.abel@bytedance.com> Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-03sched/fair: Fix the decision for load balanceKeisuke Nishimura
[ Upstream commit 6d7e4782bcf549221b4ccfffec2cf4d1a473f1a3 ] should_we_balance is called for the decision to do load-balancing. When sched ticks invoke this function, only one CPU should return true. However, in the current code, two CPUs can return true. The following situation, where b means busy and i means idle, is an example, because CPU 0 and CPU 2 return true. [0, 1] [2, 3] b b i b This fix checks if there exists an idle CPU with busy sibling(s) after looking for a CPU on an idle core. If some idle CPUs with busy siblings are found, just the first one should do load-balancing. Fixes: b1bfeab9b002 ("sched/fair: Consider the idle state of the whole core for load balance") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-03sched/eevdf: Fix vruntime adjustment on reweightAbel Wu
[ Upstream commit eab03c23c2a162085b13200d7942fc5a00b5ccc8 ] vruntime of the (on_rq && !0-lag) entity needs to be adjusted when it gets re-weighted, and the calculations can be simplified based on the fact that re-weight won't change the w-average of all the entities. Please check the proofs in comments. But adjusting vruntime can also cause position change in RB-tree hence require re-queue to fix up which might be costly. This might be avoided by deferring adjustment to the time the entity actually leaves tree (dequeue/pick), but that will negatively affect task selection and probably not good enough either. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28sched/core: Fix RQCF_ACT_SKIP leakHao Jia
commit 5ebde09d91707a4a9bec1e3d213e3c12ffde348f upstream. Igor Raits and Bagas Sanjaya report a RQCF_ACT_SKIP leak warning. This warning may be triggered in the following situations: CPU0 CPU1 __schedule() *rq->clock_update_flags <<= 1;* unregister_fair_sched_group() pick_next_task_fair+0x4a/0x410 destroy_cfs_bandwidth() newidle_balance+0x115/0x3e0 for_each_possible_cpu(i) *i=0* rq_unpin_lock(this_rq, rf) __cfsb_csd_unthrottle() raw_spin_rq_unlock(this_rq) rq_lock(*CPU0_rq*, &rf) rq_clock_start_loop_update() rq->clock_update_flags & RQCF_ACT_SKIP <-- raw_spin_rq_lock(this_rq) The purpose of RQCF_ACT_SKIP is to skip the update rq clock, but the update is very early in __schedule(), but we clear RQCF_*_SKIP very late, causing it to span that gap above and triggering this warning. In __schedule() we can clear the RQCF_*_SKIP flag immediately after update_rq_clock() to avoid this RQCF_ACT_SKIP leak warning. And set rq->clock_update_flags to RQCF_UPDATED to avoid rq->clock_update_flags < RQCF_ACT_SKIP warning that may be triggered later. Fixes: ebb83d84e49b ("sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()") Closes: https://lore.kernel.org/all/20230913082424.73252-1-jiahao.os@bytedance.com Reported-by: Igor Raits <igor.raits@gmail.com> Reported-by: Bagas Sanjaya <bagasdotme@gmail.com> Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/all/a5dd536d-041a-2ce9-f4b7-64d8d85c86dc@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-20sched: Fix stop_one_cpu_nowait() vs hotplugPeter Zijlstra
[ Upstream commit f0498d2a54e7966ce23cd7c7ff42c64fa0059b07 ] Kuyo reported sporadic failures on a sched_setaffinity() vs CPU hotplug stress-test -- notably affine_move_task() remains stuck in wait_for_completion(), leading to a hung-task detector warning. Specifically, it was reported that stop_one_cpu_nowait(.fn = migration_cpu_stop) returns false -- this stopper is responsible for the matching complete(). The race scenario is: CPU0 CPU1 // doing _cpu_down() __set_cpus_allowed_ptr() task_rq_lock(); takedown_cpu() stop_machine_cpuslocked(take_cpu_down..) <PREEMPT: cpu_stopper_thread() MULTI_STOP_PREPARE ... __set_cpus_allowed_ptr_locked() affine_move_task() task_rq_unlock(); <PREEMPT: cpu_stopper_thread()\> ack_state() MULTI_STOP_RUN take_cpu_down() __cpu_disable(); stop_machine_park(); stopper->enabled = false; /> /> stop_one_cpu_nowait(.fn = migration_cpu_stop); if (stopper->enabled) // false!!! That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the stopper thread gets a chance to preempt and allows the cpu-down for the target CPU to complete. OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to issue a wakeup, it must not be ran under the scheduler locks. Solve this apparent contradiction by keeping preemption disabled over the unlock + queue_stopper combination: preempt_disable(); task_rq_unlock(...); if (!stop_pending) stop_one_cpu_nowait(...) preempt_enable(); This respects the lock ordering contraints while still avoiding the above race. That is, if we find the CPU is online under rq-lock, the targeted stop_one_cpu_nowait() must succeed. Apply this pattern to all similar stop_one_cpu_nowait() invocations. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com> Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20sched/uclamp: Ignore (util == 0) optimization in feec() when p_util_max = 0Qais Yousef
[ Upstream commit 23c9519def98ee0fa97ea5871535e9b136f522fc ] find_energy_efficient_cpu() bails out early if effective util of the task is 0 as the delta at this point will be zero and there's nothing for EAS to do. When uclamp is being used, this could lead to wrong decisions when uclamp_max is set to 0. In this case the task is capped to performance point 0, but it is actually running and consuming energy and we can benefit from EAS energy calculations. Rework the condition so that it bails out when both util and uclamp_min are 0. We can do that without needing to use uclamp_task_util(); remove it. Fixes: d81304bc6193 ("sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition") Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230916232955.2099394-3-qyousef@layalina.io Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20sched/uclamp: Set max_spare_cap_cpu even if max_spare_cap is 0Qais Yousef
[ Upstream commit 6b00a40147653c8ea748e8f4396510f252763364 ] When uclamp_max is being used, the util of the task could be higher than the spare capacity of the CPU, but due to uclamp_max value we force-fit it there. The way the condition for checking for max_spare_cap in find_energy_efficient_cpu() was constructed; it ignored any CPU that has its spare_cap less than or _equal_ to max_spare_cap. Since we initialize max_spare_cap to 0; this lead to never setting max_spare_cap_cpu and hence ending up never performing compute_energy() for this cluster and missing an opportunity for a better energy efficient placement to honour uclamp_max setting. max_spare_cap = 0; cpu_cap = capacity_of(cpu) - cpu_util(p); // 0 if cpu_util(p) is high ... util_fits_cpu(...); // will return true if uclamp_max forces it to fit ... // this logic will fail to update max_spare_cap_cpu if cpu_cap is 0 if (cpu_cap > max_spare_cap) { max_spare_cap = cpu_cap; max_spare_cap_cpu = cpu; } prev_spare_cap suffers from a similar problem. Fix the logic by converting the variables into long and treating -1 value as 'not populated' instead of 0 which is a viable and correct spare capacity value. We need to be careful signed comparison is used when comparing with cpu_cap in one of the conditions. Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions") Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230916232955.2099394-2-qyousef@layalina.io Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20sched/fair: Fix cfs_rq_is_decayed() on !SMPChengming Zhou
[ Upstream commit c0490bc9bb62d9376f3dd4ec28e03ca0fef97152 ] We don't need to maintain per-queue leaf_cfs_rq_list on !SMP, since it's used for cfs_rq load tracking & balancing on SMP. But sched debug interface uses it to print per-cfs_rq stats. This patch fixes the !SMP version of cfs_rq_is_decayed(), so the per-queue leaf_cfs_rq_list is also maintained correctly on !SMP, to fix the warning in assert_list_leaf_cfs_rq(). Fixes: 0a00a354644e ("sched/fair: Delete useless condition in tg_unthrottle_up()") Reported-by: Leo Yu-Chi Liang <ycliang@andestech.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Leo Yu-Chi Liang <ycliang@andestech.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Closes: https://lore.kernel.org/all/ZN87UsqkWcFLDxea@swlinux02/ Link: https://lore.kernel.org/r/20230913132031.2242151-1-chengming.zhou@linux.dev Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20sched/topology: Fix sched_numa_find_nth_cpu() in CPU-less caseYury Norov
[ Upstream commit 617f2c38cb5ce60226042081c09e2ee3a90d03f8 ] When the node provided by user is CPU-less, corresponding record in sched_domains_numa_masks is not set. Trying to dereference it in the following code leads to kernel crash. To avoid it, start searching from the nearest node with CPUs. Fixes: cd7f55359c90 ("sched: add sched_numa_find_nth_cpu()") Reported-by: Yicong Yang <yangyicong@hisilicon.com> Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Yicong Yang <yangyicong@hisilicon.com> Cc: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20230819141239.287290-4-yury.norov@gmail.com Closes: https://lore.kernel.org/lkml/CAAH8bW8C5humYnfpW3y5ypwx0E-09A3QxFE1JFzR66v+mO4XfA@mail.gmail.com/T/ Closes: https://lore.kernel.org/lkml/ZMHSNQfv39HN068m@yury-ThinkPad/T/#mf6431cb0b7f6f05193c41adeee444bc95bf2b1c4 Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-18sched/eevdf: Fix heap corruption morePeter Zijlstra
Because someone is a flaming idiot... and forgot we have current as se->on_rq but not actually in the tree itself, and walking rb_parent() on an entry not in the tree is 'funky' and KASAN complains. Fixes: 8dafa9d0eb1a ("sched/eevdf: Fix min_deadline heap integrity") Reported-by: 0599jiangyc@gmail.com Reported-by: Dmitry Safonov <0x7f454c46@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Dmitry Safonov <0x7f454c46@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=218020 Link: https://lkml.kernel.org/r/CAJwJo6ZGXO07%3DQvW4fgQfbsDzQPs9xj5sAQ1zp%3DmAyPMNbHYww%40mail.gmail.com
2023-10-09sched/eevdf: Fix pick_eevdf()Benjamin Segall
The old pick_eevdf() could fail to find the actual earliest eligible deadline when it descended to the right looking for min_deadline, but it turned out that that min_deadline wasn't actually eligible. In that case we need to go back and search through any left branches we skipped looking for the actual best _eligible_ min_deadline. This is more expensive, but still O(log n), and at worst should only involve descending two branches of the rbtree. I've run this through a userspace stress test (thank you tools/lib/rbtree.c), so hopefully this implementation doesn't miss any corner cases. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/xm261qego72d.fsf_-_@google.com
2023-10-09sched/eevdf: Fix min_deadline heap integrityPeter Zijlstra
Marek and Biju reported instances of: "EEVDF scheduling fail, picking leftmost" which Mike correlated with cgroup scheduling and the min_deadline heap getting corrupted; some trace output confirms: > And yeah, min_deadline is hosed somehow: > > validate_cfs_rq: --- / > __print_se: ffff88845cf48080 w: 1024 ve: -58857638 lag: 870381 vd: -55861854 vmd: -66302085 E (11372/tr) > __print_se: ffff88810d165800 w: 25 ve: -80323686 lag: 22336429 vd: -41496434 vmd: -66302085 E (-1//autogroup-31) > __print_se: ffff888108379000 w: 25 ve: 0 lag: -57987257 vd: 114632828 vmd: 114632828 N (-1//autogroup-33) > validate_cfs_rq: min_deadline: -55861854 avg_vruntime: -62278313462 / 1074 = -57987256 Turns out that reweight_entity(), which tries really hard to be fast, does not do the normal dequeue+update+enqueue pattern but *does* scale the deadline. However, it then fails to propagate the updated deadline value up the heap. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Reported-by: Marek Szyprowski <m.szyprowski@samsung.com> Reported-by: Biju Das <biju.das.jz@bp.renesas.com> Reported-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Biju Das <biju.das.jz@bp.renesas.com> Tested-by: Mike Galbraith <efault@gmx.de> Link: https://lkml.kernel.org/r/20231006192445.GE743@noisy.programming.kicks-ass.net
2023-10-05cpufreq: schedutil: Update next_freq when cpufreq_limits changeXuewen Yan
When cpufreq's policy is 'single', there is a scenario that will cause sg_policy's next_freq to be unable to update. When the CPU's util is always max, the cpufreq will be max, and then if we change the policy's scaling_max_freq to be a lower freq, indeed, the sg_policy's next_freq need change to be the lower freq, however, because the cpu_is_busy, the next_freq would keep the max_freq. For example: The cpu7 is a single CPU: unisoc:/sys/devices/system/cpu/cpufreq/policy7 # while true;do done& [1] 4737 unisoc:/sys/devices/system/cpu/cpufreq/policy7 # taskset -p 80 4737 pid 4737's current affinity mask: ff pid 4737's new affinity mask: 80 unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_max_freq 2301000 unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_cur_freq 2301000 unisoc:/sys/devices/system/cpu/cpufreq/policy7 # echo 2171000 > scaling_max_freq unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_max_freq 2171000 At this time, the sg_policy's next_freq would stay at 2301000, which is wrong. To fix this, add a check for the ->need_freq_update flag. [ mingo: Clarified the changelog. ] Co-developed-by: Guohua Yan <guohua.yan@unisoc.com> Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com> Signed-off-by: Guohua Yan <guohua.yan@unisoc.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: "Rafael J. Wysocki" <rafael@kernel.org> Link: https://lore.kernel.org/r/20230719130527.8074-1-xuewen.yan@unisoc.com
2023-10-03sched/eevdf: Fix avg_vruntime()Peter Zijlstra
The expectation is that placing a task at avg_vruntime() makes it eligible. Turns out there is a corner case where this is not the case. Specifically, avg_vruntime() relies on the fact that integer division is a flooring function (eg. it discards the remainder). By this property the value returned is slightly left of the true average. However! when the average is a negative (relative to min_vruntime) the effect is flipped and it becomes a ceil, with the result that the returned value is just right of the average and thus not eligible. Fixes: af4cf40470c2 ("sched/fair: Add cfs_rq::avg_vruntime") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-10-03sched/eevdf: Also update slice on placementPeter Zijlstra
Tasks that never consume their full slice would not update their slice value. This means that tasks that are spawned before the sysctl scaling keep their original (UP) slice length. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230915124822.847197830@noisy.programming.kicks-ass.net
2023-09-28sched/rt: Fix live lock between select_fallback_rq() and RT pushJoel Fernandes (Google)
During RCU-boost testing with the TREE03 rcutorture config, I found that after a few hours, the machine locks up. On tracing, I found that there is a live lock happening between 2 CPUs. One CPU has an RT task running, while another CPU is being offlined which also has an RT task running. During this offlining, all threads are migrated. The migration thread is repeatedly scheduled to migrate actively running tasks on the CPU being offlined. This results in a live lock because select_fallback_rq() keeps picking the CPU that an RT task is already running on only to get pushed back to the CPU being offlined. It is anyway pointless to pick CPUs for pushing tasks to if they are being offlined only to get migrated away to somewhere else. This could also add unwanted latency to this task. Fix these issues by not selecting CPUs in RT if they are not 'active' for scheduling, using the cpu_active_mask. Other parts in core.c already use cpu_active_mask to prevent tasks from being put on CPUs going offline. With this fix I ran the tests for days and could not reproduce the hang. Without the patch, I hit it in a few hours. Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20230923011409.3522762-1-joel@joelfernandes.org
2023-09-19kernel/sched: Modify initial boot task idle setupLiam R. Howlett
Initial booting is setting the task flag to idle (PF_IDLE) by the call path sched_init() -> init_idle(). Having the task idle and calling call_rcu() in kernel/rcu/tiny.c means that TIF_NEED_RESCHED will be set. Subsequent calls to any cond_resched() will enable IRQs, potentially earlier than the IRQ setup has completed. Recent changes have caused just this scenario and IRQs have been enabled early. This causes a warning later in start_kernel() as interrupts are enabled before they are fully set up. Fix this issue by setting the PF_IDLE flag later in the boot sequence. Although the boot task was marked as idle since (at least) d80e4fda576d, I am not sure that it is wrong to do so. The forced context-switch on idle task was introduced in the tiny_rcu update, so I'm going to claim this fixes 5f6130fa52ee. Fixes: 5f6130fa52ee ("tiny_rcu: Directly force QS when call_rcu_[bh|sched]() on idle_task") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/linux-mm/CAMuHMdWpvpWoDa=Ox-do92czYRvkok6_x6pYUH+ZouMcJbXy+Q@mail.gmail.com/
2023-09-13sched/fair: Fix SMT4 group_smt_balance handlingTim Chen
For SMT4, any group with more than 2 tasks will be marked as group_smt_balance. Retain the behaviour of group_has_spare by marking the busiest group as the group which has the least number of idle_cpus. Also, handle rounding effect of adding (ncores_local + ncores_busy) when the local is fully idle and busy group imbalance is less than 2 tasks. Local group should try to pull at least 1 task in this case so imbalance should be set to 2 instead. Fixes: fee1759e4f04 ("sched/fair: Determine active load balance for SMT sched groups") Acked-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/6cd1633036bb6b651af575c32c2a9608a106702c.camel@linux.intel.com
2023-09-02sched/fair: Optimize should_we_balance() for large SMT systemsShrikanth Hegde
should_we_balance() is called in load_balance() to find out if the CPU that is trying to do the load balance is the right one or not. With commit: b1bfeab9b002("sched/fair: Consider the idle state of the whole core for load balance") the code tries to find an idle core to do the load balancing and falls back on an idle sibling CPU if there is no idle core. However, on larger SMT systems, it could be needlessly iterating to find a idle by scanning all the CPUs in an non-idle core. If the core is not idle, and first SMT sibling which is idle has been found, then its not needed to check other SMT siblings for idleness Lets say in SMT4, Core0 has 0,2,4,6 and CPU0 is BUSY and rest are IDLE. balancing domain is MC/DIE. CPU2 will be set as the first idle_smt and same process would be repeated for CPU4 and CPU6 but this is unnecessary. Since calling is_core_idle loops through all CPU's in the SMT mask, effect is multiplied by weight of smt_mask. For example,when say 1 CPU is busy, we would skip loop for 2 CPU's and skip iterating over 8CPU's. That effect would be more in DIE/NUMA domain where there are more cores. Testing and performance evaluation ================================== The test has been done on this system which has 12 cores, i.e 24 small cores with SMT=4: lscpu Architecture: ppc64le Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Model name: POWER10 (architected), altivec supported Thread(s) per core: 8 Used funclatency bcc tool to evaluate the time taken by should_we_balance(). For base tip/sched/core the time taken is collected by making the should_we_balance() noinline. time is in nanoseconds. The values are collected by running the funclatency tracer for 60 seconds. values are average of 3 such runs. This represents the expected reduced time with patch. tip/sched/core was at commit: 2f88c8e802c8 ("sched/eevdf/doc: Modify the documented knob to base_slice_ns as well") Results: ------------------------------------------------------------------------------ workload tip/sched/core with_patch(%gain) ------------------------------------------------------------------------------ idle system 809.3 695.0(16.45) stress ng – 12 threads -l 100 1013.5 893.1(13.49) stress ng – 24 threads -l 100 1073.5 980.0(9.54) stress ng – 48 threads -l 100 683.0 641.0(6.55) stress ng – 96 threads -l 100 2421.0 2300(5.26) stress ng – 96 threads -l 15 375.5 377.5(-0.53) stress ng – 96 threads -l 25 635.5 637.5(-0.31) stress ng – 96 threads -l 35 934.0 891.0(4.83) Ran schbench(old), hackbench and stress_ng to evaluate the workload performance between tip/sched/core and with patch. No modification to tip/sched/core TL;DR: Good improvement is seen with schbench. when hackbench and stress_ng runs for longer good improvement is seen. ------------------------------------------------------------------------------ schbench(old) tip +patch(%gain) 10 iterations sched/core ------------------------------------------------------------------------------ 1 Threads 50.0th: 8.00 9.00(-12.50) 75.0th: 9.60 9.00(6.25) 90.0th: 11.80 10.20(13.56) 95.0th: 12.60 10.40(17.46) 99.0th: 13.60 11.90(12.50) 99.5th: 14.10 12.60(10.64) 99.9th: 15.90 14.60(8.18) 2 Threads 50.0th: 9.90 9.20(7.07) 75.0th: 12.60 10.10(19.84) 90.0th: 15.50 12.00(22.58) 95.0th: 17.70 14.00(20.90) 99.0th: 21.20 16.90(20.28) 99.5th: 22.60 17.50(22.57) 99.9th: 30.40 19.40(36.18) 4 Threads 50.0th: 12.50 10.60(15.20) 75.0th: 15.30 12.00(21.57) 90.0th: 18.60 14.10(24.19) 95.0th: 21.30 16.20(23.94) 99.0th: 26.00 20.70(20.38) 99.5th: 27.60 22.50(18.48) 99.9th: 33.90 31.40(7.37) 8 Threads 50.0th: 16.30 14.30(12.27) 75.0th: 20.20 17.40(13.86) 90.0th: 24.50 21.90(10.61) 95.0th: 27.30 24.70(9.52) 99.0th: 35.00 31.20(10.86) 99.5th: 46.40 33.30(28.23) 99.9th: 89.30 57.50(35.61) 16 Threads 50.0th: 22.70 20.70(8.81) 75.0th: 30.10 27.40(8.97) 90.0th: 36.00 32.80(8.89) 95.0th: 39.60 36.40(8.08) 99.0th: 49.20 44.10(10.37) 99.5th: 64.90 50.50(22.19) 99.9th: 143.50 100.60(29.90) 32 Threads 50.0th: 34.60 35.50(-2.60) 75.0th: 48.20 50.50(-4.77) 90.0th: 59.20 62.40(-5.41) 95.0th: 65.20 69.00(-5.83) 99.0th: 80.40 83.80(-4.23) 99.5th: 102.10 98.90(3.13) 99.9th: 727.10 506.80(30.30) schbench does improve in general. There is some run to run variation with schbench. Did a validation run to confirm that trend is similar. ------------------------------------------------------------------------------ hackbench tip +patch(%gain) 20 iterations, 50000 loops sched/core ------------------------------------------------------------------------------ Process 10 groups : 11.74 11.70(0.34) Process 20 groups : 22.73 22.69(0.18) Process 30 groups : 33.39 33.40(-0.03) Process 40 groups : 43.73 43.61(0.27) Process 50 groups : 53.82 54.35(-0.98) Process 60 groups : 64.16 65.29(-1.76) thread 10 Time : 12.81 12.79(0.16) thread 20 Time : 24.63 24.47(0.65) Process(Pipe) 10 Time : 6.40 6.34(0.94) Process(Pipe) 20 Time : 10.62 10.63(-0.09) Process(Pipe) 30 Time : 15.09 14.84(1.66) Process(Pipe) 40 Time : 19.42 19.01(2.11) Process(Pipe) 50 Time : 24.04 23.34(2.91) Process(Pipe) 60 Time : 28.94 27.51(4.94) thread(Pipe) 10 Time : 6.96 6.87(1.29) thread(Pipe) 20 Time : 11.74 11.73(0.09) hackbench shows slight improvement with pipe. Slight degradation in process. ------------------------------------------------------------------------------ stress_ng tip +patch(%gain) 10 iterations 100000 cpu_ops sched/core ------------------------------------------------------------------------------ --cpu=96 -util=100 Time taken : 5.30, 5.01(5.47) --cpu=48 -util=100 Time taken : 7.94, 6.73(15.24) --cpu=24 -util=100 Time taken : 11.67, 8.75(25.02) --cpu=12 -util=100 Time taken : 15.71, 15.02(4.39) --cpu=96 -util=10 Time taken : 22.71, 22.19(2.29) --cpu=96 -util=20 Time taken : 12.14, 12.37(-1.89) --cpu=96 -util=30 Time taken : 8.76, 8.86(-1.14) --cpu=96 -util=40 Time taken : 7.13, 7.14(-0.14) --cpu=96 -util=50 Time taken : 6.10, 6.13(-0.49) --cpu=96 -util=60 Time taken : 5.42, 5.41(0.18) --cpu=96 -util=70 Time taken : 4.94, 4.94(0.00) --cpu=96 -util=80 Time taken : 4.56, 4.53(0.66) --cpu=96 -util=90 Time taken : 4.27, 4.26(0.23) Good improvement seen with 24 CPUs. In this case only one CPU is busy, and no core is idle. Decent improvement with 100% utilization case. no difference in other utilization. Fixes: b1bfeab9b002 ("sched/fair: Consider the idle state of the whole core for load balance") Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230902081204.232218-1-sshegde@linux.vnet.ibm.com
2023-08-29sched/fair: Make update_entity_lag() staticHao Jia
The function update_entity_lag() is only used inside the kernel/sched/fair.c file. Make it static. Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230829030325.69128-1-jiahao.os@bytedance.com
2023-08-28Merge tag 'x86-cleanups-2023-08-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull misc x86 cleanups from Ingo Molnar: "The following commit deserves special mention: 22dc02f81cddd Revert "sched/fair: Move unused stub functions to header" This is in x86/cleanups, because the revert is a re-application of a number of cleanups that got removed inadvertedly" [ This also effectively undoes the amd_check_microcode() microcode declaration change I had done in my microcode loader merge in commit 42a7f6e3ffe0 ("Merge tag 'x86_microcode_for_v6.6_rc1' [...]"). I picked the declaration change by Arnd from this branch instead, which put it in <asm/processor.h> instead of <asm/microcode.h> like I had done in my merge resolution - Linus ] * tag 'x86-cleanups-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/platform/uv: Refactor code using deprecated strncpy() interface to use strscpy() x86/hpet: Refactor code using deprecated strncpy() interface to use strscpy() x86/platform/uv: Refactor code using deprecated strcpy()/strncpy() interfaces to use strscpy() x86/qspinlock-paravirt: Fix missing-prototype warning x86/paravirt: Silence unused native_pv_lock_init() function warning x86/alternative: Add a __alt_reloc_selftest() prototype x86/purgatory: Include header for warn() declaration x86/asm: Avoid unneeded __div64_32 function definition Revert "sched/fair: Move unused stub functions to header" x86/apic: Hide unused safe_smp_processor_id() on 32-bit UP x86/cpu: Fix amd_check_microcode() declaration
2023-08-28Merge tag 'sched-core-2023-08-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - The biggest change is introduction of a new iteration of the SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual Deadline First") scheduler EEVDF too is a virtual-time scheduler, with two parameters (weight and relative deadline), compared to CFS that had weight only. It completely reworks the base scheduler: placement, preemption, picking -- everything LWN.net, as usual, has a terrific writeup about EEVDF: https://lwn.net/Articles/925371/ Preemption (both tick and wakeup) is driven by testing against a fresh pick. Because the tree is now effectively an interval tree, and the selection is no longer the 'leftmost' task, over-scheduling is less of a problem. A lot of the CFS heuristics are removed or replaced by more natural latency-space parameters & constructs In terms of expected performance regressions: we will and can fix everything where a 'good' workload misbehaves with the new scheduler, but EEVDF inevitably changes workload scheduling in a binary fashion, hopefully for the better in the overwhelming majority of cases, but in some cases it won't, especially in adversarial loads that got lucky with the previous code, such as some variants of hackbench. We are trying hard to err on the side of fixing all performance regressions, but we expect some inevitable post-release iterations of that process - Improve load-balancing on hybrid x86 systems: enable cluster scheduling (again) - Improve & fix bandwidth-scheduling on nohz systems - Improve bandwidth-throttling - Use lock guards to simplify and de-goto-ify control flow - Misc improvements, cleanups and fixes * tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits) sched/eevdf/doc: Modify the documented knob to base_slice_ns as well sched/eevdf: Curb wakeup-preemption sched: Simplify sched_core_cpu_{starting,deactivate}() sched: Simplify try_steal_cookie() sched: Simplify sched_tick_remote() sched: Simplify sched_exec() sched: Simplify ttwu() sched: Simplify wake_up_if_idle() sched: Simplify: migrate_swap_stop() sched: Simplify sysctl_sched_uclamp_handler() sched: Simplify get_nohz_timer_target() sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset sched/rt: Fix sysctl_sched_rr_timeslice intial value sched/fair: Block nohz tick_stop when cfs bandwidth in use sched, cgroup: Restore meaning to hierarchical_quota MAINTAINERS: Add Peter explicitly to the psi section sched/psi: Select KERNFS as needed sched/topology: Align group flags when removing degenerate domain sched/fair: remove util_est boosting sched/fair: Propagate enqueue flags into place_entity() ...
2023-08-17sched/eevdf: Curb wakeup-preemptionPeter Zijlstra
Mike and others noticed that EEVDF does like to over-schedule quite a bit -- which does hurt performance of a number of benchmarks / workloads. In particular, what seems to cause over-scheduling is that when lag is of the same order (or larger) than the request / slice then placement will not only cause the task to be placed left of current, but also with a smaller deadline than current, which causes immediate preemption. [ notably, lag bounds are relative to HZ ] Mike suggested we stick to picking 'current' for as long as it's eligible to run, giving it uninterrupted runtime until it reaches parity with the pack. Augment Mike's suggestion by only allowing it to exhaust it's initial request. One random data point: echo NO_RUN_TO_PARITY > /debug/sched/features perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000 3,723,554 context-switches ( +- 0.56% ) 9.5136 +- 0.0394 seconds time elapsed ( +- 0.41% ) echo RUN_TO_PARITY > /debug/sched/features perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000 2,556,535 context-switches ( +- 0.51% ) 9.2427 +- 0.0302 seconds time elapsed ( +- 0.33% ) Suggested-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230816134059.GC982867@hirez.programming.kicks-ass.net
2023-08-14sched: Simplify sched_core_cpu_{starting,deactivate}()Peter Zijlstra
Use guards to reduce gotos and simplify control flow. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20230801211812.371787909@infradead.org
2023-08-14sched: Simplify try_steal_cookie()Peter Zijlstra
Use guards to reduce gotos and simplify control flow. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20230801211812.304154828@infradead.org