summaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
AgeCommit message (Collapse)Author
2024-02-28sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()Alex Shi
sched_use_asym_prio() and sched_asym_prefer() are used together in various places. Consolidate them into a single function sched_asym(). The existing sched_asym() function is only used when collecting statistics of a scheduling group. Rename it as sched_group_asym(), and remove the obsolete function description. This makes the code easier to read. No functional changes. Signed-off-by: Alex Shi <alexs@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240210113924.1130448-3-alexs@kernel.org
2024-02-28sched/fair: Remove unused parameter from sched_asym()Alex Shi
The 'sds' argument is not used in the sched_asym() function anymore, remove it. Fixes: c9ca07886aaa ("sched/fair: Do not even the number of busy CPUs via asym_packing") Signed-off-by: Alex Shi <alexs@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240210113924.1130448-2-alexs@kernel.org
2024-02-28sched/fair: Simplify the update_sd_pick_busiest() logicDavid Vernet
When comparing the current struct sched_group with the yet-busiest domain in update_sd_pick_busiest(), if the two groups have the same group type, we're currently doing a bit of unnecessary work for any group >= group_misfit_task. We're comparing the two groups, and then returning only if false (the group in question is not the busiest). Otherwise, we break out, do an extra unnecessary conditional check that's vacuously false for any group type > group_fully_busy, and then always return true. Let's just return directly in the switch statement instead. This doesn't change the size of vmlinux with llvm 17 (not surprising given that all of this is inlined in load_balance()), but it does shrink load_balance() by 88 bytes on x86. Given that it also improves readability, this seems worth doing. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20240206043921.850302-4-void@manifault.com
2024-02-28sched/fair: Do strict inequality check for busiest misfit task groupDavid Vernet
In update_sd_pick_busiest(), when comparing two sched groups that are both of type group_misfit_task, we currently consider the new group as busier than the current busiest group even if the new group has the same misfit task load as the current busiest group. We can avoid some unnecessary writes if we instead only consider the newest group to be the busiest if it has a higher load than the current busiest. This matches the behavior of other group types where we compare load, such as two groups that are both overloaded. Let's update the group_misfit_task type comparison to also only update the busiest group in the event of strict inequality. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20240206043921.850302-3-void@manifault.com
2024-02-28sched/fair: Remove unnecessary goto in update_sd_lb_stats()David Vernet
In update_sd_lb_stats(), when we're iterating over the sched groups that comprise a sched domain, we're skipping the call to update_sd_pick_busiest() for the sched group that contains the local / destination CPU. We use a goto to skip the call, but we could just as easily check !local_group, as there's no other logic that we need to skip with the goto. Let's remove the goto, and check for !local_group in the if statement instead. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20240206043921.850302-2-void@manifault.com
2024-02-28sched/fair: Take the scheduling domain into account in select_idle_core()Keisuke Nishimura
When picking a CPU on task wakeup, select_idle_core() has to take into account the scheduling domain where the function looks for the CPU. This is because the "isolcpus" kernel command line option can remove CPUs from the domain to isolate them from other SMT siblings. This change replaces the set of CPUs allowed to run the task from p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd) which is stored in the 'cpus' argument provided by select_idle_cpu(). Fixes: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Julia Lawall <julia.lawall@inria.fr> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
2024-02-28sched/fair: Take the scheduling domain into account in select_idle_smt()Keisuke Nishimura
When picking a CPU on task wakeup, select_idle_smt() has to take into account the scheduling domain of @target. This is because the "isolcpus" kernel command line option can remove CPUs from the domain to isolate them from other SMT siblings. This fix checks if the candidate CPU is in the target scheduling domain. Commit: df3cb4ea1fb6 ("sched/fair: Fix wrong cpu selecting from isolated domain") ... originally introduced this fix by adding the check of the scheduling domain in the loop. However, commit: 3e6efe87cd5cc ("sched/fair: Remove redundant check in select_idle_smt()") ... accidentally removed the check. Bring it back. Fixes: 3e6efe87cd5c ("sched/fair: Remove redundant check in select_idle_smt()") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Julia Lawall <julia.lawall@inria.fr> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
2024-02-28sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irqShrikanth Hegde
Use existing helper function cpu_util_irq() instead of open-coding access to ->avg_irq. During review it was noted that ->avg_irq could be updated by a different CPU than the one which is trying to access it. ->avg_irq is updated with WRITE_ONCE(), use READ_ONCE to access it in order to avoid any compiler optimizations. Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240101154624.100981-3-sshegde@linux.vnet.ibm.com
2024-02-28sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dlShrikanth Hegde
There are helper functions called cpu_util_dl() and cpu_util_rt() which give the average utilization of DL and RT respectively. But there are a few places in code where access to these variables is open-coded. Instead use the helper function so that code becomes simpler and easier to maintain later on. No functional changes intended. Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240101154624.100981-2-sshegde@linux.vnet.ibm.com
2024-02-16sched/core: Simplify code by removing duplicate #ifdefsShrikanth Hegde
There's a few cases of nested #ifdefs in the scheduler code that can be simplified: #ifdef DEFINE_A ...code block... #ifdef DEFINE_A <-- This is a duplicate. ...code block... #endif #else #ifndef DEFINE_A <-- This is also duplicate. ...code block... #endif #endif More details about the script and methods used to find these code patterns can be found at: https://lore.kernel.org/all/20240118080326.13137-1-sshegde@linux.ibm.com/ No change in functionality intended. [ mingo: Clarified the changelog. ] Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240216061433.535522-1-sshegde@linux.ibm.com
2024-01-09Merge tag 'mm-nonmm-stable-2024-01-09-10-33' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: "Quite a lot of kexec work this time around. Many singleton patches in many places. The notable patch series are: - nilfs2 folio conversion from Matthew Wilcox in 'nilfs2: Folio conversions for file paths'. - Additional nilfs2 folio conversion from Ryusuke Konishi in 'nilfs2: Folio conversions for directory paths'. - IA64 remnant removal in Heiko Carstens's 'Remove unused code after IA-64 removal'. - Arnd Bergmann has enabled the -Wmissing-prototypes warning everywhere in 'Treewide: enable -Wmissing-prototypes'. This had some followup fixes: - Nathan Chancellor has cleaned up the hexagon build in the series 'hexagon: Fix up instances of -Wmissing-prototypes'. - Nathan also addressed some s390 warnings in 's390: A couple of fixes for -Wmissing-prototypes'. - Arnd Bergmann addresses the same warnings for MIPS in his series 'mips: address -Wmissing-prototypes warnings'. - Baoquan He has made kexec_file operate in a top-down-fitting manner similar to kexec_load in the series 'kexec_file: Load kernel at top of system RAM if required' - Baoquan He has also added the self-explanatory 'kexec_file: print out debugging message if required'. - Some checkstack maintenance work from Tiezhu Yang in the series 'Modify some code about checkstack'. - Douglas Anderson has disentangled the watchdog code's logging when multiple reports are occurring simultaneously. The series is 'watchdog: Better handling of concurrent lockups'. - Yuntao Wang has contributed some maintenance work on the crash code in 'crash: Some cleanups and fixes'" * tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (157 commits) crash_core: fix and simplify the logic of crash_exclude_mem_range() x86/crash: use SZ_1M macro instead of hardcoded value x86/crash: remove the unused image parameter from prepare_elf_headers() kdump: remove redundant DEFAULT_CRASH_KERNEL_LOW_SIZE scripts/decode_stacktrace.sh: strip unexpected CR from lines watchdog: if panicking and we dumped everything, don't re-enable dumping watchdog/hardlockup: use printk_cpu_sync_get_irqsave() to serialize reporting watchdog/softlockup: use printk_cpu_sync_get_irqsave() to serialize reporting watchdog/hardlockup: adopt softlockup logic avoiding double-dumps kexec_core: fix the assignment to kimage->control_page x86/kexec: fix incorrect end address passed to kernel_ident_mapping_init() lib/trace_readwrite.c:: replace asm-generic/io with linux/io nilfs2: cpfile: fix some kernel-doc warnings stacktrace: fix kernel-doc typo scripts/checkstack.pl: fix no space expression between sp and offset x86/kexec: fix incorrect argument passed to kexec_dprintk() x86/kexec: use pr_err() instead of kexec_dprintk() when an error occurs nilfs2: add missing set_freezable() for freezable kthread kernel: relay: remove relay_file_splice_read dead code, doesn't work docs: submit-checklist: remove all of "make namespacecheck" ...
2024-01-08Merge branch 'sched/urgent' into sched/core, to pick up pending v6.7 fixes ↵Ingo Molnar
for the v6.8 merge window This fix didn't make it upstream in time, pick it up for the v6.8 merge window. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-12-29sched/fair: Fix tg->load when offlining a CPUVincent Guittot
When a CPU is taken offline, the contribution of its cfs_rqs to task_groups' load may remain and will negatively impact the calculation of the share of the online CPUs. To fix this bug, clear the contribution of an offlining CPU to task groups' load and skip its contribution while it is inactive. Here's the reproducer of the anomaly, by Imran Khan: "So far I have encountered only one rather lengthy way of reproducing this issue, which is as follows: 1. Take a KVM guest (booted with 4 CPUs and can be scaled up to 124 CPUs) and create 2 custom cgroups: /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/ cpu/test_group_2 2. Assign a CPU intensive workload to each of these cgroups and start the workload. For my tests I am using following app: int main(int argc, char *argv[]) { unsigned long count, i, val; if (argc != 2) { printf("usage: ./a.out <number of random nums to generate> \n"); return 0; } count = strtoul(argv[1], NULL, 10); printf("Generating %lu random numbers \n", count); for (i = 0; i < count; i++) { val = rand(); val = val % 2; //usleep(1); } printf("Generated %lu random numbers \n", count); return 0; } Also since the system is booted with 4 CPUs, in order to completely load the system I am also launching 4 instances of same test app under: /sys/fs/cgroup/cpu/ 3. We can see that both of the cgroups get similar CPU time: # systemd-cgtop --depth 1 Path Tasks %CPU Memory Input/s Output/s / 659 - 5.5G - - /system.slice - - 5.7G - - /test_group_1 4 - - - - /test_group_2 3 - - - - /user.slice 31 - 56.5M - - Path Tasks %CPU Memory Input/s Output/s / 659 394.6 5.5G - - /test_group_2 3 65.7 - - - /user.slice 29 55.1 48.0M - - /test_group_1 4 47.3 - - - /system.slice - 2.2 5.7G - - Path Tasks %CPU Memory Input/s Output/s / 659 394.8 5.5G - - /test_group_1 4 62.9 - - - /user.slice 28 44.9 54.2M - - /test_group_2 3 44.7 - - - /system.slice - 0.9 5.7G - - Path Tasks %CPU Memory Input/s Output/s / 659 394.4 5.5G - - /test_group_2 3 58.8 - - - /test_group_1 4 51.9 - - - /user.slice 30 39.3 59.6M - - /system.slice - 1.9 5.7G - - Path Tasks %CPU Memory Input/s Output/s / 659 394.7 5.5G - - /test_group_1 4 60.9 - - - /test_group_2 3 57.9 - - - /user.slice 28 43.5 36.9M - - /system.slice - 3.0 5.7G - - Path Tasks %CPU Memory Input/s Output/s / 659 395.0 5.5G - - /test_group_1 4 66.8 - - - /test_group_2 3 56.3 - - - /user.slice 29 43.1 51.8M - - /system.slice - 0.7 5.7G - - 4. Now move systemd-udevd to one of these test groups, say test_group_1, and perform scale up to 124 CPUs followed by scale down back to 4 CPUs from the host side. 5. Run the same workload i.e 4 instances of CPU hogger under /sys/fs/cgroup/cpu and one instance of CPU hogger each in /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/test_group_2. It can be seen that test_group_1 (the one where systemd-udevd was moved) is getting much less CPU time than the test_group_2, even though at this point of time both of these groups have only CPU hogger running: # systemd-cgtop --depth 1 Path Tasks %CPU Memory Input/s Output/s / 1219 - 5.4G - - /system.slice - - 5.6G - - /test_group_1 4 - - - - /test_group_2 3 - - - - /user.slice 26 - 91.3M - - Path Tasks %CPU Memory Input/s Output/s / 1221 394.3 5.4G - - /test_group_2 3 82.7 - - - /test_group_1 4 14.3 - - - /system.slice - 0.8 5.6G - - /user.slice 26 0.4 91.2M - - Path Tasks %CPU Memory Input/s Output/s / 1221 394.6 5.4G - - /test_group_2 3 67.4 - - - /system.slice - 24.6 5.6G - - /test_group_1 4 12.5 - - - /user.slice 26 0.4 91.2M - - Path Tasks %CPU Memory Input/s Output/s / 1221 395.2 5.4G - - /test_group_2 3 60.9 - - - /system.slice - 27.9 5.6G - - /test_group_1 4 12.2 - - - /user.slice 26 0.4 91.2M - - Path Tasks %CPU Memory Input/s Output/s / 1221 395.2 5.4G - - /test_group_2 3 69.4 - - - /test_group_1 4 13.9 - - - /user.slice 28 1.6 92.0M - - /system.slice - 1.0 5.6G - - Path Tasks %CPU Memory Input/s Output/s / 1221 395.6 5.4G - - /test_group_2 3 59.3 - - - /test_group_1 4 14.1 - - - /user.slice 28 1.3 92.2M - - /system.slice - 0.7 5.6G - - Path Tasks %CPU Memory Input/s Output/s / 1221 395.5 5.4G - - /test_group_2 3 67.2 - - - /test_group_1 4 11.5 - - - /user.slice 28 1.3 92.5M - - /system.slice - 0.6 5.6G - - Path Tasks %CPU Memory Input/s Output/s / 1221 395.1 5.4G - - /test_group_2 3 76.8 - - - /test_group_1 4 12.9 - - - /user.slice 28 1.3 92.8M - - /system.slice - 1.2 5.6G - - From sched_debug data it can be seen that in bad case the load.weight of per-CPU sched entities corresponding to test_group_1 has reduced significantly and also load_avg of test_group_1 remains much higher than that of test_group_2, even though systemd-udevd stopped running long time back and at this point of time both cgroups just have the CPU hogger app as running entity." [ mingo: Added details from the original discussion, plus minor edits to the patch. ] Reported-by: Imran Khan <imran.f.khan@oracle.com> Tested-by: Imran Khan <imran.f.khan@oracle.com> Tested-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Imran Khan <imran.f.khan@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Link: https://lore.kernel.org/r/20231223111545.62135-1-vincent.guittot@linaro.org
2023-12-23sched/fair: Remove unused 'next_buddy_marked' local variable in ↵Wang Jinchao
check_preempt_wakeup_fair() This variable became unused in: 5e963f2bd465 ("sched/fair: Commit to EEVDF") Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/202312141319+0800-wangjinchao@xfusion.com
2023-12-23sched/fair: Use all little CPUs for CPU-bound workloadsPierre Gondois
Running N CPU-bound tasks on an N CPUs platform: - with asymmetric CPU capacity - not being a DynamIq system (i.e. having a PKG level sched domain without the SD_SHARE_PKG_RESOURCES flag set) .. might result in a task placement where two tasks run on a big CPU and none on a little CPU. This placement could be more optimal by using all CPUs. Testing platform: Juno-r2: - 2 big CPUs (1-2), maximum capacity of 1024 - 4 little CPUs (0,3-5), maximum capacity of 383 Testing workload ([1]): Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks is affine to a CPU, except for: - one little CPU which is left idle. - one big CPU which has 2 tasks affine. After the 100ms (step 2), remove the cpumask affinity. Behavior before the patch: During step 2, the load balancer running from the idle CPU tags sched domains as: - little CPUs: 'group_has_spare'. Cf. group_has_capacity() and group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs sched-domain, and the idle CPU provides enough spare capacity regarding the imbalance_pct - big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs sched-domain, so the following path is used: group_is_overloaded() \-if (sgs->sum_nr_running <= sgs->group_weight) return true; The following path which would change the migration type to 'migrate_task' is not taken: calculate_imbalance() \-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) as the local group has some spare capacity, so the imbalance is not 0. The migration type requested is 'migrate_util' and the busiest runqueue is the big CPU's runqueue having 2 tasks (each having a utilization of 512). The idle little CPU cannot pull one of these task as its capacity is too small for the task. The following path is used: detach_tasks() \-case migrate_util: \-if (util > env->imbalance) goto next; After the patch: As the number of failed balancing attempts grows (with 'nr_balance_failed'), progressively make it easier to migrate a big task to the idling little CPU. A similar mechanism is used for the 'migrate_load' migration type. Improvement: Running the testing workload [1] with the step 2 representing a ~10s load for a big CPU: Before patch: ~19.3s After patch: ~18s (-6.7%) Similar issue reported at: https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/ Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Qais Yousef <qyousef@layalina.io> Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
2023-12-23sched/fair: Simplify util_estVincent Guittot
With UTIL_EST_FASTUP now being permanent, we can take advantage of the fact that the ewma jumps directly to a higher utilization at dequeue to simplify util_est and remove the enqueued field. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com> Reviewed-by: Alex Shi <alexs@kernel.org> Link: https://lore.kernel.org/r/20231201161652.1241695-3-vincent.guittot@linaro.org
2023-12-23sched/fair: Remove SCHED_FEAT(UTIL_EST_FASTUP, true)Vincent Guittot
sched_feat(UTIL_EST_FASTUP) has been added to easily disable the feature in order to check for possibly related regressions. After 3 years, it has never been used and no regression has been reported. Let's remove it and make fast increase a permanent behavior. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com> Reviewed-by: Tang Yizhou <yizhou.tang@shopee.com> Reviewed-by: Yanteng Si <siyanteng@loongson.cn> [for the Chinese translation] Reviewed-by: Alex Shi <alexs@kernel.org> Link: https://lore.kernel.org/r/20231201161652.1241695-2-vincent.guittot@linaro.org
2023-12-10sched: fair: move unused stub functions to headerArnd Bergmann
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED, and empty one that is only referenced when FAIR_GROUP_SCHED is disabled but CGROUP_SCHED is still enabled. If both are turned off, the functions are still defined but the misisng prototype causes a W=1 warning: kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group' kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group' kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group' kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group' Move the alternatives into the header as static inline functions with the correct combination of #ifdef checks to avoid the warning without adding even more complexity. [A different patch with the same description got applied by accident and was later reverted, but the original patch is still missing] Link: https://lkml.kernel.org/r/20231123110506.707903-4-arnd@kernel.org Fixes: 7aa55f2a5902 ("sched/fair: Move unused stub functions to header") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Nicolas Schier <nicolas@fjasle.eu> Cc: Palmer Dabbelt <palmer@rivosinc.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Tudor Ambarus <tudor.ambarus@linaro.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zhihao Cheng <chengzhihao1@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-29sched/fair: Update min_vruntime for reweight_entity() correctlyYiwei Lin
Since reweight_entity() may have chance to change the weight of cfs_rq->curr entity, we should also update_min_vruntime() if this is the case Fixes: eab03c23c2a1 ("sched/eevdf: Fix vruntime adjustment on reweight") Signed-off-by: Yiwei Lin <s921975628@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Abel Wu <wuyun.abel@bytedance.com> Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com
2023-11-23sched/cpufreq: Rework schedutil governor performance estimationVincent Guittot
The current method to take into account uclamp hints when estimating the target frequency can end in a situation where the selected target frequency is finally higher than uclamp hints, whereas there are no real needs. Such cases mainly happen because we are currently mixing the traditional scheduler utilization signal with the uclamp performance hints. By adding these 2 metrics, we loose an important information when it comes to select the target frequency, and we have to make some assumptions which can't fit all cases. Rework the interface between the scheduler and schedutil governor in order to propagate all information down to the cpufreq governor. effective_cpu_util() interface changes and now returns the actual utilization of the CPU with 2 optional inputs: - The minimum performance for this CPU; typically the capacity to handle the deadline task and the interrupt pressure. But also uclamp_min request when available. - The maximum targeting performance for this CPU which reflects the maximum level that we would like to not exceed. By default it will be the CPU capacity but can be reduced because of some performance hints set with uclamp. The value can be lower than actual utilization and/or min performance level. A new sugov_effective_cpu_perf() interface is also available to compute the final performance level that is targeted for the CPU, after applying some cpufreq headroom and taking into account all inputs. With these 2 functions, schedutil is now able to decide when it must go above uclamp hints. It now also has a generic way to get the min performance level. The dependency between energy model and cpufreq governor and its headroom policy doesn't exist anymore. eenv_pd_max_util() asks schedutil for the targeted performance after applying the impact of the waking task. [ mingo: Refined the changelog & C comments. ] Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20231122133904.446032-2-vincent.guittot@linaro.org
2023-11-23sched/pelt: Avoid underestimation of task utilizationVincent Guittot
Lukasz Luba reported that a thread's util_est can significantly decrease as a result of sharing the CPU with other threads. The use case can be easily reproduced with a periodic task TA that runs 1ms and sleeps 100us. When the task is alone on the CPU, its max utilization and its util_est is around 888. If another similar task starts to run on the same CPU, TA will have to share the CPU runtime and its maximum utilization will decrease around half the CPU capacity (512) then TA's util_est will follow this new maximum trend which is only the result of sharing the CPU with others tasks. Such situation can be detected with runnable_avg wich is close or equal to util_avg when TA is alone, but increases above util_avg when TA shares the CPU with other threads and wait on the runqueue. [ We prefer an util_est that overestimate rather than under estimate because in 1st case we will not provide enough performance to the task which will remain under-provisioned, whereas in the other case we will create some idle time which will enable to reduce contention and as a result reduces the util_est so the overestimate will be transient whereas the underestimate will remain. ] [ mingo: Refined the changelog, added comments from the LKML discussion. ] Reported-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/lkml/CAKfTPtDd-HhF-YiNTtL9i5k0PfJbF819Yxu4YquzfXgwi7voyw@mail.gmail.com/#t Link: https://lore.kernel.org/r/20231122140119.472110-1-vincent.guittot@linaro.org Cc: Hongyan Xia <hongyan.xia2@arm.com>
2023-11-15sched/deadline: Introduce deadline serversPeter Zijlstra
Low priority tasks (e.g., SCHED_OTHER) can suffer starvation if tasks with higher priority (e.g., SCHED_FIFO) monopolize CPU(s). RT Throttling has been introduced a while ago as a (mostly debug) countermeasure one can utilize to reserve some CPU time for low priority tasks (usually background type of work, e.g. workqueues, timers, etc.). It however has its own problems (see documentation) and the undesired effect of unconditionally throttling FIFO tasks even when no lower priority activity needs to run (there are mechanisms to fix this issue as well, but, again, with their own problems). Introduce deadline servers to service low priority tasks needs under starvation conditions. Deadline servers are built extending SCHED_DEADLINE implementation to allow 2-level scheduling (a sched_deadline entity becomes a container for lower priority scheduling entities). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/4968601859d920335cf85822eb573a5f179f04b8.1699095159.git.bristot@kernel.org
2023-11-15sched: Unify more update_curr*()Peter Zijlstra
Now that trace_sched_stat_runtime() no longer takes a vruntime argument, the task specific bits are identical between update_curr_common() and update_curr(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-11-15sched: Remove vruntime from trace_sched_stat_runtime()Peter Zijlstra
Tracing the runtime delta makes sense, observer can sum over time. Tracing the absolute vruntime makes less sense, inconsistent: absolute-vs-delta, but also vruntime delta can be computed from runtime delta. Removing the vruntime thing also makes the two tracepoint sites identical, allowing to unify the code in a later patch. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-11-15sched: Unify runtime accounting across classesPeter Zijlstra
All classes use sched_entity::exec_start to track runtime and have copies of the exact same code around to compute runtime. Collapse all that. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/54d148a144f26d9559698c4dd82d8859038a7380.1699095159.git.bristot@kernel.org
2023-11-15sched/eevdf: O(1) fastpath for task selectionAbel Wu
Since the RB-tree is now sorted by deadline, let's first try the leftmost entity which has the earliest virtual deadline. I've done some benchmarks to see its effectiveness. All the benchmarks are done inside a normal cpu cgroup in a clean environment with cpu turbo disabled, on a dual-CPU Intel Xeon(R) Platinum 8260 with 2 NUMA nodes each of which has 24C/48T. hackbench: process/thread + pipe/socket + 1/2/4/8 groups netperf: TCP/UDP + STREAM/RR + 24/48/72/96/192 threads tbench: loopback 24/48/72/96/192 threads schbench: 1/2/4/8 mthreads direct: cfs_rq has only one entity parity: RUN_TO_PARITY fast: O(1) fastpath slow: heap search (%) direct parity fast slow hackbench 92.95 2.02 4.91 0.12 netperf 68.08 6.60 24.18 1.14 tbench 67.55 11.22 20.61 0.62 schbench 69.91 2.65 25.73 1.71 The above results indicate that this fastpath really makes task selection more efficient. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231115033647.80785-4-wuyun.abel@bytedance.com
2023-11-15sched/eevdf: Sort the rbtree by virtual deadlineAbel Wu
Sort the task timeline by virtual deadline and keep the min_vruntime in the augmented tree, so we can avoid doubling the worst case cost and make full use of the cached leftmost node to enable O(1) fastpath picking in next patch. Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231115033647.80785-3-wuyun.abel@bytedance.com
2023-11-15sched/numa: Fix mm numa_scan_seq based unconditional scanRaghavendra K T
Since commit fc137c0ddab2 ("sched/numa: enhance vma scanning logic") NUMA Balancing allows updating PTEs to trap NUMA hinting faults if the task had previously accessed VMA. However unconditional scan of VMAs are allowed during initial phase of VMA creation until process's mm numa_scan_seq reaches 2 even though current task had not accessed VMA. Rationale: - Without initial scan subsequent PTE update may never happen. - Give fair opportunity to all the VMAs to be scanned and subsequently understand the access pattern of all the VMAs. But it has a corner case where, if a VMA is created after some time, process's mm numa_scan_seq could be already greater than 2. For e.g., values of mm numa_scan_seq when VMAs are created by running mmtest autonuma benchmark briefly looks like: start_seq=0 : 459 start_seq=2 : 138 start_seq=3 : 144 start_seq=4 : 8 start_seq=8 : 1 start_seq=9 : 1 This results in no unconditional PTE updates for those VMAs created after some time. Fix: - Note down the initial value of mm numa_scan_seq in per VMA start_seq. - Allow unconditional scan till start_seq + 2. Result: SUT: AMD EPYC Milan with 2 NUMA nodes 256 cpus. base kernel: upstream 6.6-rc6 with Mels patches [1] applied. kernbench ========== base patched %gain Amean elsp-128 165.09 ( 0.00%) 164.78 * 0.19%* Duration User 41404.28 41375.08 Duration System 9862.22 9768.48 Duration Elapsed 519.87 518.72 Ops NUMA PTE updates 1041416.00 831536.00 Ops NUMA hint faults 263296.00 220966.00 Ops NUMA pages migrated 258021.00 212769.00 Ops AutoNUMA cost 1328.67 1114.69 autonumabench NUMA01_THREADLOCAL ================== Amean elsp-NUMA01_THREADLOCAL 81.79 (0.00%) 67.74 * 17.18%* Duration User 54832.73 47379.67 Duration System 75.00 185.75 Duration Elapsed 576.72 476.09 Ops NUMA PTE updates 394429.00 11121044.00 Ops NUMA hint faults 1001.00 8906404.00 Ops NUMA pages migrated 288.00 2998694.00 Ops AutoNUMA cost 7.77 44666.84 Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/2ea7cbce80ac7c62e90cbfb9653a7972f902439f.1697816692.git.raghavendra.kt@amd.com
2023-11-14sched/fair: Fix the decision for load balanceKeisuke Nishimura
should_we_balance is called for the decision to do load-balancing. When sched ticks invoke this function, only one CPU should return true. However, in the current code, two CPUs can return true. The following situation, where b means busy and i means idle, is an example, because CPU 0 and CPU 2 return true. [0, 1] [2, 3] b b i b This fix checks if there exists an idle CPU with busy sibling(s) after looking for a CPU on an idle core. If some idle CPUs with busy siblings are found, just the first one should do load-balancing. Fixes: b1bfeab9b002 ("sched/fair: Consider the idle state of the whole core for load balance") Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr
2023-11-14sched/eevdf: Fix vruntime adjustment on reweightAbel Wu
vruntime of the (on_rq && !0-lag) entity needs to be adjusted when it gets re-weighted, and the calculations can be simplified based on the fact that re-weight won't change the w-average of all the entities. Please check the proofs in comments. But adjusting vruntime can also cause position change in RB-tree hence require re-queue to fix up which might be costly. This might be avoided by deferring adjustment to the time the entity actually leaves tree (dequeue/pick), but that will negatively affect task selection and probably not good enough either. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com
2023-11-02Merge tag 'mm-stable-2023-11-01-14-33' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-10-25sched/fair: use folio_xchg_last_cpupid() in should_numa_migrate_memory()Kefeng Wang
Convert to use folio_xchg_last_cpupid() in should_numa_migrate_memory(). Link: https://lkml.kernel.org/r/20231018140806.2783514-14-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25sched/fair: use folio_xchg_access_time() in numa_hint_fault_latency()Kefeng Wang
Convert to use folio_xchg_access_time() in numa_hint_fault_latency(). Link: https://lkml.kernel.org/r/20231018140806.2783514-9-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-24sched/fair: Remove SIS_PROPPeter Zijlstra
SIS_UTIL seems to work well, lets remove the old thing. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20231020134337.GD33965@noisy.programming.kicks-ass.net
2023-10-24sched/fair: Use candidate prev/recent_used CPU if scanning failed for ↵Yicong Yang
cluster wakeup Chen Yu reports a hackbench regression of cluster wakeup when hackbench threads equal to the CPU number [1]. Analysis shows it's because we wake up more on the target CPU even if the prev_cpu is a good wakeup candidate and leads to the decrease of the CPU utilization. Generally if the task's prev_cpu is idle we'll wake up the task on it without scanning. On cluster machines we'll try to wake up the task in the same cluster of the target for better cache affinity, so if the prev_cpu is idle but not sharing the same cluster with the target we'll still try to find an idle CPU within the cluster. This will improve the performance at low loads on cluster machines. But in the issue above, if the prev_cpu is idle but not in the cluster with the target CPU, we'll try to scan an idle one in the cluster. But since the system is busy, we're likely to fail the scanning and use target instead, even if the prev_cpu is idle. Then leads to the regression. This patch solves this in 2 steps: o record the prev_cpu/recent_used_cpu if they're good wakeup candidates but not sharing the cluster with the target. o on scanning failure use the prev_cpu/recent_used_cpu if they're recorded as idle [1] https://lore.kernel.org/all/ZGzDLuVaHR1PAYDt@chenyu5-mobl1/ Closes: https://lore.kernel.org/all/ZGsLy83wPIpamy6x@chenyu5-mobl1/ Reported-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20231019033323.54147-4-yangyicong@huawei.com
2023-10-24sched/fair: Scan cluster before scanning LLC in wake-up pathBarry Song
For platforms having clusters like Kunpeng920, CPUs within the same cluster have lower latency when synchronizing and accessing shared resources like cache. Thus, this patch tries to find an idle cpu within the cluster of the target CPU before scanning the whole LLC to gain lower latency. This will be implemented in 2 steps in select_idle_sibling(): 1. When the prev_cpu/recent_used_cpu are good wakeup candidates, use them if they're sharing cluster with the target CPU. Otherwise trying to scan for an idle CPU in the target's cluster. 2. Scanning the cluster prior to the LLC of the target CPU for an idle CPU to wakeup. Testing has been done on Kunpeng920 by pinning tasks to one numa and two numa. On Kunpeng920, Each numa has 8 clusters and each cluster has 4 CPUs. With this patch, We noticed enhancement on tbench and netperf within one numa or cross two numa on top of tip-sched-core commit 9b46f1abc6d4 ("sched/debug: Print 'tgid' in sched_show_task()") tbench results (node 0): baseline patched 1: 327.2833 372.4623 ( 13.80%) 4: 1320.5933 1479.8833 ( 12.06%) 8: 2638.4867 2921.5267 ( 10.73%) 16: 5282.7133 5891.5633 ( 11.53%) 32: 9810.6733 9877.3400 ( 0.68%) 64: 7408.9367 7447.9900 ( 0.53%) 128: 6203.2600 6191.6500 ( -0.19%) tbench results (node 0-1): baseline patched 1: 332.0433 372.7223 ( 12.25%) 4: 1325.4667 1477.6733 ( 11.48%) 8: 2622.9433 2897.9967 ( 10.49%) 16: 5218.6100 5878.2967 ( 12.64%) 32: 10211.7000 11494.4000 ( 12.56%) 64: 13313.7333 16740.0333 ( 25.74%) 128: 13959.1000 14533.9000 ( 4.12%) netperf results TCP_RR (node 0): baseline patched 1: 76546.5033 90649.9867 ( 18.42%) 4: 77292.4450 90932.7175 ( 17.65%) 8: 77367.7254 90882.3467 ( 17.47%) 16: 78519.9048 90938.8344 ( 15.82%) 32: 72169.5035 72851.6730 ( 0.95%) 64: 25911.2457 25882.2315 ( -0.11%) 128: 10752.6572 10768.6038 ( 0.15%) netperf results TCP_RR (node 0-1): baseline patched 1: 76857.6667 90892.2767 ( 18.26%) 4: 78236.6475 90767.3017 ( 16.02%) 8: 77929.6096 90684.1633 ( 16.37%) 16: 77438.5873 90502.5787 ( 16.87%) 32: 74205.6635 88301.5612 ( 19.00%) 64: 69827.8535 71787.6706 ( 2.81%) 128: 25281.4366 25771.3023 ( 1.94%) netperf results UDP_RR (node 0): baseline patched 1: 96869.8400 110800.8467 ( 14.38%) 4: 97744.9750 109680.5425 ( 12.21%) 8: 98783.9863 110409.9637 ( 11.77%) 16: 99575.0235 110636.2435 ( 11.11%) 32: 95044.7250 97622.8887 ( 2.71%) 64: 32925.2146 32644.4991 ( -0.85%) 128: 12859.2343 12824.0051 ( -0.27%) netperf results UDP_RR (node 0-1): baseline patched 1: 97202.4733 110190.1200 ( 13.36%) 4: 95954.0558 106245.7258 ( 10.73%) 8: 96277.1958 105206.5304 ( 9.27%) 16: 97692.7810 107927.2125 ( 10.48%) 32: 79999.6702 103550.2999 ( 29.44%) 64: 80592.7413 87284.0856 ( 8.30%) 128: 27701.5770 29914.5820 ( 7.99%) Note neither Kunpeng920 nor x86 Jacobsville supports SMT, so the SMT branch in the code has not been tested but it supposed to work. Chen Yu also noticed this will improve the performance of tbench and netperf on a 24 CPUs Jacobsville machine, there are 4 CPUs in one cluster sharing L2 Cache. [https://lore.kernel.org/lkml/Ytfjs+m1kUs0ScSn@worktop.programming.kicks-ass.net] Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com> Tested-by: Yicong Yang <yangyicong@hisilicon.com> Link: https://lkml.kernel.org/r/20231019033323.54147-3-yangyicong@huawei.com
2023-10-23Merge tag 'v6.6-rc7' into sched/core, to pick up fixesIngo Molnar
Pick up recent sched/urgent fixes merged upstream. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-20sched/fair: Remove unused 'curr' argument from pick_next_entity()Yiwei Lin
The 'curr' argument of pick_next_entity() has become unused after the EEVDF changes. [ mingo: Updated the changelog. ] Signed-off-by: Yiwei Lin <s921975628@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231020055617.42064-1-s921975628@gmail.com
2023-10-20sched/nohz: Update comments about NEWILB_KICKJoel Fernandes (Google)
How ILB is triggered without IPIs is cryptic. Out of mercy for future code readers, document it in code comments. The comments are derived from a discussion with Vincent in a past review. Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231020014031.919742-2-joel@joelfernandes.org
2023-10-18sched/fair: Remove duplicate #includeJiapeng Chong
./kernel/sched/fair.c: linux/sched/cond_resched.h is included more than once. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231018062759.44375-1-jiapeng.chong@linux.alibaba.com Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=6907
2023-10-18sched/eevdf: Fix heap corruption morePeter Zijlstra
Because someone is a flaming idiot... and forgot we have current as se->on_rq but not actually in the tree itself, and walking rb_parent() on an entry not in the tree is 'funky' and KASAN complains. Fixes: 8dafa9d0eb1a ("sched/eevdf: Fix min_deadline heap integrity") Reported-by: 0599jiangyc@gmail.com Reported-by: Dmitry Safonov <0x7f454c46@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Dmitry Safonov <0x7f454c46@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=218020 Link: https://lkml.kernel.org/r/CAJwJo6ZGXO07%3DQvW4fgQfbsDzQPs9xj5sAQ1zp%3DmAyPMNbHYww%40mail.gmail.com
2023-10-16sched/numa, mm: make numa migrate functions to take a folioKefeng Wang
The cpupid (or access time) is stored in the head page for THP, so it is safely to make should_numa_migrate_memory() and numa_hint_fault_latency() to take a folio. This is in preparation for large folio numa balancing. Link: https://lkml.kernel.org/r/20230921074417.24004-7-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-13sched: Fix stop_one_cpu_nowait() vs hotplugPeter Zijlstra
Kuyo reported sporadic failures on a sched_setaffinity() vs CPU hotplug stress-test -- notably affine_move_task() remains stuck in wait_for_completion(), leading to a hung-task detector warning. Specifically, it was reported that stop_one_cpu_nowait(.fn = migration_cpu_stop) returns false -- this stopper is responsible for the matching complete(). The race scenario is: CPU0 CPU1 // doing _cpu_down() __set_cpus_allowed_ptr() task_rq_lock(); takedown_cpu() stop_machine_cpuslocked(take_cpu_down..) <PREEMPT: cpu_stopper_thread() MULTI_STOP_PREPARE ... __set_cpus_allowed_ptr_locked() affine_move_task() task_rq_unlock(); <PREEMPT: cpu_stopper_thread()\> ack_state() MULTI_STOP_RUN take_cpu_down() __cpu_disable(); stop_machine_park(); stopper->enabled = false; /> /> stop_one_cpu_nowait(.fn = migration_cpu_stop); if (stopper->enabled) // false!!! That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the stopper thread gets a chance to preempt and allows the cpu-down for the target CPU to complete. OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to issue a wakeup, it must not be ran under the scheduler locks. Solve this apparent contradiction by keeping preemption disabled over the unlock + queue_stopper combination: preempt_disable(); task_rq_unlock(...); if (!stop_pending) stop_one_cpu_nowait(...) preempt_enable(); This respects the lock ordering contraints while still avoiding the above race. That is, if we find the CPU is online under rq-lock, the targeted stop_one_cpu_nowait() must succeed. Apply this pattern to all similar stop_one_cpu_nowait() invocations. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com> Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
2023-10-12sched/topology: Rename 'DIE' domain to 'PKG'Peter Zijlstra
While reworking the x86 topology code Thomas tripped over creating a 'DIE' domain for the package mask. :-) Since these names are CONFIG_SCHED_DEBUG=y only, rename them to make the name less ambiguous. [ Shrikanth Hegde: rename on s390 as well. ] [ Valentin Schneider: also rename it in the comments. ] [ mingo: port to recent kernels & find all remaining occurances. ] Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Valentin Schneider <vschneid@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230712141056.GI3100107@hirez.programming.kicks-ass.net
2023-10-10sched/numa: Complete scanning of inactive VMAs when there is no alternativeMel Gorman
VMAs are skipped if there is no recent fault activity but this represents a chicken-and-egg problem as there may be no fault activity if the PTEs are never updated to trap NUMA hints. There is an indirect reliance on scanning to be forced early in the lifetime of a task but this may fail to detect changes in phase behaviour. Force inactive VMAs to be scanned when all other eligible VMAs have been updated within the same scan sequence. Test results in general look good with some changes in performance, both negative and positive, depending on whether the additional scanning and faulting was beneficial or not to the workload. The autonuma benchmark workload NUMA01_THREADLOCAL was picked for closer examination. The workload creates two processes with numerous threads and thread-local storage that is zero-filled in a loop. It exercises the corner case where unrelated threads may skip VMAs that are thread-local to another thread and still has some VMAs that inactive while the workload executes. The VMA skipping activity frequency with and without the patch: 6.6.0-rc2-sched-numabtrace-v1 ============================= 649 reason=scan_delay 9,094 reason=unsuitable 48,915 reason=shared_ro 143,919 reason=inaccessible 193,050 reason=pid_inactive 6.6.0-rc2-sched-numabselective-v1 ============================= 146 reason=seq_completed 622 reason=ignore_pid_inactive 624 reason=scan_delay 6,570 reason=unsuitable 16,101 reason=shared_ro 27,608 reason=inaccessible 41,939 reason=pid_inactive Note that with the patch applied, the PID activity is ignored (ignore_pid_inactive) to ensure a VMA with some activity is completely scanned. In addition, a small number of VMAs are scanned when no other eligible VMA is available during a single scan window (seq_completed). The number of times a VMA is skipped due to no PID activity from the scanning task (pid_inactive) drops dramatically. It is expected that this will increase the number of PTEs updated for NUMA hinting faults as well as hinting faults but these represent PTEs that would otherwise have been missed. The tradeoff is scan+fault overhead versus improving locality due to migration. On a 2-socket Cascade Lake test machine, the time to complete the workload is as follows; 6.6.0-rc2 6.6.0-rc2 sched-numabtrace-v1 sched-numabselective-v1 Min elsp-NUMA01_THREADLOCAL 174.22 ( 0.00%) 117.64 ( 32.48%) Amean elsp-NUMA01_THREADLOCAL 175.68 ( 0.00%) 123.34 * 29.79%* Stddev elsp-NUMA01_THREADLOCAL 1.20 ( 0.00%) 4.06 (-238.20%) CoeffVar elsp-NUMA01_THREADLOCAL 0.68 ( 0.00%) 3.29 (-381.70%) Max elsp-NUMA01_THREADLOCAL 177.18 ( 0.00%) 128.03 ( 27.74%) The time to complete the workload is reduced by almost 30%: 6.6.0-rc2 6.6.0-rc2 sched-numabtrace-v1 sched-numabselective-v1 / Duration User 91201.80 63506.64 Duration System 2015.53 1819.78 Duration Elapsed 1234.77 868.37 In this specific case, system CPU time was not increased but it's not universally true. From vmstat, the NUMA scanning and fault activity is as follows; 6.6.0-rc2 6.6.0-rc2 sched-numabtrace-v1 sched-numabselective-v1 Ops NUMA base-page range updates 64272.00 26374386.00 Ops NUMA PTE updates 36624.00 55538.00 Ops NUMA PMD updates 54.00 51404.00 Ops NUMA hint faults 15504.00 75786.00 Ops NUMA hint local faults % 14860.00 56763.00 Ops NUMA hint local percent 95.85 74.90 Ops NUMA pages migrated 1629.00 6469222.00 Both the number of PTE updates and hint faults is dramatically increased. While this is superficially unfortunate, it represents ranges that were simply skipped without the patch. As a result of the scanning and hinting faults, many more pages were also migrated but as the time to completion is reduced, the overhead is offset by the gain. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Raghavendra K T <raghavendra.kt@amd.com> Link: https://lore.kernel.org/r/20231010083143.19593-7-mgorman@techsingularity.net
2023-10-10sched/numa: Complete scanning of partial VMAs regardless of PID activityMel Gorman
NUMA Balancing skips VMAs when the current task has not trapped a NUMA fault within the VMA. If the VMA is skipped then mm->numa_scan_offset advances and a task that is trapping faults within the VMA may never fully update PTEs within the VMA. Force tasks to update PTEs for partially scanned PTEs. The VMA will be tagged for NUMA hints by some task but this removes some of the benefit of tracking PID activity within a VMA. A follow-on patch will mitigate this problem. The test cases and machines evaluated did not trigger the corner case so the performance results are neutral with only small changes within the noise from normal test-to-test variance. However, the next patch makes the corner case easier to trigger. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Raghavendra K T <raghavendra.kt@amd.com> Link: https://lore.kernel.org/r/20231010083143.19593-6-mgorman@techsingularity.net
2023-10-10sched/numa: Move up the access pid reset logicRaghavendra K T
Recent NUMA hinting faulting activity is reset approximately every VMA_PID_RESET_PERIOD milliseconds. However, if the current task has not accessed a VMA then the reset check is missed and the reset is potentially deferred forever. Check if the PID activity information should be reset before checking if the current task recently trapped a NUMA hinting fault. [ mgorman@techsingularity.net: Rewrite changelog ] Suggested-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231010083143.19593-5-mgorman@techsingularity.net
2023-10-10sched/numa: Trace decisions related to skipping VMAsMel Gorman
NUMA balancing skips or scans VMAs for a variety of reasons. In preparation for completing scans of VMAs regardless of PID access, trace the reasons why a VMA was skipped. In a later patch, the tracing will be used to track if a VMA was forcibly scanned. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231010083143.19593-4-mgorman@techsingularity.net
2023-10-10sched/numa: Rename vma_numab_state::access_pids[] => ::pids_active[], ↵Mel Gorman
::next_pid_reset => ::pids_active_reset The access_pids[] field name is somewhat ambiguous as no PIDs are accessed. Similarly, it's not clear that next_pid_reset is related to access_pids[]. Rename the fields to more accurately reflect their purpose. [ mingo: Rename in the comments too. ] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20231010083143.19593-3-mgorman@techsingularity.net
2023-10-09sched/topology: Consolidate and clean up access to a CPU's max compute capacityVincent Guittot
Remove the rq::cpu_capacity_orig field and use arch_scale_cpu_capacity() instead. The scheduler uses 3 methods to get access to a CPU's max compute capacity: - arch_scale_cpu_capacity(cpu) which is the default way to get a CPU's capacity. - cpu_capacity_orig field which is periodically updated with arch_scale_cpu_capacity(). - capacity_orig_of(cpu) which encapsulates rq->cpu_capacity_orig. There is no real need to save the value returned by arch_scale_cpu_capacity() in struct rq. arch_scale_cpu_capacity() returns: - either a per_cpu variable. - or a const value for systems which have only one capacity. Remove rq::cpu_capacity_orig and use arch_scale_cpu_capacity() everywhere. No functional changes. Some performance tests on Arm64: - small SMP device (hikey): no noticeable changes - HMP device (RB5): hackbench shows minor improvement (1-2%) - large smp (thx2): hackbench and tbench shows minor improvement (1%) Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20231009103621.374412-2-vincent.guittot@linaro.org