summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2020-10-10io_uring: improve submit_state.ios_left accountingPavel Begunkov
state->ios_left isn't decremented for requests that don't need a file, so it might be larger than number of SQEs left. That in some circumstances makes us to grab more files that is needed so imposing extra put. Deaccount one ios_left for each request. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-10io_uring: simplify io_file_get()Pavel Begunkov
Keep ->needs_file_no_error check out of io_file_get(), and let callers handle it. It makes it more straightforward. Also, as the only error it can hand back -EBADF, make it return a file or NULL. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-10io_uring: kill extra check in fixed io_file_get()Pavel Begunkov
ctx->nr_user_files == 0 IFF ctx->file_data == NULL and there fixed files are not used. Hence, verifying fds only against ctx->nr_user_files is enough. Remove the other check from hot path. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-10io_uring: clean up ->files grabbingPavel Begunkov
Move work.files grabbing into io_prep_async_work() to all other work resources initialisation. We don't need to keep it separately now, as ->ring_fd/file are gone. It also allows to not grab it when a request is not going to io-wq. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-10io_uring: don't io_prep_async_work() linked reqsPavel Begunkov
There is no real reason left for preparing io-wq work context for linked requests in advance, remove it as this might become a bottleneck in some cases. Reported-by: Roman Gershman <romger@amazon.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-09f2fs: fix to set SBI_NEED_FSCK flag for inconsistent inodeChao Yu
If compressed inode has inconsistent fields on i_compress_algorithm, i_compr_blocks and i_log_cluster_size, we missed to set SBI_NEED_FSCK to notice fsck to repair the inode, fix it. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-10-09io_uring: Convert advanced XArray uses to the normal APIMatthew Wilcox (Oracle)
There are no bugs here that I've spotted, it's just easier to use the normal API and there are no performance advantages to using the more verbose advanced API. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-09io_uring: Fix XArray usage in io_uring_add_task_fileMatthew Wilcox (Oracle)
The xas_store() wasn't paired with an xas_nomem() loop, so if it couldn't allocate memory using GFP_NOWAIT, it would leak the reference to the file descriptor. Also the node pointed to by the xas could be freed between the call to xas_load() under the rcu_read_lock() and the acquisition of the xa_lock. It's easier to just use the normal xa_load/xa_store interface here. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> [axboe: fix missing assign after alloc, cur_uring -> tctx rename] Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-09io_uring: Fix use of XArray in __io_uring_files_cancelMatthew Wilcox (Oracle)
We have to drop the lock during each iteration, so there's no advantage to using the advanced API. Convert this to a standard xa_for_each() loop. Reported-by: syzbot+27c12725d8ff0bfe1a13@syzkaller.appspotmail.com Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-09fuse: implement crossmountsMax Reitz
FUSE servers can indicate crossmount points by setting FUSE_ATTR_SUBMOUNT in fuse_attr.flags. The inode will then be marked as S_AUTOMOUNT, and the .d_automount implementation creates a new submount at that location, so that the submount gets a distinct st_dev value. Note that all submounts get a distinct superblock and a distinct st_dev value, so for virtio-fs, even if the same filesystem is mounted more than once on the host, none of its mount points will have the same st_dev. We need distinct superblocks because the superblock points to the root node, but the different host mounts may show different trees (e.g. due to submounts in some of them, but not in others). Right now, this behavior is only enabled when fuse_conn.auto_submounts is set, which is the case only for virtio-fs. Signed-off-by: Max Reitz <mreitz@redhat.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-09NFSv4: Use the net namespace uniquifier if it is setTrond Myklebust
If a container sets a net namespace specific uniquifier, then use that in the setclientid/exchangeid process. Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-09NFSv4: Clean up initialisation of uniquified client id stringsTrond Myklebust
When the user sets a uniquifier, then ensure we copy the string so that calls to strlen() etc are atomic with calls to snprintf(). Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-08f2fs: reject CASEFOLD inode flag without casefold featureEric Biggers
syzbot reported: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 6860 Comm: syz-executor835 Not tainted 5.9.0-rc8-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:utf8_casefold+0x43/0x1b0 fs/unicode/utf8-core.c:107 [...] Call Trace: f2fs_init_casefolded_name fs/f2fs/dir.c:85 [inline] __f2fs_setup_filename fs/f2fs/dir.c:118 [inline] f2fs_prepare_lookup+0x3bf/0x640 fs/f2fs/dir.c:163 f2fs_lookup+0x10d/0x920 fs/f2fs/namei.c:494 __lookup_hash+0x115/0x240 fs/namei.c:1445 filename_create+0x14b/0x630 fs/namei.c:3467 user_path_create fs/namei.c:3524 [inline] do_mkdirat+0x56/0x310 fs/namei.c:3664 do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 [...] The problem is that an inode has F2FS_CASEFOLD_FL set, but the filesystem doesn't have the casefold feature flag set, and therefore super_block::s_encoding is NULL. Fix this by making sanity_check_inode() reject inodes that have F2FS_CASEFOLD_FL when the filesystem doesn't have the casefold feature. Reported-by: syzbot+05139c4039d0679e19ff@syzkaller.appspotmail.com Fixes: 2c2eb7a300cd ("f2fs: Support case-insensitive file name lookups") Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Gabriel Krisman Bertazi <krisman@collabora.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-10-08f2fs: fix memory alignment to support 32bitJaegeuk Kim
In 32bit system, 64-bits key breaks memory alignment. This fixes the commit "f2fs: support 64-bits key in f2fs rb-tree node entry". Reported-by: Nicolas Chauvet <kwizart@gmail.com> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-10-08io_uring: fix break condition for __io_uring_register() waitingJens Axboe
Colin reports that there's unreachable code, since we only ever break if ret == 0. This is correct, and is due to a reversed logic condition in when to break or not. Break out of the loop if we don't process any task work, in that case we do want to return -EINTR. Fixes: af9c1a44f8de ("io_uring: process task work in io_uring_register()") Reported-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-09erofs: remove unnecessary enum entriesChengguang Xu
Opt_nouser_xattr and Opt_noacl are useless, so just remove them. Signed-off-by: Chengguang Xu <cgxu519@mykernel.net> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Link: https://lore.kernel.org/r/20201005071550.66193-1-cgxu519@mykernel.net Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
2020-10-08Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Small conflict around locking in rxrpc_process_event() - channel_lock moved to bundle in next, while state lock needs _bh() from net. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-08Merge tag 'exfat-for-5.9-rc9' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/linkinjeon/exfat Pull exfat fixes from Namjae Jeon: - Fix use of uninitialized spinlock on error path - Fix missing err assignment in exfat_build_inode() * tag 'exfat-for-5.9-rc9' of git://git.kernel.org/pub/scm/linux/kernel/git/linkinjeon/exfat: exfat: fix use of uninitialized spinlock on error path exfat: fix pointer error checking
2020-10-08afs: Fix deadlock between writeback and truncateDavid Howells
The afs filesystem has a lock[*] that it uses to serialise I/O operations going to the server (vnode->io_lock), as the server will only perform one modification operation at a time on any given file or directory. This prevents the the filesystem from filling up all the call slots to a server with calls that aren't going to be executed in parallel anyway, thereby allowing operations on other files to obtain slots. [*] Note that is probably redundant for directories at least since i_rwsem is used to serialise directory modifications and lookup/reading vs modification. The server does allow parallel non-modification ops, however. When a file truncation op completes, we truncate the in-memory copy of the file to match - but we do it whilst still holding the io_lock, the idea being to prevent races with other operations. However, if writeback starts in a worker thread simultaneously with truncation (whilst notify_change() is called with i_rwsem locked, writeback pays it no heed), it may manage to set PG_writeback bits on the pages that will get truncated before afs_setattr_success() manages to call truncate_pagecache(). Truncate will then wait for those pages - whilst still inside io_lock: # cat /proc/8837/stack [<0>] wait_on_page_bit_common+0x184/0x1e7 [<0>] truncate_inode_pages_range+0x37f/0x3eb [<0>] truncate_pagecache+0x3c/0x53 [<0>] afs_setattr_success+0x4d/0x6e [<0>] afs_wait_for_operation+0xd8/0x169 [<0>] afs_do_sync_operation+0x16/0x1f [<0>] afs_setattr+0x1fb/0x25d [<0>] notify_change+0x2cf/0x3c4 [<0>] do_truncate+0x7f/0xb2 [<0>] do_sys_ftruncate+0xd1/0x104 [<0>] do_syscall_64+0x2d/0x3a [<0>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 The writeback operation, however, stalls indefinitely because it needs to get the io_lock to proceed: # cat /proc/5940/stack [<0>] afs_get_io_locks+0x58/0x1ae [<0>] afs_begin_vnode_operation+0xc7/0xd1 [<0>] afs_store_data+0x1b2/0x2a3 [<0>] afs_write_back_from_locked_page+0x418/0x57c [<0>] afs_writepages_region+0x196/0x224 [<0>] afs_writepages+0x74/0x156 [<0>] do_writepages+0x2d/0x56 [<0>] __writeback_single_inode+0x84/0x207 [<0>] writeback_sb_inodes+0x238/0x3cf [<0>] __writeback_inodes_wb+0x68/0x9f [<0>] wb_writeback+0x145/0x26c [<0>] wb_do_writeback+0x16a/0x194 [<0>] wb_workfn+0x74/0x177 [<0>] process_one_work+0x174/0x264 [<0>] worker_thread+0x117/0x1b9 [<0>] kthread+0xec/0xf1 [<0>] ret_from_fork+0x1f/0x30 and thus deadlock has occurred. Note that whilst afs_setattr() calls filemap_write_and_wait(), the fact that the caller is holding i_rwsem doesn't preclude more pages being dirtied through an mmap'd region. Fix this by: (1) Use the vnode validate_lock to mediate access between afs_setattr() and afs_writepages(): (a) Exclusively lock validate_lock in afs_setattr() around the whole RPC operation. (b) If WB_SYNC_ALL isn't set on entry to afs_writepages(), trying to shared-lock validate_lock and returning immediately if we couldn't get it. (c) If WB_SYNC_ALL is set, wait for the lock. The validate_lock is also used to validate a file and to zap its cache if the file was altered by a third party, so it's probably a good fit for this. (2) Move the truncation outside of the io_lock in setattr, using the same hook as is used for local directory editing. This requires the old i_size to be retained in the operation record as we commit the revised status to the inode members inside the io_lock still, but we still need to know if we reduced the file size. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-08direct-io: defer alignment check until after the EOF checkGabriel Krisman Bertazi
Prior to commit 9fe55eea7e4b ("Fix race when checking i_size on direct i/o read"), an unaligned direct read past end of file would trigger EOF, since generic_file_aio_read detected this read-at-EOF condition and skipped the direct IO read entirely, returning 0. After that change, the read now reaches dio_generic, which detects the misalignment and returns EINVAL. This consolidates the generic direct-io to follow the same behavior of filesystems. Apparently, this fix will only affect ocfs2 since other filesystems do this verification before calling do_blockdev_direct_IO, with the exception of f2fs, which has the same bug, but is fixed in the next patch. it can be verified by a read loop on a file that does a partial read before EOF (On file that doesn't end at an aligned address). The following code fails on an unaligned file on filesystems without prior validation without this patch, but not on btrfs, ext4, and xfs. while (done < total) { ssize_t delta = pread(fd, buf + done, total - done, off + done); if (!delta) break; ... } Fix this regression by moving the misalignment check to after the EOF check added by commit 74cedf9b6c60 ("direct-io: Fix negative return from dio read beyond eof"). Based on a patch by Jamie Liu. Link: https://lore.kernel.org/r/20201008062620.2928326-4-krisman@collabora.com Reported-by: Jamie Liu <jamieliu@google.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-10-08direct-io: don't force writeback for reads beyond EOFGabriel Krisman Bertazi
If a DIO read starts past EOF, the kernel won't attempt it, so we don't need to flush dirty pages before failing the syscall. Link: https://lore.kernel.org/r/20201008062620.2928326-3-krisman@collabora.com Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-10-08direct-io: clean up error paths of do_blockdev_direct_IOGabriel Krisman Bertazi
In preparation to resort DIO checks, reduce code duplication of error handling in do_blockdev_direct_IO. Link: https://lore.kernel.org/r/20201008062620.2928326-2-krisman@collabora.com Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-10-08io_uring: no need to call xa_destroy() on empty xarrayJens Axboe
The kernel test robot reports this lockdep issue: [child1:659] mbind (274) returned ENOSYS, marking as inactive. [child1:659] mq_timedsend (279) returned ENOSYS, marking as inactive. [main] 10175 iterations. [F:7781 S:2344 HI:2397] [ 24.610601] [ 24.610743] ================================ [ 24.611083] WARNING: inconsistent lock state [ 24.611437] 5.9.0-rc7-00017-g0f2122045b9462 #5 Not tainted [ 24.611861] -------------------------------- [ 24.612193] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. [ 24.612660] ksoftirqd/0/7 [HC0[0]:SC1[3]:HE0:SE0] takes: [ 24.613086] f00ed998 (&xa->xa_lock#4){+.?.}-{2:2}, at: xa_destroy+0x43/0xc1 [ 24.613642] {SOFTIRQ-ON-W} state was registered at: [ 24.614024] lock_acquire+0x20c/0x29b [ 24.614341] _raw_spin_lock+0x21/0x30 [ 24.614636] io_uring_add_task_file+0xe8/0x13a [ 24.614987] io_uring_create+0x535/0x6bd [ 24.615297] io_uring_setup+0x11d/0x136 [ 24.615606] __ia32_sys_io_uring_setup+0xd/0xf [ 24.615977] do_int80_syscall_32+0x53/0x6c [ 24.616306] restore_all_switch_stack+0x0/0xb1 [ 24.616677] irq event stamp: 939881 [ 24.616968] hardirqs last enabled at (939880): [<8105592d>] __local_bh_enable_ip+0x13c/0x145 [ 24.617642] hardirqs last disabled at (939881): [<81b6ace3>] _raw_spin_lock_irqsave+0x1b/0x4e [ 24.618321] softirqs last enabled at (939738): [<81b6c7c8>] __do_softirq+0x3f0/0x45a [ 24.618924] softirqs last disabled at (939743): [<81055741>] run_ksoftirqd+0x35/0x61 [ 24.619521] [ 24.619521] other info that might help us debug this: [ 24.620028] Possible unsafe locking scenario: [ 24.620028] [ 24.620492] CPU0 [ 24.620685] ---- [ 24.620894] lock(&xa->xa_lock#4); [ 24.621168] <Interrupt> [ 24.621381] lock(&xa->xa_lock#4); [ 24.621695] [ 24.621695] *** DEADLOCK *** [ 24.621695] [ 24.622154] 1 lock held by ksoftirqd/0/7: [ 24.622468] #0: 823bfb94 (rcu_callback){....}-{0:0}, at: rcu_process_callbacks+0xc0/0x155 [ 24.623106] [ 24.623106] stack backtrace: [ 24.623454] CPU: 0 PID: 7 Comm: ksoftirqd/0 Not tainted 5.9.0-rc7-00017-g0f2122045b9462 #5 [ 24.624090] Call Trace: [ 24.624284] ? show_stack+0x40/0x46 [ 24.624551] dump_stack+0x1b/0x1d [ 24.624809] print_usage_bug+0x17a/0x185 [ 24.625142] mark_lock+0x11d/0x1db [ 24.625474] ? print_shortest_lock_dependencies+0x121/0x121 [ 24.625905] __lock_acquire+0x41e/0x7bf [ 24.626206] lock_acquire+0x20c/0x29b [ 24.626517] ? xa_destroy+0x43/0xc1 [ 24.626810] ? lock_acquire+0x20c/0x29b [ 24.627110] _raw_spin_lock_irqsave+0x3e/0x4e [ 24.627450] ? xa_destroy+0x43/0xc1 [ 24.627725] xa_destroy+0x43/0xc1 [ 24.627989] __io_uring_free+0x57/0x71 [ 24.628286] ? get_pid+0x22/0x22 [ 24.628544] __put_task_struct+0xf2/0x163 [ 24.628865] put_task_struct+0x1f/0x2a [ 24.629161] delayed_put_task_struct+0xe2/0xe9 [ 24.629509] rcu_process_callbacks+0x128/0x155 [ 24.629860] __do_softirq+0x1a3/0x45a [ 24.630151] run_ksoftirqd+0x35/0x61 [ 24.630443] smpboot_thread_fn+0x304/0x31a [ 24.630763] kthread+0x124/0x139 [ 24.631016] ? sort_range+0x18/0x18 [ 24.631290] ? kthread_create_worker_on_cpu+0x17/0x17 [ 24.631682] ret_from_fork+0x1c/0x28 which is complaining about xa_destroy() grabbing the xa lock in an IRQ disabling fashion, whereas the io_uring uses cases aren't interrupt safe. This is really an xarray issue, since it should not assume the lock type. But for our use case, since we know the xarray is empty at this point, there's no need to actually call xa_destroy(). So just get rid of it. Fixes: 0f2122045b94 ("io_uring: don't rely on weak ->files references") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-079P: Cast to loff_t before multiplyingMatthew Wilcox (Oracle)
On 32-bit systems, this multiplication will overflow for files larger than 4GB. Link: http://lkml.kernel.org/r/20201004180428.14494-2-willy@infradead.org Cc: stable@vger.kernel.org Fixes: fb89b45cdfdc ("9P: introduction of a new cache=mmap model.") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
2020-10-07io_uring: batch account ->req_issue and task struct referencesJens Axboe
Identical to how we handle the ctx reference counts, increase by the batch we're expecting to submit, and handle any slow path residual, if any. The request alloc-and-issue path is very hot, and this makes a noticeable difference by avoiding an two atomic incs for each individual request. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-07NFS: Decode a full READ_PLUS replyAnna Schumaker
Decode multiple hole and data segments sent by the server, placing everything directly where they need to go in the xdr pages. Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-07NFS: Add READ_PLUS hole segment decodingAnna Schumaker
We keep things simple for now by only decoding a single hole or data segment returned by the server, even if they returned more to us. Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-07NFS: Add READ_PLUS data segment supportAnna Schumaker
This patch adds client support for decoding a single NFS4_CONTENT_DATA segment returned by the server. This is the simplest implementation possible, since it does not account for any hole segments in the reply. Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-07NFS: Use xdr_page_pos() in NFSv4 decode_getacl()Anna Schumaker
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2020-10-07xfs: fix the indent in xfs_trans_mod_dquotKaixu Xia
The formatting is strange in xfs_trans_mod_dquot, so do a reindent. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-10-07xfs: do the ASSERT for the arguments O_{u,g,p}dqppKaixu Xia
If we pass in XFS_QMOPT_{U,G,P}QUOTA flags and different uid/gid/prid than them currently associated with the inode, the arguments O_{u,g,p}dqpp shouldn't be NULL, so add the ASSERT for them. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-10-07xfs: fix deadlock and streamline xfs_getfsmap performanceDarrick J. Wong
Refactor xfs_getfsmap to improve its performance: instead of indirectly calling a function that copies one record to userspace at a time, create a shadow buffer in the kernel and copy the whole array once at the end. On the author's computer, this reduces the runtime on his /home by ~20%. This also eliminates a deadlock when running GETFSMAP against the realtime device. The current code locks the rtbitmap to create fsmappings and copies them into userspace, having not released the rtbitmap lock. If the userspace buffer is an mmap of a sparse file that itself resides on the realtime device, the write page fault will recurse into the fs for allocation, which will deadlock on the rtbitmap lock. Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap") Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2020-10-07xfs: limit entries returned when counting fsmap recordsDarrick J. Wong
If userspace asked fsmap to count the number of entries, we cannot return more than UINT_MAX entries because fmh_entries is u32. Therefore, stop counting if we hit this limit or else we will waste time to return truncated results. Fixes: e89c041338ed ("xfs: implement the GETFSMAP ioctl") Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2020-10-07xfs: only relog deferred intent items if free space in the log gets lowDarrick J. Wong
Now that we have the ability to ask the log how far the tail needs to be pushed to maintain its free space targets, augment the decision to relog an intent item so that we only do it if the log has hit the 75% full threshold. There's no point in relogging an intent into the same checkpoint, and there's no need to relog if there's plenty of free space in the log. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: expose the log push thresholdDarrick J. Wong
Separate the computation of the log push threshold and the push logic in xlog_grant_push_ail. This enables higher level code to determine (for example) that it is holding on to a logged intent item and the log is so busy that it is more than 75% full. In that case, it would be desirable to move the log item towards the head to release the tail, which we will cover in the next patch. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: periodically relog deferred intent itemsDarrick J. Wong
There's a subtle design flaw in the deferred log item code that can lead to pinning the log tail. Taking up the defer ops chain examples from the previous commit, we can get trapped in sequences like this: Caller hands us a transaction t0 with D0-D3 attached. The defer ops chain will look like the following if the transaction rolls succeed: t1: D0(t0), D1(t0), D2(t0), D3(t0) t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) In transaction 9, we finish d9 and try to roll to t10 while holding onto an intent item for D3 that we logged in t0. The previous commit changed the order in which we place new defer ops in the defer ops processing chain to reduce the maximum chain length. Now make xfs_defer_finish_noroll capable of relogging the entire chain periodically so that we can always move the log tail forward. Most chains will never get relogged, except for operations that generate very long chains (large extents containing many blocks with different sharing levels) or are on filesystems with small logs and a lot of ongoing metadata updates. Callers are now required to ensure that the transaction reservation is large enough to handle logging done items and new intent items for the maximum possible chain length. Most callers are careful to keep the chain lengths low, so the overhead should be minimal. The decision to relog an intent item is made based on whether the intent was logged in a previous checkpoint, since there's no point in relogging an intent into the same checkpoint. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: change the order in which child and parent defer ops are finishedDarrick J. Wong
The defer ops code has been finishing items in the wrong order -- if a top level defer op creates items A and B, and finishing item A creates more defer ops A1 and A2, we'll put the new items on the end of the chain and process them in the order A B A1 A2. This is kind of weird, since it's convenient for programmers to be able to think of A and B as an ordered sequence where all the sub-tasks for A must finish before we move on to B, e.g. A A1 A2 D. Right now, our log intent items are not so complex that this matters, but this will become important for the atomic extent swapping patchset. In order to maintain correct reference counting of extents, we have to unmap and remap extents in that order, and we want to complete that work before moving on to the next range that the user wants to swap. This patch fixes defer ops to satsify that requirement. The primary symptom of the incorrect order was noticed in an early performance analysis of the atomic extent swap code. An astonishingly large number of deferred work items accumulated when userspace requested an atomic update of two very fragmented files. The cause of this was traced to the same ordering bug in the inner loop of xfs_defer_finish_noroll. If the ->finish_item method of a deferred operation queues new deferred operations, those new deferred ops are appended to the tail of the pending work list. To illustrate, say that a caller creates a transaction t0 with four deferred operations D0-D3. The first thing defer ops does is roll the transaction to t1, leaving us with: t1: D0(t0), D1(t0), D2(t0), D3(t0) Let's say that finishing each of D0-D3 will create two new deferred ops. After finish D0 and roll, we'll have the following chain: t2: D1(t0), D2(t0), D3(t0), d4(t1), d5(t1) d4 and d5 were logged to t1. Notice that while we're about to start work on D1, we haven't actually completed all the work implied by D0 being finished. So far we've been careful (or lucky) to structure the dfops callers such that D1 doesn't depend on d4 or d5 being finished, but this is a potential logic bomb. There's a second problem lurking. Let's see what happens as we finish D1-D3: t3: D2(t0), D3(t0), d4(t1), d5(t1), d6(t2), d7(t2) t4: D3(t0), d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3) t5: d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) Let's say that d4-d11 are simple work items that don't queue any other operations, which means that we can complete each d4 and roll to t6: t6: d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) t7: d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) ... t11: d10(t4), d11(t4) t12: d11(t4) <done> When we try to roll to transaction #12, we're holding defer op d11, which we logged way back in t4. This means that the tail of the log is pinned at t4. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot get roll to t11 because there isn't enough space left before we'd run into t4. Let's shift back to the original failure. I mentioned before that I discovered this flaw while developing the atomic file update code. In that scenario, we have a defer op (D0) that finds a range of file blocks to remap, creates a handful of new defer ops to do that, and then asks to be continued with however much work remains. So, D0 is the original swapext deferred op. The first thing defer ops does is rolls to t1: t1: D0(t0) We try to finish D0, logging d1 and d2 in the process, but can't get all the work done. We log a done item and a new intent item for the work that D0 still has to do, and roll to t2: t2: D0'(t1), d1(t1), d2(t1) We roll and try to finish D0', but still can't get all the work done, so we log a done item and a new intent item for it, requeue D0 a second time, and roll to t3: t3: D0''(t2), d1(t1), d2(t1), d3(t2), d4(t2) If it takes 48 more rolls to complete D0, then we'll finally dispense with D0 in t50: t50: D<fifty primes>(t49), d1(t1), ..., d102(t50) We then try to roll again to get a chain like this: t51: d1(t1), d2(t1), ..., d101(t50), d102(t50) ... t152: d102(t50) <done> Notice that in rolling to transaction #51, we're holding on to a log intent item for d1 that was logged in transaction #1. This means that the tail of the log is pinned at t1. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot roll to t51 because there isn't enough space left before we'd run into t1. This is of course problem #2 again. But notice the third problem with this scenario: we have 102 defer ops tied to this transaction! Each of these items are backed by pinned kernel memory, which means that we risk OOM if the chains get too long. Yikes. Problem #1 is a subtle logic bomb that could hit someone in the future; problem #2 applies (rarely) to the current upstream, and problem #3 applies to work under development. This is not how incremental deferred operations were supposed to work. The dfops design of logging in the same transaction an intent-done item and a new intent item for the work remaining was to make it so that we only have to juggle enough deferred work items to finish that one small piece of work. Deferred log item recovery will find that first unfinished work item and restart it, no matter how many other intent items might follow it in the log. Therefore, it's ok to put the new intents at the start of the dfops chain. For the first example, the chains look like this: t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) For the second example, the chains look like this: t1: D0(t0) t2: d1(t1), d2(t1), D0'(t1) t3: d2(t1), D0'(t1) t4: D0'(t1) t5: d1(t4), d2(t4), D0''(t4) ... t148: D0<50 primes>(t147) t149: d101(t148), d102(t148) t150: d102(t148) <done> This actually sucks more for pinning the log tail (we try to roll to t10 while holding an intent item that was logged in t1) but we've solved problem #1. We've also reduced the maximum chain length from: sum(all the new items) + nr_original_items to: max(new items that each original item creates) + nr_original_items This solves problem #3 by sharply reducing the number of defer ops that can be attached to a transaction at any given time. The change makes the problem of log tail pinning worse, but is improvement we need to solve problem #2. Actually solving #2, however, is left to the next patch. Note that a subsequent analysis of some hard-to-trigger reflink and COW livelocks on extremely fragmented filesystems (or systems running a lot of IO threads) showed the same symptoms -- uncomfortably large numbers of incore deferred work items and occasional stalls in the transaction grant code while waiting for log reservations. I think this patch and the next one will also solve these problems. As originally written, the code used list_splice_tail_init instead of list_splice_init, so change that, and leave a short comment explaining our actions. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: fix an incore inode UAF in xfs_bui_recoverDarrick J. Wong
In xfs_bui_item_recover, there exists a use-after-free bug with regards to the inode that is involved in the bmap replay operation. If the mapping operation does not complete, we call xfs_bmap_unmap_extent to create a deferred op to finish the unmapping work, and we retain a pointer to the incore inode. Unfortunately, the very next thing we do is commit the transaction and drop the inode. If reclaim tears down the inode before we try to finish the defer ops, we dereference garbage and blow up. Therefore, create a way to join inodes to the defer ops freezer so that we can maintain the xfs_inode reference until we're done with the inode. Note: This imposes the requirement that there be enough memory to keep every incore inode in memory throughout recovery. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: clean up xfs_bui_item_recover iget/trans_alloc/ilock orderingDarrick J. Wong
In most places in XFS, we have a specific order in which we gather resources: grab the inode, allocate a transaction, then lock the inode. xfs_bui_item_recover doesn't do it in that order, so fix it to be more consistent. This also makes the error bailout code a bit less weird. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: clean up bmap intent item recovery checkingDarrick J. Wong
The bmap intent item checking code in xfs_bui_item_recover is spread all over the function. We should check the recovered log item at the top before we allocate any resources or do anything else, so do that. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: xfs_defer_capture should absorb remaining transaction reservationDarrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the transaction reservation type from the old transaction so that when we continue the dfops chain, we still use the same reservation parameters. Doing this means that the log item recovery functions get to determine the transaction reservation instead of abusing tr_itruncate in yet another part of xfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: xfs_defer_capture should absorb remaining block reservationsDarrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the remaining block reservations so that when we continue the dfops chain, we can reserve the same number of blocks to use. We capture the reservations for both data and realtime volumes. This adds the requirement that every log intent item recovery function must be careful to reserve enough blocks to handle both itself and all defer ops that it can queue. On the other hand, this enables us to do away with the handwaving block estimation nonsense that was going on in xlog_finish_defer_ops. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07xfs: proper replay of deferred ops queued during log recoveryDarrick J. Wong
When we replay unfinished intent items that have been recovered from the log, it's possible that the replay will cause the creation of more deferred work items. As outlined in commit 509955823cc9c ("xfs: log recovery should replay deferred ops in order"), later work items have an implicit ordering dependency on earlier work items. Therefore, recovery must replay the items (both recovered and created) in the same order that they would have been during normal operation. For log recovery, we enforce this ordering by using an empty transaction to collect deferred ops that get created in the process of recovering a log intent item to prevent them from being committed before the rest of the recovered intent items. After we finish committing all the recovered log items, we allocate a transaction with an enormous block reservation, splice our huge list of created deferred ops into that transaction, and commit it, thereby finishing all those ops. This is /really/ hokey -- it's the one place in XFS where we allow nested transactions; the splicing of the defer ops list is is inelegant and has to be done twice per recovery function; and the broken way we handle inode pointers and block reservations cause subtle use-after-free and allocator problems that will be fixed by this patch and the two patches after it. Therefore, replace the hokey empty transaction with a structure designed to capture each chain of deferred ops that are created as part of recovering a single unfinished log intent. Finally, refactor the loop that replays those chains to do so using one transaction per chain. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: remove XFS_LI_RECOVEREDDarrick J. Wong
The ->iop_recover method of a log intent item removes the recovered intent item from the AIL by logging an intent done item and committing the transaction, so it's superfluous to have this flag check. Nothing else uses it, so get rid of the flag entirely. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07xfs: remove xfs_defer_resetDarrick J. Wong
Remove this one-line helper since the assert is trivially true in one call site and the rest obscures a bitmask operation. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07btrfs: rename BTRFS_INODE_ORDERED_DATA_CLOSE flagNikolay Borisov
Commit 8d875f95da43 ("btrfs: disable strict file flushes for renames and truncates") eliminated the notion of ordered operations and instead BTRFS_INODE_ORDERED_DATA_CLOSE only remained as a flag indicating that a file's content should be synced to disk in case a file is truncated and any writes happen to it concurrently. In fact this intendend behavior was broken until it was fixed in f6dc45c7a93a ("Btrfs: fix filemap_flush call in btrfs_file_release"). All things considered let's give the flag a more descriptive name. Also slightly reword comments. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: annotate device name rcu_string with __rcuMadhuparna Bhowmik
This patch fixes the following sparse errors in fs/btrfs/super.c in function btrfs_show_devname() fs/btrfs/super.c: error: incompatible types in comparison expression (different address spaces): fs/btrfs/super.c: struct rcu_string [noderef] <asn:4> * fs/btrfs/super.c: struct rcu_string * The error was because of the following line in function btrfs_show_devname(): if (first_dev) seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); Annotating the btrfs_device::name member with __rcu fixes the sparse error. Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: skip devices without magic signature when mountingAnand Jain
Many things can happen after the device is scanned and before the device is mounted. One such thing is losing the BTRFS_MAGIC on the device. If it happens we still won't free that device from the memory and cause the userland confusion. For example: As the BTRFS_IOC_DEV_INFO still carries the device path which does not have the BTRFS_MAGIC, 'btrfs fi show' still lists device which does not belong to the filesystem anymore: $ mkfs.btrfs -fq -draid1 -mraid1 /dev/sda /dev/sdb $ wipefs -a /dev/sdb # /dev/sdb does not contain magic signature $ mount -o degraded /dev/sda /btrfs $ btrfs fi show -m Label: none uuid: 470ec6fb-646b-4464-b3cb-df1b26c527bd Total devices 2 FS bytes used 128.00KiB devid 1 size 3.00GiB used 571.19MiB path /dev/sda devid 2 size 3.00GiB used 571.19MiB path /dev/sdb We need to distinguish the missing signature and invalid superblock, so add a specific error code ENODATA for that. This also fixes failure of fstest btrfs/198. CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: cleanup cow block on errorJosef Bacik
In fstest btrfs/064 a transaction abort in __btrfs_cow_block could lead to a system lockup. It gets stuck trying to write back inodes, and the write back thread was trying to lock an extent buffer: $ cat /proc/2143497/stack [<0>] __btrfs_tree_lock+0x108/0x250 [<0>] lock_extent_buffer_for_io+0x35e/0x3a0 [<0>] btree_write_cache_pages+0x15a/0x3b0 [<0>] do_writepages+0x28/0xb0 [<0>] __writeback_single_inode+0x54/0x5c0 [<0>] writeback_sb_inodes+0x1e8/0x510 [<0>] wb_writeback+0xcc/0x440 [<0>] wb_workfn+0xd7/0x650 [<0>] process_one_work+0x236/0x560 [<0>] worker_thread+0x55/0x3c0 [<0>] kthread+0x13a/0x150 [<0>] ret_from_fork+0x1f/0x30 This is because we got an error while COWing a block, specifically here if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { ret = btrfs_reloc_cow_block(trans, root, buf, cow); if (ret) { btrfs_abort_transaction(trans, ret); return ret; } } [16402.241552] BTRFS: Transaction aborted (error -2) [16402.242362] WARNING: CPU: 1 PID: 2563188 at fs/btrfs/ctree.c:1074 __btrfs_cow_block+0x376/0x540 [16402.249469] CPU: 1 PID: 2563188 Comm: fsstress Not tainted 5.9.0-rc6+ #8 [16402.249936] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 [16402.250525] RIP: 0010:__btrfs_cow_block+0x376/0x540 [16402.252417] RSP: 0018:ffff9cca40e578b0 EFLAGS: 00010282 [16402.252787] RAX: 0000000000000025 RBX: 0000000000000002 RCX: ffff9132bbd19388 [16402.253278] RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9132bbd19380 [16402.254063] RBP: ffff9132b41a49c0 R08: 0000000000000000 R09: 0000000000000000 [16402.254887] R10: 0000000000000000 R11: ffff91324758b080 R12: ffff91326ef17ce0 [16402.255694] R13: ffff91325fc0f000 R14: ffff91326ef176b0 R15: ffff9132815e2000 [16402.256321] FS: 00007f542c6d7b80(0000) GS:ffff9132bbd00000(0000) knlGS:0000000000000000 [16402.256973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [16402.257374] CR2: 00007f127b83f250 CR3: 0000000133480002 CR4: 0000000000370ee0 [16402.257867] Call Trace: [16402.258072] btrfs_cow_block+0x109/0x230 [16402.258356] btrfs_search_slot+0x530/0x9d0 [16402.258655] btrfs_lookup_file_extent+0x37/0x40 [16402.259155] __btrfs_drop_extents+0x13c/0xd60 [16402.259628] ? btrfs_block_rsv_migrate+0x4f/0xb0 [16402.259949] btrfs_replace_file_extents+0x190/0x820 [16402.260873] btrfs_clone+0x9ae/0xc00 [16402.261139] btrfs_extent_same_range+0x66/0x90 [16402.261771] btrfs_remap_file_range+0x353/0x3b1 [16402.262333] vfs_dedupe_file_range_one.part.0+0xd5/0x140 [16402.262821] vfs_dedupe_file_range+0x189/0x220 [16402.263150] do_vfs_ioctl+0x552/0x700 [16402.263662] __x64_sys_ioctl+0x62/0xb0 [16402.264023] do_syscall_64+0x33/0x40 [16402.264364] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [16402.264862] RIP: 0033:0x7f542c7d15cb [16402.266901] RSP: 002b:00007ffd35944ea8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [16402.267627] RAX: ffffffffffffffda RBX: 00000000009d1968 RCX: 00007f542c7d15cb [16402.268298] RDX: 00000000009d2490 RSI: 00000000c0189436 RDI: 0000000000000003 [16402.268958] RBP: 00000000009d2520 R08: 0000000000000036 R09: 00000000009d2e64 [16402.269726] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002 [16402.270659] R13: 000000000001f000 R14: 00000000009d1970 R15: 00000000009d2e80 [16402.271498] irq event stamp: 0 [16402.271846] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [16402.272497] hardirqs last disabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0 [16402.273343] softirqs last enabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0 [16402.273905] softirqs last disabled at (0): [<0000000000000000>] 0x0 [16402.274338] ---[ end trace 737874a5a41a8236 ]--- [16402.274669] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.276179] BTRFS info (device dm-9): forced readonly [16402.277046] BTRFS: error (device dm-9) in btrfs_replace_file_extents:2723: errno=-2 No such entry [16402.278744] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.279968] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry [16402.280582] BTRFS info (device dm-9): balance: ended with status: -30 The problem here is that as soon as we allocate the new block it is locked and marked dirty in the btree inode. This means that we could attempt to writeback this block and need to lock the extent buffer. However we're not unlocking it here and thus we deadlock. Fix this by unlocking the cow block if we have any errors inside of __btrfs_cow_block, and also free it so we do not leak it. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: remove BTRFS_INODE_READDIO_NEED_LOCKGoldwyn Rodrigues
Since we now perform direct reads using i_rwsem, we can remove this inode flag used to co-ordinate unlocked reads. The truncate call takes i_rwsem. This means it is correctly synchronized with concurrent direct reads. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <jth@kernel.org> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>