Age | Commit message (Collapse) | Author |
|
commit f3c2d243a36ef23be07bc2bce7c6a5cb6e07d9e3 upstream.
In addition to warning abort verification with -EFAULT.
If env->cur_state->loop_entry != NULL something is irrecoverably
buggy.
Fixes: bbbc02b7445e ("bpf: copy_verifier_state() should copy 'loop_entry' field")
Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20250225003838.135319-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 12fdd29d5d71d2987a1aec434b704d850a4d7fcb ]
In commit 1611603537a4 ("bpf: Create argument information for nullable arguments."),
it introduced a "__nullable" tagging at the argument name of a
stub function. Some background on the commit:
it requires to tag the stub function instead of directly tagging
the "ops" of a struct. This is because the btf func_proto of the "ops"
does not have the argument name and the "__nullable" is tagged at
the argument name.
To find the stub function of a "ops", it currently relies on a naming
convention on the stub function "st_ops__ops_name".
e.g. tcp_congestion_ops__ssthresh. However, the new kernel
sub system implementing bpf_struct_ops have missed this and
have been surprised that the "__nullable" and the to-be-landed
"__ref" tagging was not effective.
One option would be to give a warning whenever the stub function does
not follow the naming convention, regardless if it requires arg tagging
or not.
Instead, this patch uses the kallsyms_lookup approach and removes
the requirement on the naming convention. The st_ops->cfi_stubs has
all the stub function kernel addresses. kallsyms_lookup() is used to
lookup the function name. With the function name, BTF can be used to
find the BTF func_proto. The existing "__nullable" arg name searching
logic will then fall through.
One notable change is,
if it failed in kallsyms_lookup or it failed in looking up the stub
function name from the BTF, the bpf_struct_ops registration will fail.
This is different from the previous behavior that it silently ignored
the "st_ops__ops_name" function not found error.
The "tcp_congestion_ops", "sched_ext_ops", and "hid_bpf_ops" can still be
registered successfully after this patch. There is struct_ops_maybe_null
selftest to cover the "__nullable" tagging.
Other minor changes:
1. Removed the "%s__%s" format from the pr_warn because the naming
convention is removed.
2. The existing bpf_struct_ops_supported() is also moved earlier
because prepare_arg_info needs to use it to decide if the
stub function is NULL before calling the prepare_arg_info.
Cc: Tejun Heo <tj@kernel.org>
Cc: Benjamin Tissoires <bentiss@kernel.org>
Cc: Yonghong Song <yonghong.song@linux.dev>
Cc: Amery Hung <ameryhung@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Amery Hung <ameryhung@gmail.com>
Link: https://lore.kernel.org/r/20250127222719.2544255-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bbbc02b7445ebfda13e4847f4f1413c6480a85a9 ]
The bpf_verifier_state.loop_entry state should be copied by
copy_verifier_state(). Otherwise, .loop_entry values from unrelated
states would poison env->cur_state.
Additionally, env->stack should not contain any states with
.loop_entry != NULL. The states in env->stack are yet to be verified,
while .loop_entry is set for states that reached an equivalent state.
This means that env->cur_state->loop_entry should always be NULL after
pop_stack().
See the selftest in the next commit for an example of the program that
is not safe yet is accepted by verifier w/o this fix.
This change has some verification performance impact for selftests:
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
---------------------------------- ---------------------------- --------- --------- -------------- ---------- ---------- -------------
arena_htab.bpf.o arena_htab_llvm 717 426 -291 (-40.59%) 57 37 -20 (-35.09%)
arena_htab_asm.bpf.o arena_htab_asm 597 445 -152 (-25.46%) 47 37 -10 (-21.28%)
arena_list.bpf.o arena_list_del 309 279 -30 (-9.71%) 23 14 -9 (-39.13%)
iters.bpf.o iter_subprog_check_stacksafe 155 141 -14 (-9.03%) 15 14 -1 (-6.67%)
iters.bpf.o iter_subprog_iters 1094 1003 -91 (-8.32%) 88 83 -5 (-5.68%)
iters.bpf.o loop_state_deps2 479 725 +246 (+51.36%) 46 63 +17 (+36.96%)
kmem_cache_iter.bpf.o open_coded_iter 63 59 -4 (-6.35%) 7 6 -1 (-14.29%)
verifier_bits_iter.bpf.o max_words 92 84 -8 (-8.70%) 8 7 -1 (-12.50%)
verifier_iterating_callbacks.bpf.o cond_break2 113 107 -6 (-5.31%) 12 12 +0 (+0.00%)
And significant negative impact for sched_ext:
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
----------------- ---------------------- --------- --------- -------------------- ---------- ---------- ------------------
bpf.bpf.o lavd_init 7039 14723 +7684 (+109.16%) 490 1139 +649 (+132.45%)
bpf.bpf.o layered_dispatch 11485 10548 -937 (-8.16%) 848 762 -86 (-10.14%)
bpf.bpf.o layered_dump 7422 1000001 +992579 (+13373.47%) 681 31178 +30497 (+4478.27%)
bpf.bpf.o layered_enqueue 16854 71127 +54273 (+322.02%) 1611 6450 +4839 (+300.37%)
bpf.bpf.o p2dq_dispatch 665 791 +126 (+18.95%) 68 78 +10 (+14.71%)
bpf.bpf.o p2dq_init 2343 2980 +637 (+27.19%) 201 237 +36 (+17.91%)
bpf.bpf.o refresh_layer_cpumasks 16487 674760 +658273 (+3992.68%) 1770 65370 +63600 (+3593.22%)
bpf.bpf.o rusty_select_cpu 1937 40872 +38935 (+2010.07%) 177 3210 +3033 (+1713.56%)
scx_central.bpf.o central_dispatch 636 2687 +2051 (+322.48%) 63 227 +164 (+260.32%)
scx_nest.bpf.o nest_init 636 815 +179 (+28.14%) 60 73 +13 (+21.67%)
scx_qmap.bpf.o qmap_dispatch 2393 3580 +1187 (+49.60%) 196 253 +57 (+29.08%)
scx_qmap.bpf.o qmap_dump 233 318 +85 (+36.48%) 22 30 +8 (+36.36%)
scx_qmap.bpf.o qmap_init 16367 17436 +1069 (+6.53%) 603 669 +66 (+10.95%)
Note 'layered_dump' program, which now hits 1M instructions limit.
This impact would be mitigated in the next patch.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9e63fdb0cbdf3268c86638a8274f4d5549a82820 ]
verifier.c:is_state_visited() uses RANGE_WITHIN states comparison rules
for cached states that have loop_entry with non-zero branches count
(meaning that loop_entry's verification is not yet done).
The RANGE_WITHIN rules in regsafe()/stacksafe() require register and
stack objects types to be identical in current and old states.
verifier.c:clean_live_states() replaces registers and stack spills
with NOT_INIT/STACK_INVALID marks, if these registers/stack spills are
not read in any child state. This means that clean_live_states() works
against loop convergence logic under some conditions. See selftest in
the next patch for a specific example.
Mitigate this by prohibiting clean_verifier_state() when
state->loop_entry->branches > 0.
This undoes negative verification performance impact of the
copy_verifier_state() fix from the previous patch.
Below is comparison between master and current patch.
selftests:
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
---------------------------------- ---------------------------- --------- --------- --------------- ---------- ---------- --------------
arena_htab.bpf.o arena_htab_llvm 717 423 -294 (-41.00%) 57 37 -20 (-35.09%)
arena_htab_asm.bpf.o arena_htab_asm 597 445 -152 (-25.46%) 47 37 -10 (-21.28%)
arena_list.bpf.o arena_list_add 1493 1822 +329 (+22.04%) 30 37 +7 (+23.33%)
arena_list.bpf.o arena_list_del 309 261 -48 (-15.53%) 23 15 -8 (-34.78%)
iters.bpf.o checkpoint_states_deletion 18125 22154 +4029 (+22.23%) 818 918 +100 (+12.22%)
iters.bpf.o iter_nested_deeply_iters 593 367 -226 (-38.11%) 67 43 -24 (-35.82%)
iters.bpf.o iter_nested_iters 813 772 -41 (-5.04%) 79 72 -7 (-8.86%)
iters.bpf.o iter_subprog_check_stacksafe 155 135 -20 (-12.90%) 15 14 -1 (-6.67%)
iters.bpf.o iter_subprog_iters 1094 808 -286 (-26.14%) 88 68 -20 (-22.73%)
iters.bpf.o loop_state_deps2 479 356 -123 (-25.68%) 46 35 -11 (-23.91%)
iters.bpf.o triple_continue 35 31 -4 (-11.43%) 3 3 +0 (+0.00%)
kmem_cache_iter.bpf.o open_coded_iter 63 59 -4 (-6.35%) 7 6 -1 (-14.29%)
mptcp_subflow.bpf.o _getsockopt_subflow 501 446 -55 (-10.98%) 25 23 -2 (-8.00%)
pyperf600_iter.bpf.o on_event 12339 6379 -5960 (-48.30%) 441 286 -155 (-35.15%)
verifier_bits_iter.bpf.o max_words 92 84 -8 (-8.70%) 8 7 -1 (-12.50%)
verifier_iterating_callbacks.bpf.o cond_break2 113 192 +79 (+69.91%) 12 21 +9 (+75.00%)
sched_ext:
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
----------------- ---------------------- --------- --------- ----------------- ---------- ---------- ----------------
bpf.bpf.o layered_dispatch 11485 9039 -2446 (-21.30%) 848 662 -186 (-21.93%)
bpf.bpf.o layered_dump 7422 5022 -2400 (-32.34%) 681 298 -383 (-56.24%)
bpf.bpf.o layered_enqueue 16854 13753 -3101 (-18.40%) 1611 1308 -303 (-18.81%)
bpf.bpf.o layered_init 1000001 5549 -994452 (-99.45%) 84672 523 -84149 (-99.38%)
bpf.bpf.o layered_runnable 3149 1899 -1250 (-39.70%) 288 151 -137 (-47.57%)
bpf.bpf.o p2dq_init 2343 1936 -407 (-17.37%) 201 170 -31 (-15.42%)
bpf.bpf.o refresh_layer_cpumasks 16487 1285 -15202 (-92.21%) 1770 120 -1650 (-93.22%)
bpf.bpf.o rusty_select_cpu 1937 1386 -551 (-28.45%) 177 125 -52 (-29.38%)
scx_central.bpf.o central_dispatch 636 600 -36 (-5.66%) 63 59 -4 (-6.35%)
scx_central.bpf.o central_init 913 632 -281 (-30.78%) 48 39 -9 (-18.75%)
scx_nest.bpf.o nest_init 636 601 -35 (-5.50%) 60 58 -2 (-3.33%)
scx_pair.bpf.o pair_dispatch 1000001 1914 -998087 (-99.81%) 58169 142 -58027 (-99.76%)
scx_qmap.bpf.o qmap_dispatch 2393 2187 -206 (-8.61%) 196 174 -22 (-11.22%)
scx_qmap.bpf.o qmap_init 16367 22777 +6410 (+39.16%) 603 768 +165 (+27.36%)
'layered_init' and 'pair_dispatch' hit 1M on master, but are verified
ok with this patch.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d519594ee2445d7cd1ad51f4db4cee58f8213400 ]
Currently, add_kfunc_call() is only invoked once before the main
verification loop. Therefore, the verifier could not find the
bpf_kfunc_btf_tab of a new kfunc call which is not seen in user defined
struct_ops operators but introduced in gen_prologue or gen_epilogue
during do_misc_fixup(). Fix this by searching kfuncs in the patching
instruction buffer and add them to prog->aux->kfunc_tab.
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250225233545.285481-1-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4b82b181a26cff8bf7adc3a85a88d121d92edeaf ]
Currently for bpf progs in a cgroup hierarchy, the effective prog array
is computed from bottom cgroup to upper cgroups (post-ordering). For
example, the following cgroup hierarchy
root cgroup: p1, p2
subcgroup: p3, p4
have BPF_F_ALLOW_MULTI for both cgroup levels.
The effective cgroup array ordering looks like
p3 p4 p1 p2
and at run time, progs will execute based on that order.
But in some cases, it is desirable to have root prog executes earlier than
children progs (pre-ordering). For example,
- prog p1 intends to collect original pkt dest addresses.
- prog p3 will modify original pkt dest addresses to a proxy address for
security reason.
The end result is that prog p1 gets proxy address which is not what it
wants. Putting p1 to every child cgroup is not desirable either as it
will duplicate itself in many child cgroups. And this is exactly a use case
we are encountering in Meta.
To fix this issue, let us introduce a flag BPF_F_PREORDER. If the flag
is specified at attachment time, the prog has higher priority and the
ordering with that flag will be from top to bottom (pre-ordering).
For example, in the above example,
root cgroup: p1, p2
subcgroup: p3, p4
Let us say p2 and p4 are marked with BPF_F_PREORDER. The final
effective array ordering will be
p2 p4 p3 p1
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20250224230116.283071-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 07651ccda9ff10a8ca427670cdd06ce2c8e4269c ]
Return prog's btf_id from bpf_prog_get_info_by_fd regardless of capable
check. This patch enables scenario, when freplace program, running
from user namespace, requires to query target prog's btf.
Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20250317174039.161275-3-mykyta.yatsenko5@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 75673fda0c557ae26078177dd14d4857afbf128d ]
The _safe variant used here gets the next element before running the callback,
avoiding the endless loop condition.
Signed-off-by: Brandon Kammerdiener <brandon.kammerdiener@intel.com>
Link: https://lore.kernel.org/r/20250424153246.141677-2-brandon.kammerdiener@intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
The commit cdd30ebb1b9f ("module: Convert symbol namespace to string
literal") makes the grammar of MODULE_IMPORT_NS and EXPORT_SYMBOL_NS
different between the stable branches and the mainline. But when
the commit 955f9ede52b8 ("bpf: Add namespace to BPF internal symbols")
was backported from mainline, only EXPORT_SYMBOL_NS instances are
adapted, leaving the MODULE_IMPORT_NS instance with the "new" grammar
and causing the module fails to build:
ERROR: modpost: module bpf_preload uses symbol bpf_link_get_from_fd from namespace BPF_INTERNAL, but does not import it.
ERROR: modpost: module bpf_preload uses symbol kern_sys_bpf from namespace BPF_INTERNAL, but does not import it.
Reported-by: Mingcong Bai <jeffbai@aosc.io>
Reported-by: Alex Davis <alex47794@gmail.com>
Closes: https://lore.kernel.org/all/CADiockBKBQTVqjA5G+RJ9LBwnEnZ8o0odYnL=LBZ_7QN=_SZ7A@mail.gmail.com/
Fixes: 955f9ede52b8 ("bpf: Add namespace to BPF internal symbols")
Signed-off-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit cfe816d469dce9c0864062cf65dd7b3c42adc6f8 ]
If we attach fexit/fmod_ret to __noreturn functions, it will cause an
issue that the bpf trampoline image will be left over even if the bpf
link has been destroyed. Take attaching do_exit() with fexit for example.
The fexit works as follows,
bpf_trampoline
+ __bpf_tramp_enter
+ percpu_ref_get(&tr->pcref);
+ call do_exit()
+ __bpf_tramp_exit
+ percpu_ref_put(&tr->pcref);
Since do_exit() never returns, the refcnt of the trampoline image is
never decremented, preventing it from being freed. That can be verified
with as follows,
$ bpftool link show <<<< nothing output
$ grep "bpf_trampoline_[0-9]" /proc/kallsyms
ffffffffc04cb000 t bpf_trampoline_6442526459 [bpf] <<<< leftover
In this patch, all functions annotated with __noreturn are rejected, except
for the following cases:
- Functions that result in a system reboot, such as panic,
machine_real_restart and rust_begin_unwind
- Functions that are never executed by tasks, such as rest_init and
cpu_startup_entry
- Functions implemented in assembly, such as rewind_stack_and_make_dead and
xen_cpu_bringup_again, lack an associated BTF ID.
With this change, attaching fexit probes to functions like do_exit() will
be rejected.
$ ./fexit
libbpf: prog 'fexit': BPF program load failed: -EINVAL
libbpf: prog 'fexit': -- BEGIN PROG LOAD LOG --
Attaching fexit/fmod_ret to __noreturn functions is rejected.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20250318114447.75484-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
storage
[ Upstream commit f4edc66e48a694b3e6d164cc71f059de542dfaec ]
The current cgrp storage has a percpu counter, bpf_cgrp_storage_busy,
to detect potential deadlock at a spin_lock that the local storage
acquires during new storage creation.
There are false positives. It turns out to be too noisy in
production. For example, a bpf prog may be doing a
bpf_cgrp_storage_get on map_a. An IRQ comes in and triggers
another bpf_cgrp_storage_get on a different map_b. It will then
trigger the false positive deadlock check in the percpu counter.
On top of that, both are doing lookup only and no need to create
new storage, so practically it does not need to acquire
the spin_lock.
The bpf_task_storage_get already has a strategy to minimize this
false positive by only failing if the bpf_task_storage_get needs
to create a new storage and the percpu counter is busy. Creating
a new storage is the only time it must acquire the spin_lock.
This patch borrows the same idea. Unlike task storage that
has a separate variant for tracing (_recur) and non-tracing, this
patch stays with one bpf_cgrp_storage_get helper to keep it simple
for now in light of the upcoming res_spin_lock.
The variable could potentially use a better name noTbusy instead
of nobusy. This patch follows the same naming in
bpf_task_storage_get for now.
I have tested it by temporarily adding noinline to
the cgroup_storage_lookup(), traced it by fentry, and the fentry
program succeeded in calling bpf_cgrp_storage_get().
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250318182759.3676094-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 11ba7ce076e5903e7bdc1fd1498979c331b3c286 ]
Vlad Poenaru reported the following kmemleak issue:
unreferenced object 0x606fd7c44ac8 (size 32):
backtrace (crc 0):
pcpu_alloc_noprof+0x730/0xeb0
bpf_map_alloc_percpu+0x69/0xc0
prealloc_init+0x9d/0x1b0
htab_map_alloc+0x363/0x510
map_create+0x215/0x3a0
__sys_bpf+0x16b/0x3e0
__x64_sys_bpf+0x18/0x20
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Further investigation shows the reason is due to not 8-byte aligned
store of percpu pointer in htab_elem_set_ptr():
*(void __percpu **)(l->key + key_size) = pptr;
Note that the whole htab_elem alignment is 8 (for x86_64). If the key_size
is 4, that means pptr is stored in a location which is 4 byte aligned but
not 8 byte aligned. In mm/kmemleak.c, scan_block() scans the memory based
on 8 byte stride, so it won't detect above pptr, hence reporting the memory
leak.
In htab_map_alloc(), we already have
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
if (percpu)
htab->elem_size += sizeof(void *);
else
htab->elem_size += round_up(htab->map.value_size, 8);
So storing pptr with 8-byte alignment won't cause any problem and can fix
kmemleak too.
The issue can be reproduced with bpf selftest as well:
1. Enable CONFIG_DEBUG_KMEMLEAK config
2. Add a getchar() before skel destroy in test_hash_map() in prog_tests/for_each.c.
The purpose is to keep map available so kmemleak can be detected.
3. run './test_progs -t for_each/hash_map &' and a kmemleak should be reported.
Reported-by: Vlad Poenaru <thevlad@meta.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250224175514.2207227-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f88886de0927a2adf4c1b4c5c1f1d31d2023ef74 ]
Add namespace to BPF internal symbols used by light skeleton
to prevent abuse and document with the code their allowed usage.
Fixes: b1d18a7574d0 ("bpf: Extend sys_bpf commands for bpf_syscall programs.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20250425014542.62385-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ac6542ad92759cda383ad62b4e4cbfc28136abc1 upstream.
bpf_prog_aux->func field might be NULL if program does not have
subprograms except for main sub-program. The fixed commit does
bpf_prog_aux->func access unconditionally, which might lead to null
pointer dereference.
The bug could be triggered by replacing the following BPF program:
SEC("tc")
int main_changes(struct __sk_buff *sk)
{
bpf_skb_pull_data(sk, 0);
return 0;
}
With the following BPF program:
SEC("freplace")
long changes_pkt_data(struct __sk_buff *sk)
{
return bpf_skb_pull_data(sk, 0);
}
bpf_prog_aux instance itself represents the main sub-program,
use this property to fix the bug.
Fixes: 81f6d0530ba0 ("bpf: check changes_pkt_data property for extension programs")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202412111822.qGw6tOyB-lkp@intel.com/
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241212070711.427443-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 81f6d0530ba031b5f038a091619bf2ff29568852 upstream.
When processing calls to global sub-programs, verifier decides whether
to invalidate all packet pointers in current state depending on the
changes_pkt_data property of the global sub-program.
Because of this, an extension program replacing a global sub-program
must be compatible with changes_pkt_data property of the sub-program
being replaced.
This commit:
- adds changes_pkt_data flag to struct bpf_prog_aux:
- this flag is set in check_cfg() for main sub-program;
- in jit_subprogs() for other sub-programs;
- modifies bpf_check_attach_btf_id() to check changes_pkt_data flag;
- moves call to check_attach_btf_id() after the call to check_cfg(),
because it needs changes_pkt_data flag to be set:
bpf_check:
... ...
- check_attach_btf_id resolve_pseudo_ldimm64
resolve_pseudo_ldimm64 --> bpf_prog_is_offloaded
bpf_prog_is_offloaded check_cfg
check_cfg + check_attach_btf_id
... ...
The following fields are set by check_attach_btf_id():
- env->ops
- prog->aux->attach_btf_trace
- prog->aux->attach_func_name
- prog->aux->attach_func_proto
- prog->aux->dst_trampoline
- prog->aux->mod
- prog->aux->saved_dst_attach_type
- prog->aux->saved_dst_prog_type
- prog->expected_attach_type
Neither of these fields are used by resolve_pseudo_ldimm64() or
bpf_prog_offload_verifier_prep() (for netronome and netdevsim
drivers), so the reordering is safe.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[ shung-hsi.yu: both jits_use_priv_stack and priv_stack_requested fields are
missing from context because "bpf: Support private stack for bpf progs" series
is not present.]
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 51081a3f25c742da5a659d7fc6fd77ebfdd555be upstream.
When processing calls to certain helpers, verifier invalidates all
packet pointers in a current state. For example, consider the
following program:
__attribute__((__noinline__))
long skb_pull_data(struct __sk_buff *sk, __u32 len)
{
return bpf_skb_pull_data(sk, len);
}
SEC("tc")
int test_invalidate_checks(struct __sk_buff *sk)
{
int *p = (void *)(long)sk->data;
if ((void *)(p + 1) > (void *)(long)sk->data_end) return TCX_DROP;
skb_pull_data(sk, 0);
*p = 42;
return TCX_PASS;
}
After a call to bpf_skb_pull_data() the pointer 'p' can't be used
safely. See function filter.c:bpf_helper_changes_pkt_data() for a list
of such helpers.
At the moment verifier invalidates packet pointers when processing
helper function calls, and does not traverse global sub-programs when
processing calls to global sub-programs. This means that calls to
helpers done from global sub-programs do not invalidate pointers in
the caller state. E.g. the program above is unsafe, but is not
rejected by verifier.
This commit fixes the omission by computing field
bpf_subprog_info->changes_pkt_data for each sub-program before main
verification pass.
changes_pkt_data should be set if:
- subprogram calls helper for which bpf_helper_changes_pkt_data
returns true;
- subprogram calls a global function,
for which bpf_subprog_info->changes_pkt_data should be set.
The verifier.c:check_cfg() pass is modified to compute this
information. The commit relies on depth first instruction traversal
done by check_cfg() and absence of recursive function calls:
- check_cfg() would eventually visit every call to subprogram S in a
state when S is fully explored;
- when S is fully explored:
- every direct helper call within S is explored
(and thus changes_pkt_data is set if needed);
- every call to subprogram S1 called by S was visited with S1 fully
explored (and thus S inherits changes_pkt_data from S1).
The downside of such approach is that dead code elimination is not
taken into account: if a helper call inside global function is dead
because of current configuration, verifier would conservatively assume
that the call occurs for the purpose of the changes_pkt_data
computation.
Reported-by: Nick Zavaritsky <mejedi@gmail.com>
Closes: https://lore.kernel.org/bpf/0498CA22-5779-4767-9C0C-A9515CEA711F@gmail.com/
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 27e88bc4df1d80888fe1aaca786a7cc6e69587e2 upstream.
Add a utility function, looking for a subprogram containing a given
instruction index, rewrite find_subprog() to use this function.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6ebc5030e0c5a698f1dd9a6684cddf6ccaed64a0 ]
may_goto uses an additional 8 bytes on the stack, which causes the
interpreters[] array to go out of bounds when calculating index by
stack_size.
1. If a BPF program is rewritten, re-evaluate the stack size. For non-JIT
cases, reject loading directly.
2. For non-JIT cases, calculating interpreters[idx] may still cause
out-of-bounds array access, and just warn about it.
3. For jit_requested cases, the execution of bpf_func also needs to be
warned. So move the definition of function __bpf_prog_ret0_warn out of
the macro definition CONFIG_BPF_JIT_ALWAYS_ON.
Reported-by: syzbot+d2a2c639d03ac200a4f1@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/0000000000000f823606139faa5d@google.com/
Fixes: 011832b97b311 ("bpf: Introduce may_goto instruction")
Signed-off-by: Jiayuan Chen <mrpre@163.com>
Link: https://lore.kernel.org/r/20250214091823.46042-2-mrpre@163.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5644c6b50ffee0a56c1e01430a8c88e34decb120 ]
The generic_map_lookup_batch currently returns EINTR if it fails with
ENOENT and retries several times on bpf_map_copy_value. The next batch
would start from the same location, presuming it's a transient issue.
This is incorrect if a map can actually have "holes", i.e.
"get_next_key" can return a key that does not point to a valid value. At
least the array of maps type may contain such holes legitly. Right now
these holes show up, generic batch lookup cannot proceed any more. It
will always fail with EINTR errors.
Rather, do not retry in generic_map_lookup_batch. If it finds a non
existing element, skip to the next key. This simple solution comes with
a price that transient errors may not be recovered, and the iteration
might cycle back to the first key under parallel deletion. For example,
Hou Tao <houtao@huaweicloud.com> pointed out a following scenario:
For LPM trie map:
(1) ->map_get_next_key(map, prev_key, key) returns a valid key
(2) bpf_map_copy_value() return -ENOMENT
It means the key must be deleted concurrently.
(3) goto next_key
It swaps the prev_key and key
(4) ->map_get_next_key(map, prev_key, key) again
prev_key points to a non-existing key, for LPM trie it will treat just
like prev_key=NULL case, the returned key will be duplicated.
With the retry logic, the iteration can continue to the key next to the
deleted one. But if we directly skip to the next key, the iteration loop
would restart from the first key for the lpm_trie type.
However, not all races may be recovered. For example, if current key is
deleted after instead of before bpf_map_copy_value, or if the prev_key
also gets deleted, then the loop will still restart from the first key
for lpm_tire anyway. For generic lookup it might be better to stay
simple, i.e. just skip to the next key. To guarantee that the output
keys are not duplicated, it is better to implement map type specific
batch operations, which can properly lock the trie and synchronize with
concurrent mutators.
Fixes: cb4d03ab499d ("bpf: Add generic support for lookup batch op")
Closes: https://lore.kernel.org/bpf/Z6JXtA1M5jAZx8xD@debian.debian/
Signed-off-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/85618439eea75930630685c467ccefeac0942e2b.1739171594.git.yan@cloudflare.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 517e8a7835e8cfb398a0aeb0133de50e31cae32b ]
On an aarch64 kernel with CONFIG_PAGE_SIZE_64KB=y,
arena_htab tests cause a segmentation fault and soft lockup.
The same failure is not observed with 4k pages on aarch64.
It turns out arena_map_free() is calling
apply_to_existing_page_range() with the address returned by
bpf_arena_get_kern_vm_start(). If this address is not page-aligned
the code ends up calling apply_to_pte_range() with that unaligned
address causing soft lockup.
Fix it by round up GUARD_SZ to PAGE_SIZE << 1 so that the
division by 2 in bpf_arena_get_kern_vm_start() returns
a page-aligned value.
Fixes: 317460317a02 ("bpf: Introduce bpf_arena.")
Reported-by: Colm Harrington <colm.harrington@oracle.com>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/r/20250205170059.427458-1-alan.maguire@oracle.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5da7e15fb5a12e78de974d8908f348e279922ce9 ]
Yan Zhai reported a BPF prog could trigger a null-ptr-deref [0]
in trace_kfree_skb if the prog does not check if rx_sk is NULL.
Commit c53795d48ee8 ("net: add rx_sk to trace_kfree_skb") added
rx_sk to trace_kfree_skb, but rx_sk is optional and could be NULL.
Let's add kfree_skb to raw_tp_null_args[] to let the BPF verifier
validate such a prog and prevent the issue.
Now we fail to load such a prog:
libbpf: prog 'drop': -- BEGIN PROG LOAD LOG --
0: R1=ctx() R10=fp0
; int BPF_PROG(drop, struct sk_buff *skb, void *location, @ kfree_skb_sk_null.bpf.c:21
0: (79) r3 = *(u64 *)(r1 +24)
func 'kfree_skb' arg3 has btf_id 5253 type STRUCT 'sock'
1: R1=ctx() R3_w=trusted_ptr_or_null_sock(id=1)
; bpf_printk("sk: %d, %d\n", sk, sk->__sk_common.skc_family); @ kfree_skb_sk_null.bpf.c:24
1: (69) r4 = *(u16 *)(r3 +16)
R3 invalid mem access 'trusted_ptr_or_null_'
processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0
-- END PROG LOAD LOG --
Note this fix requires commit 838a10bd2ebf ("bpf: Augment raw_tp
arguments with PTR_MAYBE_NULL").
[0]:
BUG: kernel NULL pointer dereference, address: 0000000000000010
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
PREEMPT SMP
RIP: 0010:bpf_prog_5e21a6db8fcff1aa_drop+0x10/0x2d
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x148/0x420
? search_bpf_extables+0x5b/0x70
? fixup_exception+0x27/0x2c0
? exc_page_fault+0x75/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_prog_5e21a6db8fcff1aa_drop+0x10/0x2d
bpf_trace_run4+0x68/0xd0
? unix_stream_connect+0x1f4/0x6f0
sk_skb_reason_drop+0x90/0x120
unix_stream_connect+0x1f4/0x6f0
__sys_connect+0x7f/0xb0
__x64_sys_connect+0x14/0x20
do_syscall_64+0x47/0xc30
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Fixes: c53795d48ee8 ("net: add rx_sk to trace_kfree_skb")
Reported-by: Yan Zhai <yan@cloudflare.com>
Closes: https://lore.kernel.org/netdev/Z50zebTRzI962e6X@debian.debian/
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Tested-by: Yan Zhai <yan@cloudflare.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20250201030142.62703-1-kuniyu@amazon.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c78f4afbd962f43a3989f45f3ca04300252b19b5 ]
The following commit
bc235cdb423a ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
first introduced deadlock prevention for fentry/fexit programs attaching
on bpf_task_storage helpers. That commit also employed the logic in map
free path in its v6 version.
Later bpf_cgrp_storage was first introduced in
c4bcfb38a95e ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs")
which faces the same issue as bpf_task_storage, instead of its busy
counter, NULL was passed to bpf_local_storage_map_free() which opened
a window to cause deadlock:
<TASK>
(acquiring local_storage->lock)
_raw_spin_lock_irqsave+0x3d/0x50
bpf_local_storage_update+0xd1/0x460
bpf_cgrp_storage_get+0x109/0x130
bpf_prog_a4d4a370ba857314_cgrp_ptr+0x139/0x170
? __bpf_prog_enter_recur+0x16/0x80
bpf_trampoline_6442485186+0x43/0xa4
cgroup_storage_ptr+0x9/0x20
(holding local_storage->lock)
bpf_selem_unlink_storage_nolock.constprop.0+0x135/0x160
bpf_selem_unlink_storage+0x6f/0x110
bpf_local_storage_map_free+0xa2/0x110
bpf_map_free_deferred+0x5b/0x90
process_one_work+0x17c/0x390
worker_thread+0x251/0x360
kthread+0xd2/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
Progs:
- A: SEC("fentry/cgroup_storage_ptr")
- cgid (BPF_MAP_TYPE_HASH)
Record the id of the cgroup the current task belonging
to in this hash map, using the address of the cgroup
as the map key.
- cgrpa (BPF_MAP_TYPE_CGRP_STORAGE)
If current task is a kworker, lookup the above hash
map using function parameter @owner as the key to get
its corresponding cgroup id which is then used to get
a trusted pointer to the cgroup through
bpf_cgroup_from_id(). This trusted pointer can then
be passed to bpf_cgrp_storage_get() to finally trigger
the deadlock issue.
- B: SEC("tp_btf/sys_enter")
- cgrpb (BPF_MAP_TYPE_CGRP_STORAGE)
The only purpose of this prog is to fill Prog A's
hash map by calling bpf_cgrp_storage_get() for as
many userspace tasks as possible.
Steps to reproduce:
- Run A;
- while (true) { Run B; Destroy B; }
Fix this issue by passing its busy counter to the free procedure so
it can be properly incremented before storage/smap locking.
Fixes: c4bcfb38a95e ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241221061018.37717-1-wuyun.abel@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bc27c52eea189e8f7492d40739b7746d67b65beb ]
We use map->freeze_mutex to prevent races between map_freeze() and
memory mapping BPF map contents with writable permissions. The way we
naively do this means we'll hold freeze_mutex for entire duration of all
the mm and VMA manipulations, which is completely unnecessary. This can
potentially also lead to deadlocks, as reported by syzbot in [0].
So, instead, hold freeze_mutex only during writeability checks, bump
(proactively) "write active" count for the map, unlock the mutex and
proceed with mmap logic. And only if something went wrong during mmap
logic, then undo that "write active" counter increment.
[0] https://lore.kernel.org/bpf/678dcbc9.050a0220.303755.0066.GAE@google.com/
Fixes: fc9702273e2e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Reported-by: syzbot+4dc041c686b7c816a71e@syzkaller.appspotmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20250129012246.1515826-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 98671a0fd1f14e4a518ee06b19037c20014900eb ]
For all BPF maps we ensure that VM_MAYWRITE is cleared when
memory-mapping BPF map contents as initially read-only VMA. This is
because in some cases BPF verifier relies on the underlying data to not
be modified afterwards by user space, so once something is mapped
read-only, it shouldn't be re-mmap'ed as read-write.
As such, it's not necessary to check VM_MAYWRITE in bpf_map_mmap() and
map->ops->map_mmap() callbacks: VM_WRITE should be consistently set for
read-write mappings, and if VM_WRITE is not set, there is no way for
user space to upgrade read-only mapping to read-write one.
This patch cleans up this VM_WRITE vs VM_MAYWRITE handling within
bpf_map_mmap(), which is an entry point for any BPF map mmap()-ing
logic. We also drop unnecessary sanitization of VM_MAYWRITE in BPF
ringbuf's map_mmap() callback implementation, as it is already performed
by common code in bpf_map_mmap().
Note, though, that in bpf_map_mmap_{open,close}() callbacks we can't
drop VM_MAYWRITE use, because it's possible (and is outside of
subsystem's control) to have initially read-write memory mapping, which
is subsequently dropped to read-only by user space through mprotect().
In such case, from BPF verifier POV it's read-write data throughout the
lifetime of BPF map, and is counted as "active writer".
But its VMAs will start out as VM_WRITE|VM_MAYWRITE, then mprotect() can
change it to just VM_MAYWRITE (and no VM_WRITE), so when its finally
munmap()'ed and bpf_map_mmap_close() is called, vm_flags will be just
VM_MAYWRITE, but we still need to decrement active writer count with
bpf_map_write_active_dec() as it's still considered to be a read-write
mapping by the rest of BPF subsystem.
Similar reasoning applies to bpf_map_mmap_open(), which is called
whenever mmap(), munmap(), and/or mprotect() forces mm subsystem to
split original VMA into multiple discontiguous VMAs.
Memory-mapping handling is a bit tricky, yes.
Cc: Jann Horn <jannh@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20250129012246.1515826-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: bc27c52eea18 ("bpf: avoid holding freeze_mutex during mmap operation")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 58f038e6d209d2dd862fcf5de55407855856794d ]
During the update procedure, when overwrite element in a pre-allocated
htab, the freeing of old_element is protected by the bucket lock. The
reason why the bucket lock is necessary is that the old_element has
already been stashed in htab->extra_elems after alloc_htab_elem()
returns. If freeing the old_element after the bucket lock is unlocked,
the stashed element may be reused by concurrent update procedure and the
freeing of old_element will run concurrently with the reuse of the
old_element. However, the invocation of check_and_free_fields() may
acquire a spin-lock which violates the lockdep rule because its caller
has already held a raw-spin-lock (bucket lock). The following warning
will be reported when such race happens:
BUG: scheduling while atomic: test_progs/676/0x00000003
3 locks held by test_progs/676:
#0: ffffffff864b0240 (rcu_read_lock_trace){....}-{0:0}, at: bpf_prog_test_run_syscall+0x2c0/0x830
#1: ffff88810e961188 (&htab->lockdep_key){....}-{2:2}, at: htab_map_update_elem+0x306/0x1500
#2: ffff8881f4eac1b8 (&base->softirq_expiry_lock){....}-{2:2}, at: hrtimer_cancel_wait_running+0xe9/0x1b0
Modules linked in: bpf_testmod(O)
Preemption disabled at:
[<ffffffff817837a3>] htab_map_update_elem+0x293/0x1500
CPU: 0 UID: 0 PID: 676 Comm: test_progs Tainted: G ... 6.12.0+ #11
Tainted: [W]=WARN, [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)...
Call Trace:
<TASK>
dump_stack_lvl+0x57/0x70
dump_stack+0x10/0x20
__schedule_bug+0x120/0x170
__schedule+0x300c/0x4800
schedule_rtlock+0x37/0x60
rtlock_slowlock_locked+0x6d9/0x54c0
rt_spin_lock+0x168/0x230
hrtimer_cancel_wait_running+0xe9/0x1b0
hrtimer_cancel+0x24/0x30
bpf_timer_delete_work+0x1d/0x40
bpf_timer_cancel_and_free+0x5e/0x80
bpf_obj_free_fields+0x262/0x4a0
check_and_free_fields+0x1d0/0x280
htab_map_update_elem+0x7fc/0x1500
bpf_prog_9f90bc20768e0cb9_overwrite_cb+0x3f/0x43
bpf_prog_ea601c4649694dbd_overwrite_timer+0x5d/0x7e
bpf_prog_test_run_syscall+0x322/0x830
__sys_bpf+0x135d/0x3ca0
__x64_sys_bpf+0x75/0xb0
x64_sys_call+0x1b5/0xa10
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
...
</TASK>
It seems feasible to break the reuse and refill of per-cpu extra_elems
into two independent parts: reuse the per-cpu extra_elems with bucket
lock being held and refill the old_element as per-cpu extra_elems after
the bucket lock is unlocked. However, it will make the concurrent
overwrite procedures on the same CPU return unexpected -E2BIG error when
the map is full.
Therefore, the patch fixes the lock problem by breaking the cancelling
of bpf_timer into two steps for PREEMPT_RT:
1) use hrtimer_try_to_cancel() and check its return value
2) if the timer is running, use hrtimer_cancel() through a kworker to
cancel it again
Considering that the current implementation of hrtimer_cancel() will try
to acquire a being held softirq_expiry_lock when the current timer is
running, these steps above are reasonable. However, it also has
downside. When the timer is running, the cancelling of the timer is
delayed when releasing the last map uref. The delay is also fixable
(e.g., break the cancelling of bpf timer into two parts: one part in
locked scope, another one in unlocked scope), it can be revised later if
necessary.
It is a bit hard to decide the right fix tag. One reason is that the
problem depends on PREEMPT_RT which is enabled in v6.12. Considering the
softirq_expiry_lock lock exists since v5.4 and bpf_timer is introduced
in v5.15, the bpf_timer commit is used in the fixes tag and an extra
depends-on tag is added to state the dependency on PREEMPT_RT.
Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.")
Depends-on: v6.12+ with PREEMPT_RT enabled
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Closes: https://lore.kernel.org/bpf/20241106084527.4gPrMnHt@linutronix.de
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@kernel.org>
Link: https://lore.kernel.org/r/20250117101816.2101857-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
btf_id is missing
[ Upstream commit 96ea081ed52bf077cad6d00153b6fba68e510767 ]
There is a UAF report in the bpf_struct_ops when CONFIG_MODULES=n.
In particular, the report is on tcp_congestion_ops that has
a "struct module *owner" member.
For struct_ops that has a "struct module *owner" member,
it can be extended either by the regular kernel module or
by the bpf_struct_ops. bpf_try_module_get() will be used
to do the refcounting and different refcount is done
based on the owner pointer. When CONFIG_MODULES=n,
the btf_id of the "struct module" is missing:
WARN: resolve_btfids: unresolved symbol module
Thus, the bpf_try_module_get() cannot do the correct refcounting.
Not all subsystem's struct_ops requires the "struct module *owner" member.
e.g. the recent sched_ext_ops.
This patch is to disable bpf_struct_ops registration if
the struct_ops has the "struct module *" member and the
"struct module" btf_id is missing. The btf_type_is_fwd() helper
is moved to the btf.h header file for this test.
This has happened since the beginning of bpf_struct_ops which has gone
through many changes. The Fixes tag is set to a recent commit that this
patch can apply cleanly. Considering CONFIG_MODULES=n is not
common and the age of the issue, targeting for bpf-next also.
Fixes: 1611603537a4 ("bpf: Create argument information for nullable arguments.")
Reported-by: Robert Morris <rtm@csail.mit.edu>
Closes: https://lore.kernel.org/bpf/74665.1733669976@localhost/
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241220201818.127152-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dfa94ce54f4139c893b9c4ec17df6f7c6a7515d3 ]
Use an API that resembles more the actual use of mmap_count.
Found by cocci:
kernel/bpf/arena.c:245:6-25: WARNING: atomic_dec_and_test variation before object free at line 249.
Fixes: b90d77e5fd78 ("bpf: Fix remap of arena.")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202412292037.LXlYSHKl-lkp@intel.com/
Signed-off-by: Pei Xiao <xiaopei01@kylinos.cn>
Link: https://lore.kernel.org/r/6ecce439a6bc81adb85d5080908ea8959b792a50.1735542814.git.xiaopei01@kylinos.cn
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8eef6ac4d70eb1f0099fff93321d90ce8fa49ee1 ]
In PREEMPT_RT, kmalloc(GFP_ATOMIC) is still not safe in non preemptible
context. bpf_mem_alloc must be used in PREEMPT_RT. This patch is
to enforce bpf_mem_alloc in the bpf_local_storage when CONFIG_PREEMPT_RT
is enabled.
[ 35.118559] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 35.118566] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1832, name: test_progs
[ 35.118569] preempt_count: 1, expected: 0
[ 35.118571] RCU nest depth: 1, expected: 1
[ 35.118577] INFO: lockdep is turned off.
...
[ 35.118647] __might_resched+0x433/0x5b0
[ 35.118677] rt_spin_lock+0xc3/0x290
[ 35.118700] ___slab_alloc+0x72/0xc40
[ 35.118723] __kmalloc_noprof+0x13f/0x4e0
[ 35.118732] bpf_map_kzalloc+0xe5/0x220
[ 35.118740] bpf_selem_alloc+0x1d2/0x7b0
[ 35.118755] bpf_local_storage_update+0x2fa/0x8b0
[ 35.118784] bpf_sk_storage_get_tracing+0x15a/0x1d0
[ 35.118791] bpf_prog_9a118d86fca78ebb_trace_inet_sock_set_state+0x44/0x66
[ 35.118795] bpf_trace_run3+0x222/0x400
[ 35.118820] __bpf_trace_inet_sock_set_state+0x11/0x20
[ 35.118824] trace_inet_sock_set_state+0x112/0x130
[ 35.118830] inet_sk_state_store+0x41/0x90
[ 35.118836] tcp_set_state+0x3b3/0x640
There is no need to adjust the gfp_flags passing to the
bpf_mem_cache_alloc_flags() which only honors the GFP_KERNEL.
The verifier has ensured GFP_KERNEL is passed only in sleepable context.
It has been an old issue since the first introduction of the
bpf_local_storage ~5 years ago, so this patch targets the bpf-next.
bpf_mem_alloc is needed to solve it, so the Fixes tag is set
to the commit when bpf_mem_alloc was first used in the bpf_local_storage.
Fixes: 08a7ce384e33 ("bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241218193000.2084281-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b238e187b4a2d3b54d80aec05a9cab6466b79dde ]
Use BPF helper number instead of function pointer in
bpf_helper_changes_pkt_data(). This would simplify usage of this
function in verifier.c:check_cfg() (in a follow-up patch),
where only helper number is easily available and there is no real need
to lookup helper proto.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 1a4607ffba35 ("bpf: consider that tail calls invalidate packet pointers")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c4441ca86afe4814039ee1b32c39d833c1a16bbc ]
The bpf_remove_insns() function returns WARN_ON_ONCE(error), where
error is a result of bpf_adj_branches(), and thus should be always 0
However, if for any reason it is not 0, then it will be converted to
boolean by WARN_ON_ONCE and returned to user space as 1, not an actual
error value. Fix this by returning the original err after the WARN check.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20241210114245.836164-1-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bd74e238ae6944b462f57ce8752440a011ba4530 ]
Andrii spotted that process_dynptr_func's rejection of incorrect
argument register type will print an error string where argument numbers
are not zero-indexed, unlike elsewhere in the verifier. Fix this by
subtracting 1 from regno. The same scenario exists for iterator
messages. Fix selftest error strings that match on the exact argument
number while we're at it to ensure clean bisection.
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241203002235.3776418-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 23579010cf0a12476e96a5f1acdf78a9c5843657 ]
On x86-64 calling bpf_get_smp_processor_id() in a kernel with CONFIG_SMP
disabled can trigger the following bug, as pcpu_hot is unavailable:
[ 8.471774] BUG: unable to handle page fault for address: 00000000936a290c
[ 8.471849] #PF: supervisor read access in kernel mode
[ 8.471881] #PF: error_code(0x0000) - not-present page
Fix by inlining a return 0 in the !CONFIG_SMP case.
Fixes: 1ae6921009e5 ("bpf: inline bpf_get_smp_processor_id() helper")
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241217195813.622568-1-arighi@nvidia.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 838a10bd2ebfe11a60dd67687533a7cfc220cc86 upstream.
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments can
actually be NULL, and the verifier's knowledge, that they are never NULL,
causing explicit NULL check branch to be dead code eliminated.
A previous attempt [1], i.e. the second fixed commit, was made to
simulate symbolic execution as if in most accesses, the argument is a
non-NULL raw_tp, except for conditional jumps. This tried to suppress
branch prediction while preserving compatibility, but surfaced issues
with production programs that were difficult to solve without increasing
verifier complexity. A more complete discussion of issues and fixes is
available at [2].
Fix this by maintaining an explicit list of tracepoints where the
arguments are known to be NULL, and mark the positional arguments as
PTR_MAYBE_NULL. Additionally, capture the tracepoints where arguments
are known to be ERR_PTR, and mark these arguments as scalar values to
prevent potential dereference.
Each hex digit is used to encode NULL-ness (0x1) or ERR_PTR-ness (0x2),
shifted by the zero-indexed argument number x 4. This can be represented
as follows:
1st arg: 0x1
2nd arg: 0x10
3rd arg: 0x100
... and so on (likewise for ERR_PTR case).
In the future, an automated pass will be used to produce such a list, or
insert __nullable annotations automatically for tracepoints. Each
compilation unit will be analyzed and results will be collated to find
whether a tracepoint pointer is definitely not null, maybe null, or an
unknown state where verifier conservatively marks it PTR_MAYBE_NULL.
A proof of concept of this tool from Eduard is available at [3].
Note that in case we don't find a specification in the raw_tp_null_args
array and the tracepoint belongs to a kernel module, we will
conservatively mark the arguments as PTR_MAYBE_NULL. This is because
unlike for in-tree modules, out-of-tree module tracepoints may pass NULL
freely to the tracepoint. We don't protect against such tracepoints
passing ERR_PTR (which is uncommon anyway), lest we mark all such
arguments as SCALAR_VALUE.
While we are it, let's adjust the test raw_tp_null to not perform
dereference of the skb->mark, as that won't be allowed anymore, and make
it more robust by using inline assembly to test the dead code
elimination behavior, which should still stay the same.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb
[1]: https://lore.kernel.org/all/20241104171959.2938862-1-memxor@gmail.com
[2]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com
[3]: https://github.com/eddyz87/llvm-project/tree/nullness-for-tracepoint-params
Reported-by: Juri Lelli <juri.lelli@redhat.com> # original bug
Reported-by: Manu Bretelle <chantra@meta.com> # bugs in masking fix
Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL")
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Co-developed-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241213221929.3495062-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 659b9ba7cb2d7adb64618b87ddfaa528a143766e upstream.
Robert Morris reported the following program type which passes the
verifier in [0]:
SEC("struct_ops/bpf_cubic_init")
void BPF_PROG(bpf_cubic_init, struct sock *sk)
{
asm volatile("r2 = *(u16*)(r1 + 0)"); // verifier should demand u64
asm volatile("*(u32 *)(r2 +1504) = 0"); // 1280 in some configs
}
The second line may or may not work, but the first instruction shouldn't
pass, as it's a narrow load into the context structure of the struct ops
callback. The code falls back to btf_ctx_access to ensure correctness
and obtaining the types of pointers. Ensure that the size of the access
is correctly checked to be 8 bytes, otherwise the verifier thinks the
narrow load obtained a trusted BTF pointer and will permit loads/stores
as it sees fit.
Perform the check on size after we've verified that the load is for a
pointer field, as for scalar values narrow loads are fine. Access to
structs passed as arguments to a BPF program are also treated as
scalars, therefore no adjustment is needed in their case.
Existing verifier selftests are broken by this change, but because they
were incorrect. Verifier tests for d_path were performing narrow load
into context to obtain path pointer, had this program actually run it
would cause a crash. The same holds for verifier_btf_ctx_access tests.
[0]: https://lore.kernel.org/bpf/51338.1732985814@localhost
Fixes: 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF")
Reported-by: Robert Morris <rtm@mit.edu>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241212092050.3204165-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c00d738e1673ab801e1577e4e3c780ccf88b1a5b upstream.
This patch reverts commit
cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"). The
patch was well-intended and meant to be as a stop-gap fixing branch
prediction when the pointer may actually be NULL at runtime. Eventually,
it was supposed to be replaced by an automated script or compiler pass
detecting possibly NULL arguments and marking them accordingly.
However, it caused two main issues observed for production programs and
failed to preserve backwards compatibility. First, programs relied on
the verifier not exploring == NULL branch when pointer is not NULL, thus
they started failing with a 'dereference of scalar' error. Next,
allowing raw_tp arguments to be modified surfaced the warning in the
verifier that warns against reg->off when PTR_MAYBE_NULL is set.
More information, context, and discusson on both problems is available
in [0]. Overall, this approach had several shortcomings, and the fixes
would further complicate the verifier's logic, and the entire masking
scheme would have to be removed eventually anyway.
Hence, revert the patch in preparation of a better fix avoiding these
issues to replace this commit.
[0]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com
Reported-by: Manu Bretelle <chantra@meta.com>
Fixes: cb4158ce8ec8 ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241213221929.3495062-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f44ec8733a8469143fde1984b5e6931b2e2f6f3f ]
In general, BPF link's underlying BPF program should be considered to be
reachable through attach hook -> link -> prog chain, and, pessimistically,
we have to assume that as long as link's memory is not safe to free,
attach hook's code might hold a pointer to BPF program and use it.
As such, it's not (generally) correct to put link's program early before
waiting for RCU GPs to go through. More eager bpf_prog_put() that we
currently do is mostly correct due to BPF program's release code doing
similar RCU GP waiting, but as will be shown in the following patches,
BPF program can be non-sleepable (and, thus, reliant on only "classic"
RCU GP), while BPF link's attach hook can have sleepable semantics and
needs to be protected by RCU Tasks Trace, and for such cases BPF link
has to go through RCU Tasks Trace + "classic" RCU GPs before being
deallocated. And so, if we put BPF program early, we might free BPF
program before we free BPF link, leading to use-after-free situation.
So, this patch defers bpf_prog_put() until we are ready to perform
bpf_link's deallocation. At worst, this delays BPF program freeing by
one extra RCU GP, but that seems completely acceptable. Alternatively,
we'd need more elaborate ways to determine BPF hook, BPF link, and BPF
program lifetimes, and how they relate to each other, which seems like
an unnecessary complication.
Note, for most BPF links we still will perform eager bpf_prog_put() and
link dealloc, so for those BPF links there are no observable changes
whatsoever. Only BPF links that use deferred dealloc might notice
slightly delayed freeing of BPF programs.
Also, to reduce code and logic duplication, extract program put + link
dealloc logic into bpf_link_dealloc() helper.
Link: https://lore.kernel.org/20241101181754.782341-1-andrii@kernel.org
Tested-by: Jordan Rife <jrife@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b9e9ed90b10c82a4e9d4d70a2890f06bfcdd3b78 ]
For htab of maps, when the map is removed from the htab, it may hold the
last reference of the map. bpf_map_fd_put_ptr() will invoke
bpf_map_free_id() to free the id of the removed map element. However,
bpf_map_fd_put_ptr() is invoked while holding a bucket lock
(raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock
(spinlock_t), triggering the following lockdep warning:
=============================
[ BUG: Invalid wait context ]
6.11.0-rc4+ #49 Not tainted
-----------------------------
test_maps/4881 is trying to lock:
ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70
other info that might help us debug this:
context-{5:5}
2 locks held by test_maps/4881:
#0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270
#1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80
stack backtrace:
CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0xb0
dump_stack+0x10/0x20
__lock_acquire+0x73e/0x36c0
lock_acquire+0x182/0x450
_raw_spin_lock_irqsave+0x43/0x70
bpf_map_free_id.part.0+0x21/0x70
bpf_map_put+0xcf/0x110
bpf_map_fd_put_ptr+0x9a/0xb0
free_htab_elem+0x69/0xe0
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
bpf_map_update_value+0x266/0x380
__sys_bpf+0x21bb/0x36b0
__x64_sys_bpf+0x45/0x60
x64_sys_call+0x1b2a/0x20d0
do_syscall_64+0x5d/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
One way to fix the lockdep warning is using raw_spinlock_t for
map_idr_lock as well. However, bpf_map_alloc_id() invokes
idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a
similar lockdep warning because the slab's lock (s->cpu_slab->lock) is
still a spinlock.
Instead of changing map_idr_lock's type, fix the issue by invoking
htab_put_fd_value() after htab_unlock_bucket(). However, only deferring
the invocation of htab_put_fd_value() is not enough, because the old map
pointers in htab of maps can not be saved during batched deletion.
Therefore, also defer the invocation of free_htab_elem(), so these
to-be-freed elements could be linked together similar to lru map.
There are four callers for ->map_fd_put_ptr:
(1) alloc_htab_elem() (through htab_put_fd_value())
It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of
htab_put_fd_value() can not simply move after htab_unlock_bucket(),
because the old element has already been stashed in htab->extra_elems.
It may be reused immediately after htab_unlock_bucket() and the
invocation of htab_put_fd_value() after htab_unlock_bucket() may release
the newly-added element incorrectly. Therefore, saving the map pointer
of the old element for htab of maps before unlocking the bucket and
releasing the map_ptr after unlock. Beside the map pointer in the old
element, should do the same thing for the special fields in the old
element as well.
(2) free_htab_elem() (through htab_put_fd_value())
Its caller includes __htab_map_lookup_and_delete_elem(),
htab_map_delete_elem() and __htab_map_lookup_and_delete_batch().
For htab_map_delete_elem(), simply invoke free_htab_elem() after
htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just
like lru map, linking the to-be-freed element into node_to_free list
and invoking free_htab_elem() for these element after unlock. It is safe
to reuse batch_flink as the link for node_to_free, because these
elements have been removed from the hash llist.
Because htab of maps doesn't support lookup_and_delete operation,
__htab_map_lookup_and_delete_elem() doesn't have the problem, so kept
it as is.
(3) fd_htab_map_free()
It invokes ->map_fd_put_ptr without raw_spinlock_t.
(4) bpf_fd_htab_map_update_elem()
It invokes ->map_fd_put_ptr without raw_spinlock_t.
After moving free_htab_elem() outside htab bucket lock scope, using
pcpu_freelist_push() instead of __pcpu_freelist_push() to disable
the irq before freeing elements, and protecting the invocations of
bpf_mem_cache_free() with migrate_{disable|enable} pair.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241106063542.357743-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d6083f040d5d8f8d748462c77e90547097df936e ]
There is a potential infinite loop issue that can occur when using a
combination of tail calls and freplace.
In an upcoming selftest, the attach target for entry_freplace of
tailcall_freplace.c is subprog_tc of tc_bpf2bpf.c, while the tail call in
entry_freplace leads to entry_tc. This results in an infinite loop:
entry_tc -> subprog_tc -> entry_freplace --tailcall-> entry_tc.
The problem arises because the tail_call_cnt in entry_freplace resets to
zero each time entry_freplace is executed, causing the tail call mechanism
to never terminate, eventually leading to a kernel panic.
To fix this issue, the solution is twofold:
1. Prevent updating a program extended by an freplace program to a
prog_array map.
2. Prevent extending a program that is already part of a prog_array map
with an freplace program.
This ensures that:
* If a program or its subprogram has been extended by an freplace program,
it can no longer be updated to a prog_array map.
* If a program has been added to a prog_array map, neither it nor its
subprograms can be extended by an freplace program.
Moreover, an extension program should not be tailcalled. As such, return
-EINVAL if the program has a type of BPF_PROG_TYPE_EXT when adding it to a
prog_array map.
Additionally, fix a minor code style issue by replacing eight spaces with a
tab for proper formatting.
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Leon Hwang <leon.hwang@linux.dev>
Link: https://lore.kernel.org/r/20241015150207.70264-2-leon.hwang@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ab244dd7cf4c291f82faacdc50b45cc0f55b674d upstream.
Jordy reported issue against XSKMAP which also applies to DEVMAP - the
index used for accessing map entry, due to being a signed integer,
causes the OOB writes. Fix is simple as changing the type from int to
u32, however, when compared to XSKMAP case, one more thing needs to be
addressed.
When map is released from system via dev_map_free(), we iterate through
all of the entries and an iterator variable is also an int, which
implies OOB accesses. Again, change it to be u32.
Example splat below:
[ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000
[ 160.731662] #PF: supervisor read access in kernel mode
[ 160.736876] #PF: error_code(0x0000) - not-present page
[ 160.742095] PGD 0 P4D 0
[ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP
[ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487
[ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[ 160.767642] Workqueue: events_unbound bpf_map_free_deferred
[ 160.773308] RIP: 0010:dev_map_free+0x77/0x170
[ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff
[ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202
[ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024
[ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000
[ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001
[ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122
[ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000
[ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000
[ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0
[ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 160.874092] PKRU: 55555554
[ 160.876847] Call Trace:
[ 160.879338] <TASK>
[ 160.881477] ? __die+0x20/0x60
[ 160.884586] ? page_fault_oops+0x15a/0x450
[ 160.888746] ? search_extable+0x22/0x30
[ 160.892647] ? search_bpf_extables+0x5f/0x80
[ 160.896988] ? exc_page_fault+0xa9/0x140
[ 160.900973] ? asm_exc_page_fault+0x22/0x30
[ 160.905232] ? dev_map_free+0x77/0x170
[ 160.909043] ? dev_map_free+0x58/0x170
[ 160.912857] bpf_map_free_deferred+0x51/0x90
[ 160.917196] process_one_work+0x142/0x370
[ 160.921272] worker_thread+0x29e/0x3b0
[ 160.925082] ? rescuer_thread+0x4b0/0x4b0
[ 160.929157] kthread+0xd4/0x110
[ 160.932355] ? kthread_park+0x80/0x80
[ 160.936079] ret_from_fork+0x2d/0x50
[ 160.943396] ? kthread_park+0x80/0x80
[ 160.950803] ret_from_fork_asm+0x11/0x20
[ 160.958482] </TASK>
Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references")
CC: stable@vger.kernel.org
Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Jordy Zomer <jordyzomer@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/r/20241122121030.716788-3-maciej.fijalkowski@intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 27abc7b3fa2e09bbe41e2924d328121546865eda ]
trie_get_next_key() uses node->prefixlen == key->prefixlen to identify
an exact match, However, it is incorrect because when the target key
doesn't fully match the found node (e.g., node->prefixlen != matchlen),
these two nodes may also have the same prefixlen. It will return
expected result when the passed key exist in the trie. However when a
recently-deleted key or nonexistent key is passed to
trie_get_next_key(), it may skip keys and return incorrect result.
Fix it by using node->prefixlen == matchlen to identify exact matches.
When the condition is true after the search, it also implies
node->prefixlen equals key->prefixlen, otherwise, the search would
return NULL instead.
Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 532d6b36b2bfac5514426a97a4df8d103d700d43 ]
When a LPM trie is full, in-place updates of existing elements
incorrectly return -ENOSPC.
Fix this by deferring the check of trie->n_entries. For new insertions,
n_entries must not exceed max_entries. However, in-place updates are
allowed even when the trie is full.
Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3d5611b4d7efbefb85a74fcdbc35c603847cc022 ]
There is no need to call kfree(im_node) when updating element fails,
because im_node must be NULL. Remove the unnecessary kfree() for
im_node.
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 532d6b36b2bf ("bpf: Handle in-place update for full LPM trie correctly")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit eae6a075e9537dd69891cf77ca5a88fa8a28b4a1 ]
Add the currently missing handling for the BPF_EXIST and BPF_NOEXIST
flags. These flags can be specified by users and are relevant since LPM
trie supports exact matches during update.
Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b0e66977dc072906bb76555fb1a64261d7f63d0f ]
When CAP_PERFMON and CAP_SYS_ADMIN (allow_ptr_leaks) are disabled, the
verifier aims to reject partial overwrite on an 8-byte stack slot that
contains a spilled pointer.
However, in such a scenario, it rejects all partial stack overwrites as
long as the targeted stack slot is a spilled register, because it does
not check if the stack slot is a spilled pointer.
Incomplete checks will result in the rejection of valid programs, which
spill narrower scalar values onto scalar slots, as shown below.
0: R1=ctx() R10=fp0
; asm volatile ( @ repro.bpf.c:679
0: (7a) *(u64 *)(r10 -8) = 1 ; R10=fp0 fp-8_w=1
1: (62) *(u32 *)(r10 -8) = 1
attempt to corrupt spilled pointer on stack
processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0.
Fix this by expanding the check to not consider spilled scalar registers
when rejecting the write into the stack.
Previous discussion on this patch is at link [0].
[0]: https://lore.kernel.org/bpf/20240403202409.2615469-1-tao.lyu@epfl.ch
Fixes: ab125ed3ec1c ("bpf: fix check for attempt to corrupt spilled pointer")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204044757.1483141-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 69772f509e084ec6bca12dbcdeeeff41b0103774 ]
Inside mark_stack_slot_misc, we should not upgrade STACK_INVALID to
STACK_MISC when allow_ptr_leaks is false, since invalid contents
shouldn't be read unless the program has the relevant capabilities.
The relaxation only makes sense when env->allow_ptr_leaks is true.
However, such conversion in privileged mode becomes unnecessary, as
invalid slots can be read without being upgraded to STACK_MISC.
Currently, the condition is inverted (i.e. checking for true instead of
false), simply remove it to restore correct behavior.
Fixes: eaf18febd6eb ("bpf: preserve STACK_ZERO slots on partial reg spills")
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Reported-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204044757.1483141-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 12659d28615d606b36e382f4de2dd05550d202af ]
Currently, KF_ARG_PTR_TO_ITER handling missed checking the reg->type and
ensuring it is PTR_TO_STACK. Instead of enforcing this in the caller of
process_iter_arg, move the check into it instead so that all callers
will gain the check by default. This is similar to process_dynptr_func.
An existing selftest in verifier_bits_iter.c fails due to this change,
but it's because it was passing a NULL pointer into iter_next helper and
getting an error further down the checks, but probably meant to pass an
uninitialized iterator on the stack (as is done in the subsequent test
below it). We will gain coverage for non-PTR_TO_STACK arguments in later
patches hence just change the declaration to zero-ed stack object.
Fixes: 06accc8779c1 ("bpf: add support for open-coded iterator loops")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Tao Lyu <tao.lyu@epfl.ch>
[ Kartikeya: move check into process_iter_arg, rewrite commit log ]
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241203000238.3602922-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7c8ce4ffb684676039b1ff9ff81c126794e8d88e ]
Without kernel symbols for struct_ops trampoline, the unwinder may
produce unexpected stacktraces.
For example, the x86 ORC and FP unwinders check if an IP is in kernel
text by verifying the presence of the IP's kernel symbol. When a
struct_ops trampoline address is encountered, the unwinder stops due
to the absence of symbol, resulting in an incomplete stacktrace that
consists only of direct and indirect child functions called from the
trampoline.
The arm64 unwinder is another example. While the arm64 unwinder can
proceed across a struct_ops trampoline address, the corresponding
symbol name is displayed as "unknown", which is confusing.
Thus, add kernel symbol for struct_ops trampoline. The name is
bpf__<struct_ops_name>_<member_name>, where <struct_ops_name> is the
type name of the struct_ops, and <member_name> is the name of
the member that the trampoline is linked to.
Below is a comparison of stacktraces captured on x86 by perf record,
before and after this patch.
Before:
ffffffff8116545d __lock_acquire+0xad ([kernel.kallsyms])
ffffffff81167fcc lock_acquire+0xcc ([kernel.kallsyms])
ffffffff813088f4 __bpf_prog_enter+0x34 ([kernel.kallsyms])
After:
ffffffff811656bd __lock_acquire+0x30d ([kernel.kallsyms])
ffffffff81167fcc lock_acquire+0xcc ([kernel.kallsyms])
ffffffff81309024 __bpf_prog_enter+0x34 ([kernel.kallsyms])
ffffffffc000d7e9 bpf__tcp_congestion_ops_cong_avoid+0x3e ([kernel.kallsyms])
ffffffff81f250a5 tcp_ack+0x10d5 ([kernel.kallsyms])
ffffffff81f27c66 tcp_rcv_established+0x3b6 ([kernel.kallsyms])
ffffffff81f3ad03 tcp_v4_do_rcv+0x193 ([kernel.kallsyms])
ffffffff81d65a18 __release_sock+0xd8 ([kernel.kallsyms])
ffffffff81d65af4 release_sock+0x34 ([kernel.kallsyms])
ffffffff81f15c4b tcp_sendmsg+0x3b ([kernel.kallsyms])
ffffffff81f663d7 inet_sendmsg+0x47 ([kernel.kallsyms])
ffffffff81d5ab40 sock_write_iter+0x160 ([kernel.kallsyms])
ffffffff8149c67b vfs_write+0x3fb ([kernel.kallsyms])
ffffffff8149caf6 ksys_write+0xc6 ([kernel.kallsyms])
ffffffff8149cb5d __x64_sys_write+0x1d ([kernel.kallsyms])
ffffffff81009200 x64_sys_call+0x1d30 ([kernel.kallsyms])
ffffffff82232d28 do_syscall_64+0x68 ([kernel.kallsyms])
ffffffff8240012f entry_SYSCALL_64_after_hwframe+0x76 ([kernel.kallsyms])
Fixes: 85d33df357b6 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20241112145849.3436772-4-xukuohai@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 821a3fa32bbe3bc0fa23b3189325d3720a49a24c ]
Only function pointers in a struct_ops structure can be linked to bpf
progs, so set the links count to the function pointers count, instead
of the total members count in the structure.
Suggested-by: Martin KaFai Lau <martin.lau@linux.dev>
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Link: https://lore.kernel.org/r/20241112145849.3436772-3-xukuohai@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 7c8ce4ffb684 ("bpf: Add kernel symbol for struct_ops trampoline")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 17c4b65a24938c6dd79496cce5df15f70d9c253c ]
The kprobe session program can return only 0 or 1,
instruct verifier to check for that.
Fixes: 535a3692ba72 ("bpf: Add support for kprobe session attach")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-2-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cb4158ce8ec8a5bb528cc1693356a5eb8058094d ]
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments
can actually be NULL, and the verifier's knowledge, that they are never
NULL, causing explicit NULL checks to be deleted, and accesses to such
pointers potentially crashing the kernel.
To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special
case the dereference and pointer arithmetic to permit it, and allow
passing them into helpers/kfuncs; these exceptions are made for raw_tp
programs only. Ensure that we don't do this when ref_obj_id > 0, as in
that case this is an acquired object and doesn't need such adjustment.
The reason we do mask_raw_tp_trusted_reg logic is because other will
recheck in places whether the register is a trusted_reg, and then
consider our register as untrusted when detecting the presence of the
PTR_MAYBE_NULL flag.
To allow safe dereference, we enable PROBE_MEM marking when we see loads
into trusted pointers with PTR_MAYBE_NULL.
While trusted raw_tp arguments can also be passed into helpers or kfuncs
where such broken assumption may cause issues, a future patch set will
tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can
already be passed into helpers and causes similar problems. Thus, they
are left alone for now.
It is possible that these checks also permit passing non-raw_tp args
that are trusted PTR_TO_BTF_ID with null marking. In such a case,
allowing dereference when pointer is NULL expands allowed behavior, so
won't regress existing programs, and the case of passing these into
helpers is the same as above and will be dealt with later.
Also update the failure case in tp_btf_nullable selftest to capture the
new behavior, as the verifier will no longer cause an error when
directly dereference a raw tracepoint argument marked as __nullable.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Reported-by: Juri Lelli <juri.lelli@redhat.com>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241104171959.2938862-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|