summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2018-08-06squashfs: more metadata hardeningsLinus Torvalds
commit 71755ee5350b63fb1f283de8561cdb61b47f4d1d upstream. The squashfs fragment reading code doesn't actually verify that the fragment is inside the fragment table. The end result _is_ verified to be inside the image when actually reading the fragment data, but before that is done, we may end up taking a page fault because the fragment table itself might not even exist. Another report from Anatoly and his endless squashfs image fuzzing. Reported-by: Анатолий Тросиненко <anatoly.trosinenko@gmail.com> Acked-by:: Phillip Lougher <phillip.lougher@gmail.com>, Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06squashfs: more metadata hardeningLinus Torvalds
commit d512584780d3e6a7cacb2f482834849453d444a1 upstream. Anatoly reports another squashfs fuzzing issue, where the decompression parameters themselves are in a compressed block. This causes squashfs_read_data() to be called in order to read the decompression options before the decompression stream having been set up, making squashfs go sideways. Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Acked-by: Phillip Lougher <phillip.lougher@gmail.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06ext4: check for allocation block validity with block group lockedTheodore Ts'o
commit 8d5a803c6a6ce4ec258e31f76059ea5153ba46ef upstream. With commit 044e6e3d74a3: "ext4: don't update checksum of new initialized bitmaps" the buffer valid bit will get set without actually setting up the checksum for the allocation bitmap, since the checksum will get calculated once we actually allocate an inode or block. If we are doing this, then we need to (re-)check the verified bit after we take the block group lock. Otherwise, we could race with another process reading and verifying the bitmap, which would then complain about the checksum being invalid. https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1780137 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06ext4: fix inline data updates with checksums enabledTheodore Ts'o
commit 362eca70b53389bddf3143fe20f53dcce2cfdf61 upstream. The inline data code was updating the raw inode directly; this is problematic since if metadata checksums are enabled, ext4_mark_inode_dirty() must be called to update the inode's checksum. In addition, the jbd2 layer requires that get_write_access() be called before the metadata buffer is modified. Fix both of these problems. https://bugzilla.kernel.org/show_bug.cgi?id=200443 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06squashfs: be more careful about metadata corruptionLinus Torvalds
commit 01cfb7937a9af2abb1136c7e89fbf3fd92952956 upstream. Anatoly Trosinenko reports that a corrupted squashfs image can cause a kernel oops. It turns out that squashfs can end up being confused about negative fragment lengths. The regular squashfs_read_data() does check for negative lengths, but squashfs_read_metadata() did not, and the fragment size code just blindly trusted the on-disk value. Fix both the fragment parsing and the metadata reading code. Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06btrfs: qgroup: Finish rescan when hit the last leaf of extent treeQu Wenruo
[ Upstream commit ff3d27a048d926b3920ccdb75d98788c567cae0d ] Under the following case, qgroup rescan can double account cowed tree blocks: In this case, extent tree only has one tree block. - | transid=5 last committed=4 | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 4). | Scan it, set qgroup_rescan_progress to the last | EXTENT/META_ITEM + 1 | now qgroup_rescan_progress = A + 1. | | fs tree get CoWed, new tree block is at A + 16K | transid 5 get committed - | transid=6 last committed=5 | btrfs_qgroup_rescan_worker() | btrfs_qgroup_rescan_worker() | |- btrfs_start_transaction() | | transid = 5 | |- qgroup_rescan_leaf() | |- btrfs_search_slot_for_read() on extent tree | Get the only extent tree block from commit root (transid = 5). | scan it using qgroup_rescan_progress (A + 1). | found new tree block beyong A, and it's fs tree block, | account it to increase qgroup numbers. - In above case, tree block A, and tree block A + 16K get accounted twice, while qgroup rescan should stop when it already reach the last leaf, other than continue using its qgroup_rescan_progress. Such case could happen by just looping btrfs/017 and with some possibility it can hit such double qgroup accounting problem. Fix it by checking the path to determine if we should finish qgroup rescan, other than relying on next loop to exit. Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06btrfs: add barriers to btrfs_sync_log before log_commit_wait wakeupsDavid Sterba
[ Upstream commit 3d3a2e610ea5e7c6d4f9481ecce5d8e2d8317843 ] Currently the code assumes that there's an implied barrier by the sequence of code preceding the wakeup, namely the mutex unlock. As Nikolay pointed out: I think this is wrong (not your code) but the original assumption that the RELEASE semantics provided by mutex_unlock is sufficient. According to memory-barriers.txt: Section 'LOCK ACQUISITION FUNCTIONS' states: (2) RELEASE operation implication: Memory operations issued before the RELEASE will be completed before the RELEASE operation has completed. Memory operations issued after the RELEASE *may* be completed before the RELEASE operation has completed. (I've bolded the may portion) The example given there: As an example, consider the following: *A = a; *B = b; ACQUIRE *C = c; *D = d; RELEASE *E = e; *F = f; The following sequence of events is acceptable: ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE So if we assume that *C is modifying the flag which the waitqueue is checking, and *E is the actual wakeup, then those accesses can be re-ordered... IMHO this code should be considered broken... Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06f2fs: fix to don't trigger writeback during recoveryChao Yu
[ Upstream commit 64c74a7ab505ea40d1b3e5d02735ecab08ae1b14 ] - f2fs_fill_super - recover_fsync_data - recover_data - del_fsync_inode - iput - iput_final - write_inode_now - f2fs_write_inode - f2fs_balance_fs - f2fs_balance_fs_bg - sync_dirty_inodes With data_flush mount option, during recovery, in order to avoid entering above writeback flow, let's detect recovery status and do skip in f2fs_balance_fs_bg. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Yunlei He <heyunlei@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06disable loading f2fs module on PAGE_SIZE > 4KBAnatoly Pugachev
[ Upstream commit 4071e67cffcc5c2a007116a02437471351f550eb ] The following patch disables loading of f2fs module on architectures which have PAGE_SIZE > 4096 , since it is impossible to mount f2fs on such architectures , log messages are: mount: /mnt: wrong fs type, bad option, bad superblock on /dev/vdiskb1, missing codepage or helper program, or other error. /dev/vdiskb1: F2FS filesystem, UUID=1d8b9ca4-2389-4910-af3b-10998969f09c, volume name "" May 15 18:03:13 ttip kernel: F2FS-fs (vdiskb1): Invalid page_cache_size (8192), supports only 4KB May 15 18:03:13 ttip kernel: F2FS-fs (vdiskb1): Can't find valid F2FS filesystem in 1th superblock May 15 18:03:13 ttip kernel: F2FS-fs (vdiskb1): Invalid page_cache_size (8192), supports only 4KB May 15 18:03:13 ttip kernel: F2FS-fs (vdiskb1): Can't find valid F2FS filesystem in 2th superblock May 15 18:03:13 ttip kernel: F2FS-fs (vdiskb1): Invalid page_cache_size (8192), supports only 4KB which was introduced by git commit 5c9b469295fb6b10d98923eab5e79c4edb80ed20 tested on git kernel 4.17.0-rc6-00309-gec30dcf7f425 with patch applied: modprobe: ERROR: could not insert 'f2fs': Invalid argument May 28 01:40:28 v215 kernel: F2FS not supported on PAGE_SIZE(8192) != 4096 Signed-off-by: Anatoly Pugachev <matorola@gmail.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-06nfsd: fix potential use-after-free in nfsd4_decode_getdeviceinfoScott Mayhew
[ Upstream commit 3171822fdcdd6e6d536047c425af6dc7a92dc585 ] When running a fuzz tester against a KASAN-enabled kernel, the following splat periodically occurs. The problem occurs when the test sends a GETDEVICEINFO request with a malformed xdr array (size but no data) for gdia_notify_types and the array size is > 0x3fffffff, which results in an overflow in the value of nbytes which is passed to read_buf(). If the array size is 0x40000000, 0x80000000, or 0xc0000000, then after the overflow occurs, the value of nbytes 0, and when that happens the pointer returned by read_buf() points to the end of the xdr data (i.e. argp->end) when really it should be returning NULL. Fix this by returning NFS4ERR_BAD_XDR if the array size is > 1000 (this value is arbitrary, but it's the same threshold used by nfsd4_decode_bitmap()... in could really be any value >= 1 since it's expected to get at most a single bitmap in gdia_notify_types). [ 119.256854] ================================================================== [ 119.257611] BUG: KASAN: use-after-free in nfsd4_decode_getdeviceinfo+0x5a4/0x5b0 [nfsd] [ 119.258422] Read of size 4 at addr ffff880113ada000 by task nfsd/538 [ 119.259146] CPU: 0 PID: 538 Comm: nfsd Not tainted 4.17.0+ #1 [ 119.259662] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.fc25 04/01/2014 [ 119.261202] Call Trace: [ 119.262265] dump_stack+0x71/0xab [ 119.263371] print_address_description+0x6a/0x270 [ 119.264609] kasan_report+0x258/0x380 [ 119.265854] ? nfsd4_decode_getdeviceinfo+0x5a4/0x5b0 [nfsd] [ 119.267291] nfsd4_decode_getdeviceinfo+0x5a4/0x5b0 [nfsd] [ 119.268549] ? nfs4svc_decode_compoundargs+0xa5b/0x13c0 [nfsd] [ 119.269873] ? nfsd4_decode_sequence+0x490/0x490 [nfsd] [ 119.271095] nfs4svc_decode_compoundargs+0xa5b/0x13c0 [nfsd] [ 119.272393] ? nfsd4_release_compoundargs+0x1b0/0x1b0 [nfsd] [ 119.273658] nfsd_dispatch+0x183/0x850 [nfsd] [ 119.274918] svc_process+0x161c/0x31a0 [sunrpc] [ 119.276172] ? svc_printk+0x190/0x190 [sunrpc] [ 119.277386] ? svc_xprt_release+0x451/0x680 [sunrpc] [ 119.278622] nfsd+0x2b9/0x430 [nfsd] [ 119.279771] ? nfsd_destroy+0x1c0/0x1c0 [nfsd] [ 119.281157] kthread+0x2db/0x390 [ 119.282347] ? kthread_create_worker_on_cpu+0xc0/0xc0 [ 119.283756] ret_from_fork+0x35/0x40 [ 119.286041] Allocated by task 436: [ 119.287525] kasan_kmalloc+0xa0/0xd0 [ 119.288685] kmem_cache_alloc+0xe9/0x1f0 [ 119.289900] get_empty_filp+0x7b/0x410 [ 119.291037] path_openat+0xca/0x4220 [ 119.292242] do_filp_open+0x182/0x280 [ 119.293411] do_sys_open+0x216/0x360 [ 119.294555] do_syscall_64+0xa0/0x2f0 [ 119.295721] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 119.298068] Freed by task 436: [ 119.299271] __kasan_slab_free+0x130/0x180 [ 119.300557] kmem_cache_free+0x78/0x210 [ 119.301823] rcu_process_callbacks+0x35b/0xbd0 [ 119.303162] __do_softirq+0x192/0x5ea [ 119.305443] The buggy address belongs to the object at ffff880113ada000 which belongs to the cache filp of size 256 [ 119.308556] The buggy address is located 0 bytes inside of 256-byte region [ffff880113ada000, ffff880113ada100) [ 119.311376] The buggy address belongs to the page: [ 119.312728] page:ffffea00044eb680 count:1 mapcount:0 mapping:0000000000000000 index:0xffff880113ada780 [ 119.314428] flags: 0x17ffe000000100(slab) [ 119.315740] raw: 0017ffe000000100 0000000000000000 ffff880113ada780 00000001000c0001 [ 119.317379] raw: ffffea0004553c60 ffffea00045c11e0 ffff88011b167e00 0000000000000000 [ 119.319050] page dumped because: kasan: bad access detected [ 119.321652] Memory state around the buggy address: [ 119.322993] ffff880113ad9f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 119.324515] ffff880113ad9f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 119.326087] >ffff880113ada000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 119.327547] ^ [ 119.328730] ffff880113ada080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 119.330218] ffff880113ada100: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb [ 119.331740] ================================================================== Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-25proc: Use underscores for SSBD in 'status'Konrad Rzeszutek Wilk
commit e96f46ee8587607a828f783daa6eb5b44d25004d upstream The style for the 'status' file is CamelCase or this. _. Fixes: fae1fa0fc ("proc: Provide details on speculation flaw mitigations") Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Srivatsa S. Bhat <srivatsa@csail.mit.edu> Reviewed-by: Matt Helsley (VMware) <matt.helsley@gmail.com> Reviewed-by: Alexey Makhalov <amakhalov@vmware.com> Reviewed-by: Bo Gan <ganb@vmware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-25prctl: Add force disable speculationThomas Gleixner
commit 356e4bfff2c5489e016fdb925adbf12a1e3950ee upstream For certain use cases it is desired to enforce mitigations so they cannot be undone afterwards. That's important for loader stubs which want to prevent a child from disabling the mitigation again. Will also be used for seccomp(). The extra state preserving of the prctl state for SSB is a preparatory step for EBPF dymanic speculation control. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Srivatsa S. Bhat <srivatsa@csail.mit.edu> Reviewed-by: Matt Helsley (VMware) <matt.helsley@gmail.com> Reviewed-by: Alexey Makhalov <amakhalov@vmware.com> Reviewed-by: Bo Gan <ganb@vmware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-25proc: Provide details on speculation flaw mitigationsKees Cook
commit fae1fa0fc6cca8beee3ab8ed71d54f9a78fa3f64 upstream As done with seccomp and no_new_privs, also show speculation flaw mitigation state in /proc/$pid/status. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Srivatsa S. Bhat <srivatsa@csail.mit.edu> Reviewed-by: Matt Helsley (VMware) <matt.helsley@gmail.com> Reviewed-by: Alexey Makhalov <amakhalov@vmware.com> Reviewed-by: Bo Gan <ganb@vmware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-25fat: fix memory allocation failure handling of match_strdup()OGAWA Hirofumi
commit 35033ab988c396ad7bce3b6d24060c16a9066db8 upstream. In parse_options(), if match_strdup() failed, parse_options() leaves opts->iocharset in unexpected state (i.e. still pointing the freed string). And this can be the cause of double free. To fix, this initialize opts->iocharset always when freeing. Link: http://lkml.kernel.org/r/8736wp9dzc.fsf@mail.parknet.co.jp Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Reported-by: syzbot+90b8e10515ae88228a92@syzkaller.appspotmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-22ocfs2: subsystem.su_mutex is required while accessing the item->ci_parentalex chen
commit 853bc26a7ea39e354b9f8889ae7ad1492ffa28d2 upstream. The subsystem.su_mutex is required while accessing the item->ci_parent, otherwise, NULL pointer dereference to the item->ci_parent will be triggered in the following situation: add node delete node sys_write vfs_write configfs_write_file o2nm_node_store o2nm_node_local_write do_rmdir vfs_rmdir configfs_rmdir mutex_lock(&subsys->su_mutex); unlink_obj item->ci_group = NULL; item->ci_parent = NULL; to_o2nm_cluster_from_node node->nd_item.ci_parent->ci_parent BUG since of NULL pointer dereference to nd_item.ci_parent Moreover, the o2nm_cluster also should be protected by the subsystem.su_mutex. [alex.chen@huawei.com: v2] Link: http://lkml.kernel.org/r/59EEAA69.9080703@huawei.com Link: http://lkml.kernel.org/r/59E9B36A.10700@huawei.com Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-17x86/cpufeature: Replace the old static_cpu_has() with safe variantBorislav Petkov
commit bc696ca05f5a8927329ec276a892341e006b00ba upstream So the old one didn't work properly before alternatives had run. And it was supposed to provide an optimized JMP because the assumption was that the offset it is jumping to is within a signed byte and thus a two-byte JMP. So I did an x86_64 allyesconfig build and dumped all possible sites where static_cpu_has() was used. The optimization amounted to all in all 12(!) places where static_cpu_has() had generated a 2-byte JMP. Which has saved us a whopping 36 bytes! This clearly is not worth the trouble so we can remove it. The only place where the optimization might count - in __switch_to() - we will handle differently. But that's not subject of this patch. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453842730-28463-6-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Srivatsa S. Bhat <srivatsa@csail.mit.edu> Reviewed-by: Matt Helsley (VMware) <matt.helsley@gmail.com> Reviewed-by: Alexey Makhalov <amakhalov@vmware.com> Reviewed-by: Bo Gan <ganb@vmware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-17Fix up non-directory creation in SGID directoriesLinus Torvalds
commit 0fa3ecd87848c9c93c2c828ef4c3a8ca36ce46c7 upstream. sgid directories have special semantics, making newly created files in the directory belong to the group of the directory, and newly created subdirectories will also become sgid. This is historically used for group-shared directories. But group directories writable by non-group members should not imply that such non-group members can magically join the group, so make sure to clear the sgid bit on non-directories for non-members (but remember that sgid without group execute means "mandatory locking", just to confuse things even more). Reported-by: Jann Horn <jannh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: check superblock mapped prior to committingJon Derrick
commit a17712c8e4be4fa5404d20e9cd3b2b21eae7bc56 upstream. This patch attempts to close a hole leading to a BUG seen with hot removals during writes [1]. A block device (NVME namespace in this test case) is formatted to EXT4 without partitions. It's mounted and write I/O is run to a file, then the device is hot removed from the slot. The superblock attempts to be written to the drive which is no longer present. The typical chain of events leading to the BUG: ext4_commit_super() __sync_dirty_buffer() submit_bh() submit_bh_wbc() BUG_ON(!buffer_mapped(bh)); This fix checks for the superblock's buffer head being mapped prior to syncing. [1] https://www.spinics.net/lists/linux-ext4/msg56527.html Signed-off-by: Jon Derrick <jonathan.derrick@intel.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: add more mount time checks of the superblockTheodore Ts'o
commit bfe0a5f47ada40d7984de67e59a7d3390b9b9ecc upstream. The kernel's ext4 mount-time checks were more permissive than e2fsprogs's libext2fs checks when opening a file system. The superblock is considered too insane for debugfs or e2fsck to operate on it, the kernel has no business trying to mount it. This will make file system fuzzing tools work harder, but the failure cases that they find will be more useful and be easier to evaluate. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: add more inode number paranoia checksTheodore Ts'o
commit c37e9e013469521d9adb932d17a1795c139b36db upstream. If there is a directory entry pointing to a system inode (such as a journal inode), complain and declare the file system to be corrupted. Also, if the superblock's first inode number field is too small, refuse to mount the file system. This addresses CVE-2018-10882. https://bugzilla.kernel.org/show_bug.cgi?id=200069 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: clear i_data in ext4_inode_info when removing inline dataTheodore Ts'o
commit 6e8ab72a812396996035a37e5ca4b3b99b5d214b upstream. When converting from an inode from storing the data in-line to a data block, ext4_destroy_inline_data_nolock() was only clearing the on-disk copy of the i_blocks[] array. It was not clearing copy of the i_blocks[] in ext4_inode_info, in i_data[], which is the copy actually used by ext4_map_blocks(). This didn't matter much if we are using extents, since the extents header would be invalid and thus the extents could would re-initialize the extents tree. But if we are using indirect blocks, the previous contents of the i_blocks array will be treated as block numbers, with potentially catastrophic results to the file system integrity and/or user data. This gets worse if the file system is using a 1k block size and s_first_data is zero, but even without this, the file system can get quite badly corrupted. This addresses CVE-2018-10881. https://bugzilla.kernel.org/show_bug.cgi?id=200015 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: include the illegal physical block in the bad map ext4_error msgTheodore Ts'o
commit bdbd6ce01a70f02e9373a584d0ae9538dcf0a121 upstream. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: verify the depth of extent tree in ext4_find_extent()Theodore Ts'o
commit bc890a60247171294acc0bd67d211fa4b88d40ba upstream. If there is a corupted file system where the claimed depth of the extent tree is -1, this can cause a massive buffer overrun leading to sadness. This addresses CVE-2018-10877. https://bugzilla.kernel.org/show_bug.cgi?id=199417 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: only look at the bg_flags field if it is validTheodore Ts'o
commit 8844618d8aa7a9973e7b527d038a2a589665002c upstream. The bg_flags field in the block group descripts is only valid if the uninit_bg or metadata_csum feature is enabled. We were not consistently looking at this field; fix this. Also block group #0 must never have uninitialized allocation bitmaps, or need to be zeroed, since that's where the root inode, and other special inodes are set up. Check for these conditions and mark the file system as corrupted if they are detected. This addresses CVE-2018-10876. https://bugzilla.kernel.org/show_bug.cgi?id=199403 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: always check block group bounds in ext4_init_block_bitmap()Theodore Ts'o
commit 819b23f1c501b17b9694325471789e6b5cc2d0d2 upstream. Regardless of whether the flex_bg feature is set, we should always check to make sure the bits we are setting in the block bitmap are within the block group bounds. https://bugzilla.kernel.org/show_bug.cgi?id=199865 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11ext4: make sure bitmaps and the inode table don't overlap with bg descriptorsTheodore Ts'o
commit 77260807d1170a8cf35dbb06e07461a655f67eee upstream. It's really bad when the allocation bitmaps and the inode table overlap with the block group descriptors, since it causes random corruption of the bg descriptors. So we really want to head those off at the pass. https://bugzilla.kernel.org/show_bug.cgi?id=199865 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11jbd2: don't mark block as modified if the handle is out of creditsTheodore Ts'o
commit e09463f220ca9a1a1ecfda84fcda658f99a1f12a upstream. Do not set the b_modified flag in block's journal head should not until after we're sure that jbd2_journal_dirty_metadat() will not abort with an error due to there not being enough space reserved in the jbd2 handle. Otherwise, future attempts to modify the buffer may lead a large number of spurious errors and warnings. This addresses CVE-2018-10883. https://bugzilla.kernel.org/show_bug.cgi?id=200071 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: stable@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11cifs: Fix infinite loop when using hard mount optionPaulo Alcantara
commit 7ffbe65578b44fafdef577a360eb0583929f7c6e upstream. For every request we send, whether it is SMB1 or SMB2+, we attempt to reconnect tcon (cifs_reconnect_tcon or smb2_reconnect) before carrying out the request. So, while server->tcpStatus != CifsNeedReconnect, we wait for the reconnection to succeed on wait_event_interruptible_timeout(). If it returns, that means that either the condition was evaluated to true, or timeout elapsed, or it was interrupted by a signal. Since we're not handling the case where the process woke up due to a received signal (-ERESTARTSYS), the next call to wait_event_interruptible_timeout() will _always_ fail and we end up looping forever inside either cifs_reconnect_tcon() or smb2_reconnect(). Here's an example of how to trigger that: $ mount.cifs //foo/share /mnt/test -o username=foo,password=foo,vers=1.0,hard (break connection to server before executing bellow cmd) $ stat -f /mnt/test & sleep 140 [1] 2511 $ ps -aux -q 2511 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 2511 0.0 0.0 12892 1008 pts/0 S 12:24 0:00 stat -f /mnt/test $ kill -9 2511 (wait for a while; process is stuck in the kernel) $ ps -aux -q 2511 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 2511 83.2 0.0 12892 1008 pts/0 R 12:24 30:01 stat -f /mnt/test By using 'hard' mount point means that cifs.ko will keep retrying indefinitely, however we must allow the process to be killed otherwise it would hang the system. Signed-off-by: Paulo Alcantara <palcantara@suse.de> Cc: stable@vger.kernel.org Reviewed-by: Aurelien Aptel <aaptel@suse.com> Signed-off-by: Steve French <stfrench@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03Btrfs: fix unexpected cow in run_delalloc_nocowLiu Bo
commit 5811375325420052fcadd944792a416a43072b7f upstream. Fstests generic/475 provides a way to fail metadata reads while checking if checksum exists for the inode inside run_delalloc_nocow(), and csum_exist_in_range() interprets error (-EIO) as inode having checksum and makes its caller enter the cow path. In case of free space inode, this ends up with a warning in cow_file_range(). The same problem applies to btrfs_cross_ref_exist() since it may also read metadata in between. With this, run_delalloc_nocow() bails out when errors occur at the two places. cc: <stable@vger.kernel.org> v2.6.28+ Fixes: 17d217fe970d ("Btrfs: fix nodatasum handling in balancing code") Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03udf: Detect incorrect directory sizeJan Kara
commit fa65653e575fbd958bdf5fb9c4a71a324e39510d upstream. Detect when a directory entry is (possibly partially) beyond directory size and return EIO in that case since it means the filesystem is corrupted. Otherwise directory operations can further corrupt the directory and possibly also oops the kernel. CC: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> CC: stable@vger.kernel.org Reported-and-tested-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03NFSv4: Fix possible 1-byte stack overflow in nfs_idmap_read_and_verify_messageDave Wysochanski
commit d68894800ec5712d7ddf042356f11e36f87d7f78 upstream. In nfs_idmap_read_and_verify_message there is an incorrect sprintf '%d' that converts the __u32 'im_id' from struct idmap_msg to 'id_str', which is a stack char array variable of length NFS_UINT_MAXLEN == 11. If a uid or gid value is > 2147483647 = 0x7fffffff, the conversion overflows into a negative value, for example: crash> p (unsigned) (0x80000000) $1 = 2147483648 crash> p (signed) (0x80000000) $2 = -2147483648 The '-' sign is written to the buffer and this causes a 1 byte overflow when the NULL byte is written, which corrupts kernel stack memory. If CONFIG_CC_STACKPROTECTOR_STRONG is set we see a stack-protector panic: [11558053.616565] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffffa05b8a8c [11558053.639063] CPU: 6 PID: 9423 Comm: rpc.idmapd Tainted: G W ------------ T 3.10.0-514.el7.x86_64 #1 [11558053.641990] Hardware name: Red Hat OpenStack Compute, BIOS 1.10.2-3.el7_4.1 04/01/2014 [11558053.644462] ffffffff818c7bc0 00000000b1f3aec1 ffff880de0f9bd48 ffffffff81685eac [11558053.646430] ffff880de0f9bdc8 ffffffff8167f2b3 ffffffff00000010 ffff880de0f9bdd8 [11558053.648313] ffff880de0f9bd78 00000000b1f3aec1 ffffffff811dcb03 ffffffffa05b8a8c [11558053.650107] Call Trace: [11558053.651347] [<ffffffff81685eac>] dump_stack+0x19/0x1b [11558053.653013] [<ffffffff8167f2b3>] panic+0xe3/0x1f2 [11558053.666240] [<ffffffff811dcb03>] ? kfree+0x103/0x140 [11558053.682589] [<ffffffffa05b8a8c>] ? idmap_pipe_downcall+0x1cc/0x1e0 [nfsv4] [11558053.689710] [<ffffffff810855db>] __stack_chk_fail+0x1b/0x30 [11558053.691619] [<ffffffffa05b8a8c>] idmap_pipe_downcall+0x1cc/0x1e0 [nfsv4] [11558053.693867] [<ffffffffa00209d6>] rpc_pipe_write+0x56/0x70 [sunrpc] [11558053.695763] [<ffffffff811fe12d>] vfs_write+0xbd/0x1e0 [11558053.702236] [<ffffffff810acccc>] ? task_work_run+0xac/0xe0 [11558053.704215] [<ffffffff811fec4f>] SyS_write+0x7f/0xe0 [11558053.709674] [<ffffffff816964c9>] system_call_fastpath+0x16/0x1b Fix this by calling the internally defined nfs_map_numeric_to_string() function which properly uses '%u' to convert this __u32. For consistency, also replace the one other place where snprintf is called. Signed-off-by: Dave Wysochanski <dwysocha@redhat.com> Reported-by: Stephen Johnston <sjohnsto@redhat.com> Fixes: cf4ab538f1516 ("NFSv4: Fix the string length returned by the idmapper") Cc: stable@vger.kernel.org # v3.4+ Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03nfsd: restrict rd_maxcount to svc_max_payload in nfsd_encode_readdirScott Mayhew
commit 9c2ece6ef67e9d376f32823086169b489c422ed0 upstream. nfsd4_readdir_rsize restricts rd_maxcount to svc_max_payload when estimating the size of the readdir reply, but nfsd_encode_readdir restricts it to INT_MAX when encoding the reply. This can result in log messages like "kernel: RPC request reserved 32896 but used 1049444". Restrict rd_dircount similarly (no reason it should be larger than svc_max_payload). Signed-off-by: Scott Mayhew <smayhew@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03UBIFS: Fix potential integer overflow in allocationSilvio Cesare
commit 353748a359f1821ee934afc579cf04572406b420 upstream. There is potential for the size and len fields in ubifs_data_node to be too large causing either a negative value for the length fields or an integer overflow leading to an incorrect memory allocation. Likewise, when the len field is small, an integer underflow may occur. Signed-off-by: Silvio Cesare <silvio.cesare@gmail.com> Fixes: 1e51764a3c2ac ("UBIFS: add new flash file system") Cc: stable@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03Btrfs: fix clone vs chattr NODATASUM raceOmar Sandoval
commit b5c40d598f5408bd0ca22dfffa82f03cd9433f23 upstream. In btrfs_clone_files(), we must check the NODATASUM flag while the inodes are locked. Otherwise, it's possible that btrfs_ioctl_setflags() will change the flags after we check and we can end up with a party checksummed file. The race window is only a few instructions in size, between the if and the locks which is: 3834 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3835 return -EISDIR; where the setflags must be run and toggle the NODATASUM flag (provided the file size is 0). The clone will block on the inode lock, segflags takes the inode lock, changes flags, releases log and clone continues. Not impossible but still needs a lot of bad luck to hit unintentionally. Fixes: 0e7b824c4ef9 ("Btrfs: don't make a file partly checksummed through file clone") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [ adjusted for 4.4 ] Signed-off-by: Nikolay Borisov <nborisov@suse.com>
2018-07-03fuse: fix control dir setup and teardownMiklos Szeredi
commit 6becdb601bae2a043d7fb9762c4d48699528ea6e upstream. syzbot is reporting NULL pointer dereference at fuse_ctl_remove_conn() [1]. Since fc->ctl_ndents is incremented by fuse_ctl_add_conn() when new_inode() failed, fuse_ctl_remove_conn() reaches an inode-less dentry and tries to clear d_inode(dentry)->i_private field. Fix by only adding the dentry to the array after being fully set up. When tearing down the control directory, do d_invalidate() on it to get rid of any mounts that might have been added. [1] https://syzkaller.appspot.com/bug?id=f396d863067238959c91c0b7cfc10b163638cac6 Reported-by: syzbot <syzbot+32c236387d66c4516827@syzkaller.appspotmail.com> Fixes: bafa96541b25 ("[PATCH] fuse: add control filesystem") Cc: <stable@vger.kernel.org> # v2.6.18 Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03fuse: don't keep dead fuse_conn at fuse_fill_super().Tetsuo Handa
commit 543b8f8662fe6d21f19958b666ab0051af9db21a upstream. syzbot is reporting use-after-free at fuse_kill_sb_blk() [1]. Since sb->s_fs_info field is not cleared after fc was released by fuse_conn_put() when initialization failed, fuse_kill_sb_blk() finds already released fc and tries to hold the lock. Fix this by clearing sb->s_fs_info field after calling fuse_conn_put(). [1] https://syzkaller.appspot.com/bug?id=a07a680ed0a9290585ca424546860464dd9658db Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: syzbot <syzbot+ec3986119086fe4eec97@syzkaller.appspotmail.com> Fixes: 3b463ae0c626 ("fuse: invalidation reverse calls") Cc: John Muir <john@jmuir.com> Cc: Csaba Henk <csaba@gluster.com> Cc: Anand Avati <avati@redhat.com> Cc: <stable@vger.kernel.org> # v2.6.31 Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03fuse: atomic_o_trunc should truncate pagecacheMiklos Szeredi
commit df0e91d488276086bc07da2e389986cae0048c37 upstream. Fuse has an "atomic_o_trunc" mode, where userspace filesystem uses the O_TRUNC flag in the OPEN request to truncate the file atomically with the open. In this mode there's no need to send a SETATTR request to userspace after the open, so fuse_do_setattr() checks this mode and returns. But this misses the important step of truncating the pagecache. Add the missing parts of truncation to the ATTR_OPEN branch. Reported-by: Chad Austin <chadaustin@fb.com> Fixes: 6ff958edbf39 ("fuse: add atomic open+truncate support") Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03fs/binfmt_misc.c: do not allow offset overflowThadeu Lima de Souza Cascardo
commit 5cc41e099504b77014358b58567c5ea6293dd220 upstream. WHen registering a new binfmt_misc handler, it is possible to overflow the offset to get a negative value, which might crash the system, or possibly leak kernel data. Here is a crash log when 2500000000 was used as an offset: BUG: unable to handle kernel paging request at ffff989cfd6edca0 IP: load_misc_binary+0x22b/0x470 [binfmt_misc] PGD 1ef3e067 P4D 1ef3e067 PUD 0 Oops: 0000 [#1] SMP NOPTI Modules linked in: binfmt_misc kvm_intel ppdev kvm irqbypass joydev input_leds serio_raw mac_hid parport_pc qemu_fw_cfg parpy CPU: 0 PID: 2499 Comm: bash Not tainted 4.15.0-22-generic #24-Ubuntu Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-1 04/01/2014 RIP: 0010:load_misc_binary+0x22b/0x470 [binfmt_misc] Call Trace: search_binary_handler+0x97/0x1d0 do_execveat_common.isra.34+0x667/0x810 SyS_execve+0x31/0x40 do_syscall_64+0x73/0x130 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 Use kstrtoint instead of simple_strtoul. It will work as the code already set the delimiter byte to '\0' and we only do it when the field is not empty. Tested with offsets -1, 2500000000, UINT_MAX and INT_MAX. Also tested with examples documented at Documentation/admin-guide/binfmt-misc.rst and other registrations from packages on Ubuntu. Link: http://lkml.kernel.org/r/20180529135648.14254-1-cascardo@canonical.com Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03btrfs: scrub: Don't use inode pages for device replaceQu Wenruo
commit ac0b4145d662a3b9e34085dea460fb06ede9b69b upstream. [BUG] Btrfs can create compressed extent without checksum (even though it shouldn't), and if we then try to replace device containing such extent, the result device will contain all the uncompressed data instead of the compressed one. Test case already submitted to fstests: https://patchwork.kernel.org/patch/10442353/ [CAUSE] When handling compressed extent without checksum, device replace will goe into copy_nocow_pages() function. In that function, btrfs will get all inodes referring to this data extents and then use find_or_create_page() to get pages direct from that inode. The problem here is, pages directly from inode are always uncompressed. And for compressed data extent, they mismatch with on-disk data. Thus this leads to corrupted compressed data extent written to replace device. [FIX] In this attempt, we could just remove the "optimization" branch, and let unified scrub_pages() to handle it. Although scrub_pages() won't bother reusing page cache, it will be a little slower, but it does the correct csum checking and won't cause such data corruption caused by "optimization". Note about the fix: this is the minimal fix that can be backported to older stable trees without conflicts. The whole callchain from copy_nocow_pages() can be deleted, and will be in followup patches. Fixes: ff023aac3119 ("Btrfs: add code to scrub to copy read data to another disk") CC: stable@vger.kernel.org # 4.4+ Reported-by: James Harvey <jamespharvey20@gmail.com> Reviewed-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> [ remove code removal, add note why ] Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03ext4: fix fencepost error in check for inode count overflow during resizeJan Kara
commit 4f2f76f751433908364ccff82f437a57d0e6e9b7 upstream. ext4_resize_fs() has an off-by-one bug when checking whether growing of a filesystem will not overflow inode count. As a result it allows a filesystem with 8192 inodes per group to grow to 64TB which overflows inode count to 0 and makes filesystem unusable. Fix it. Cc: stable@vger.kernel.org Fixes: 3f8a6411fbada1fa482276591e037f3b1adcf55b Reported-by: Jaco Kroon <jaco@uls.co.za> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Andreas Dilger <adilger@dilger.ca> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03ext4: update mtime in ext4_punch_hole even if no blocks are releasedLukas Czerner
commit eee597ac931305eff3d3fd1d61d6aae553bc0984 upstream. Currently in ext4_punch_hole we're going to skip the mtime update if there are no actual blocks to release. However we've actually modified the file by zeroing the partial block so the mtime should be updated. Moreover the sync and datasync handling is skipped as well, which is also wrong. Fix it. Signed-off-by: Lukas Czerner <lczerner@redhat.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reported-by: Joe Habermann <joe.habermann@quantum.com> Cc: <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03Btrfs: make raid6 rebuild retry moreLiu Bo
[ Upstream commit 8810f7517a3bc4ca2d41d022446d3f5fd6b77c09 ] There is a scenario that can end up with rebuild process failing to return good content, i.e. suppose that all disks can be read without problems and if the content that was read out doesn't match its checksum, currently for raid6 btrfs at most retries twice, - the 1st retry is to rebuild with all other stripes, it'll eventually be a raid5 xor rebuild, - if the 1st fails, the 2nd retry will deliberately fail parity p so that it will do raid6 style rebuild, however, the chances are that another non-parity stripe content also has something corrupted, so that the above retries are not able to return correct content, and users will think of this as data loss. More seriouly, if the loss happens on some important internal btree roots, it could refuse to mount. This extends btrfs to do more retries and each retry fails only one stripe. Since raid6 can tolerate 2 disk failures, if there is one more failure besides the failure on which we're recovering, this can always work. The worst case is to retry as many times as the number of raid6 disks, but given the fact that such a scenario is really rare in practice, it's still acceptable. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03Revert "Btrfs: fix scrub to repair raid6 corruption"Sasha Levin
This reverts commit 95b286daf7ba784191023ad110122703eb2ebabc. This commit used an incorrect log message. Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-16x86/cpufeature: Remove unused and seldomly used cpu_has_xx macrosBorislav Petkov
commit 362f924b64ba0f4be2ee0cb697690c33d40be721 upstream. Those are stupid and code should use static_cpu_has_safe() or boot_cpu_has() instead. Kill the least used and unused ones. The remaining ones need more careful inspection before a conversion can happen. On the TODO. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1449481182-27541-4-git-send-email-bp@alien8.de Cc: David Sterba <dsterba@suse.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Matt Mackall <mpm@selenic.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-13xfs: fix incorrect log_flushed on fsyncAmir Goldstein
commit 47c7d0b19502583120c3f396c7559e7a77288a68 upstream. When calling into _xfs_log_force{,_lsn}() with a pointer to log_flushed variable, log_flushed will be set to 1 if: 1. xlog_sync() is called to flush the active log buffer AND/OR 2. xlog_wait() is called to wait on a syncing log buffers xfs_file_fsync() checks the value of log_flushed after _xfs_log_force_lsn() call to optimize away an explicit PREFLUSH request to the data block device after writing out all the file's pages to disk. This optimization is incorrect in the following sequence of events: Task A Task B ------------------------------------------------------- xfs_file_fsync() _xfs_log_force_lsn() xlog_sync() [submit PREFLUSH] xfs_file_fsync() file_write_and_wait_range() [submit WRITE X] [endio WRITE X] _xfs_log_force_lsn() xlog_wait() [endio PREFLUSH] The write X is not guarantied to be on persistent storage when PREFLUSH request in completed, because write A was submitted after the PREFLUSH request, but xfs_file_fsync() of task A will be notified of log_flushed=1 and will skip explicit flush. If the system crashes after fsync of task A, write X may not be present on disk after reboot. This bug was discovered and demonstrated using Josef Bacik's dm-log-writes target, which can be used to record block io operations and then replay a subset of these operations onto the target device. The test goes something like this: - Use fsx to execute ops of a file and record ops on log device - Every now and then fsync the file, store md5 of file and mark the location in the log - Then replay log onto device for each mark, mount fs and compare md5 of file to stored value Cc: Christoph Hellwig <hch@lst.de> Cc: Josef Bacik <jbacik@fb.com> Cc: <stable@vger.kernel.org> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-06fix io_destroy()/aio_complete() raceAl Viro
commit 4faa99965e027cc057c5145ce45fa772caa04e8d upstream. If io_destroy() gets to cancelling everything that can be cancelled and gets to kiocb_cancel() calling the function driver has left in ->ki_cancel, it becomes vulnerable to a race with IO completion. At that point req is already taken off the list and aio_complete() does *NOT* spin until we (in free_ioctx_users()) releases ->ctx_lock. As the result, it proceeds to kiocb_free(), freing req just it gets passed to ->ki_cancel(). Fix is simple - remove from the list after the call of kiocb_cancel(). All instances of ->ki_cancel() already have to cope with the being called with iocb still on list - that's what happens in io_cancel(2). Cc: stable@kernel.org Fixes: 0460fef2a921 "aio: use cancellation list lazily" Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-06xfs: detect agfl count corruption and reset agflBrian Foster
commit a27ba2607e60312554cbcd43fc660b2c7f29dc9c upstream. The struct xfs_agfl v5 header was originally introduced with unexpected padding that caused the AGFL to operate with one less slot than intended. The header has since been packed, but the fix left an incompatibility for users who upgrade from an old kernel with the unpacked header to a newer kernel with the packed header while the AGFL happens to wrap around the end. The newer kernel recognizes one extra slot at the physical end of the AGFL that the previous kernel did not. The new kernel will eventually attempt to allocate a block from that slot, which contains invalid data, and cause a crash. This condition can be detected by comparing the active range of the AGFL to the count. While this detects a padding mismatch, it can also trigger false positives for unrelated flcount corruption. Since we cannot distinguish a size mismatch due to padding from unrelated corruption, we can't trust the AGFL enough to simply repopulate the empty slot. Instead, avoid unnecessarily complex detection logic and and use a solution that can handle any form of flcount corruption that slips through read verifiers: distrust the entire AGFL and reset it to an empty state. Any valid blocks within the AGFL are intentionally leaked. This requires xfs_repair to rectify (which was already necessary based on the state the AGFL was found in). The reset mitigates the side effect of the padding mismatch problem from a filesystem crash to a free space accounting inconsistency. The generic approach also means that this patch can be safely backported to kernels with or without a packed struct xfs_agfl. Check the AGF for an invalid freelist count on initial read from disk. If detected, set a flag on the xfs_perag to indicate that a reset is required before the AGFL can be used. In the first transaction that attempts to use a flagged AGFL, reset it to empty, warn the user about the inconsistency and allow the freelist fixup code to repopulate the AGFL with new blocks. The xfs_perag flag is cleared to eliminate the need for repeated checks on each block allocation operation. This allows kernels that include the packing fix commit 96f859d52bcb ("libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct") to handle older unpacked AGFL formats without a filesystem crash. Suggested-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by Dave Chiluk <chiluk+linuxxfs@indeed.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Dave Chiluk <chiluk+linuxxfs@indeed.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30udf: Provide saner default for invalid uid / gidJan Kara
[ Upstream commit 116e5258e4115aca0c64ac0bf40ded3b353ed626 ] Currently when UDF filesystem is recorded without uid / gid (ids are set to -1), we will assign INVALID_[UG]ID to vfs inode unless user uses uid= and gid= mount options. In such case filesystem could not be modified in any way as VFS refuses to modify files with invalid ids (even by root). This is confusing to users and not very useful default since such media mode is generally used for removable media. Use overflow[ug]id instead so that at least root can modify the filesystem. Reported-by: Steve Kenton <skenton@ou.edu> Reviewed-by: Pali Rohár <pali.rohar@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30gfs2: Fix fallocate chunk sizeAndreas Gruenbacher
[ Upstream commit 174d1232ebc84fcde8f5889d1171c9c7e74a10a7 ] The chunk size of allocations in __gfs2_fallocate is calculated incorrectly. The size can collapse, causing __gfs2_fallocate to allocate one block at a time, which is very inefficient. This needs fixing in two places: In gfs2_quota_lock_check, always set ap->allowed to UINT_MAX to indicate that there is no quota limit. This fixes callers that rely on ap->allowed to be set even when quotas are off. In __gfs2_fallocate, reset max_blks to UINT_MAX in each iteration of the loop to make sure that allocation limits from one resource group won't spill over into another resource group. Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com> Signed-off-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30btrfs: fix lockdep splat in btrfs_alloc_subvolume_writersJeff Mahoney
[ Upstream commit 8a5a916d9a35e13576d79cc16e24611821b13e34 ] While running btrfs/011, I hit the following lockdep splat. This is the important bit: pcpu_alloc+0x1ac/0x5e0 __percpu_counter_init+0x4e/0xb0 btrfs_init_fs_root+0x99/0x1c0 [btrfs] btrfs_get_fs_root.part.54+0x5b/0x150 [btrfs] resolve_indirect_refs+0x130/0x830 [btrfs] find_parent_nodes+0x69e/0xff0 [btrfs] btrfs_find_all_roots_safe+0xa0/0x110 [btrfs] btrfs_find_all_roots+0x50/0x70 [btrfs] btrfs_qgroup_prepare_account_extents+0x53/0x90 [btrfs] btrfs_commit_transaction+0x3ce/0x9b0 [btrfs] The percpu_counter_init call in btrfs_alloc_subvolume_writers uses GFP_KERNEL, which we can't do during transaction commit. This switches it to GFP_NOFS. ======================================================== WARNING: possible irq lock inversion dependency detected 4.12.14-kvmsmall #8 Tainted: G W -------------------------------------------------------- kswapd0/50 just changed the state of lock: (&delayed_node->mutex){+.+.-.}, at: [<ffffffffc06994fa>] __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] but this lock took another, RECLAIM_FS-unsafe lock in the past: (pcpu_alloc_mutex){+.+.+.} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Chain exists of: &delayed_node->mutex --> &found->groups_sem --> pcpu_alloc_mutex Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcpu_alloc_mutex); local_irq_disable(); lock(&delayed_node->mutex); lock(&found->groups_sem); <Interrupt> lock(&delayed_node->mutex); *** DEADLOCK *** 2 locks held by kswapd0/50: #0: (shrinker_rwsem){++++..}, at: [<ffffffff811dc11f>] shrink_slab+0x7f/0x5b0 #1: (&type->s_umount_key#30){+++++.}, at: [<ffffffff8126dec6>] trylock_super+0x16/0x50 the shortest dependencies between 2nd lock and 1st lock: -> (pcpu_alloc_mutex){+.+.+.} ops: 4904 { HARDIRQ-ON-W at: __mutex_lock+0x4e/0x8c0 pcpu_alloc+0x1ac/0x5e0 alloc_kmem_cache_cpus.isra.70+0x25/0xa0 __do_tune_cpucache+0x2c/0x220 do_tune_cpucache+0x26/0xc0 enable_cpucache+0x6d/0xf0 kmem_cache_init_late+0x42/0x75 start_kernel+0x343/0x4cb x86_64_start_kernel+0x127/0x134 secondary_startup_64+0xa5/0xb0 SOFTIRQ-ON-W at: __mutex_lock+0x4e/0x8c0 pcpu_alloc+0x1ac/0x5e0 alloc_kmem_cache_cpus.isra.70+0x25/0xa0 __do_tune_cpucache+0x2c/0x220 do_tune_cpucache+0x26/0xc0 enable_cpucache+0x6d/0xf0 kmem_cache_init_late+0x42/0x75 start_kernel+0x343/0x4cb x86_64_start_kernel+0x127/0x134 secondary_startup_64+0xa5/0xb0 RECLAIM_FS-ON-W at: __kmalloc+0x47/0x310 pcpu_extend_area_map+0x2b/0xc0 pcpu_alloc+0x3ec/0x5e0 alloc_kmem_cache_cpus.isra.70+0x25/0xa0 __do_tune_cpucache+0x2c/0x220 do_tune_cpucache+0x26/0xc0 enable_cpucache+0x6d/0xf0 __kmem_cache_create+0x1bf/0x390 create_cache+0xba/0x1b0 kmem_cache_create+0x1f8/0x2b0 ksm_init+0x6f/0x19d do_one_initcall+0x50/0x1b0 kernel_init_freeable+0x201/0x289 kernel_init+0xa/0x100 ret_from_fork+0x3a/0x50 INITIAL USE at: __mutex_lock+0x4e/0x8c0 pcpu_alloc+0x1ac/0x5e0 alloc_kmem_cache_cpus.isra.70+0x25/0xa0 setup_cpu_cache+0x2f/0x1f0 __kmem_cache_create+0x1bf/0x390 create_boot_cache+0x8b/0xb1 kmem_cache_init+0xa1/0x19e start_kernel+0x270/0x4cb x86_64_start_kernel+0x127/0x134 secondary_startup_64+0xa5/0xb0 } ... key at: [<ffffffff821d8e70>] pcpu_alloc_mutex+0x70/0xa0 ... acquired at: pcpu_alloc+0x1ac/0x5e0 __percpu_counter_init+0x4e/0xb0 btrfs_init_fs_root+0x99/0x1c0 [btrfs] btrfs_get_fs_root.part.54+0x5b/0x150 [btrfs] resolve_indirect_refs+0x130/0x830 [btrfs] find_parent_nodes+0x69e/0xff0 [btrfs] btrfs_find_all_roots_safe+0xa0/0x110 [btrfs] btrfs_find_all_roots+0x50/0x70 [btrfs] btrfs_qgroup_prepare_account_extents+0x53/0x90 [btrfs] btrfs_commit_transaction+0x3ce/0x9b0 [btrfs] transaction_kthread+0x176/0x1b0 [btrfs] kthread+0x102/0x140 ret_from_fork+0x3a/0x50 -> (&fs_info->commit_root_sem){++++..} ops: 1566382 { HARDIRQ-ON-W at: down_write+0x3e/0xa0 cache_block_group+0x287/0x420 [btrfs] find_free_extent+0x106c/0x12d0 [btrfs] btrfs_reserve_extent+0xd8/0x170 [btrfs] cow_file_range.isra.66+0x133/0x470 [btrfs] run_delalloc_range+0x121/0x410 [btrfs] writepage_delalloc.isra.50+0xfe/0x180 [btrfs] __extent_writepage+0x19a/0x360 [btrfs] extent_write_cache_pages.constprop.56+0x249/0x3e0 [btrfs] extent_writepages+0x4d/0x60 [btrfs] do_writepages+0x1a/0x70 __filemap_fdatawrite_range+0xa7/0xe0 btrfs_rename+0x5ee/0xdb0 [btrfs] vfs_rename+0x52a/0x7e0 SyS_rename+0x351/0x3b0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 HARDIRQ-ON-R at: down_read+0x35/0x90 caching_thread+0x57/0x560 [btrfs] normal_work_helper+0x1c0/0x5e0 [btrfs] process_one_work+0x1e0/0x5c0 worker_thread+0x44/0x390 kthread+0x102/0x140 ret_from_fork+0x3a/0x50 SOFTIRQ-ON-W at: down_write+0x3e/0xa0 cache_block_group+0x287/0x420 [btrfs] find_free_extent+0x106c/0x12d0 [btrfs] btrfs_reserve_extent+0xd8/0x170 [btrfs] cow_file_range.isra.66+0x133/0x470 [btrfs] run_delalloc_range+0x121/0x410 [btrfs] writepage_delalloc.isra.50+0xfe/0x180 [btrfs] __extent_writepage+0x19a/0x360 [btrfs] extent_write_cache_pages.constprop.56+0x249/0x3e0 [btrfs] extent_writepages+0x4d/0x60 [btrfs] do_writepages+0x1a/0x70 __filemap_fdatawrite_range+0xa7/0xe0 btrfs_rename+0x5ee/0xdb0 [btrfs] vfs_rename+0x52a/0x7e0 SyS_rename+0x351/0x3b0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 SOFTIRQ-ON-R at: down_read+0x35/0x90 caching_thread+0x57/0x560 [btrfs] normal_work_helper+0x1c0/0x5e0 [btrfs] process_one_work+0x1e0/0x5c0 worker_thread+0x44/0x390 kthread+0x102/0x140 ret_from_fork+0x3a/0x50 INITIAL USE at: down_write+0x3e/0xa0 cache_block_group+0x287/0x420 [btrfs] find_free_extent+0x106c/0x12d0 [btrfs] btrfs_reserve_extent+0xd8/0x170 [btrfs] cow_file_range.isra.66+0x133/0x470 [btrfs] run_delalloc_range+0x121/0x410 [btrfs] writepage_delalloc.isra.50+0xfe/0x180 [btrfs] __extent_writepage+0x19a/0x360 [btrfs] extent_write_cache_pages.constprop.56+0x249/0x3e0 [btrfs] extent_writepages+0x4d/0x60 [btrfs] do_writepages+0x1a/0x70 __filemap_fdatawrite_range+0xa7/0xe0 btrfs_rename+0x5ee/0xdb0 [btrfs] vfs_rename+0x52a/0x7e0 SyS_rename+0x351/0x3b0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 } ... key at: [<ffffffffc0729578>] __key.61970+0x0/0xfffffffffff9aa88 [btrfs] ... acquired at: cache_block_group+0x287/0x420 [btrfs] find_free_extent+0x106c/0x12d0 [btrfs] btrfs_reserve_extent+0xd8/0x170 [btrfs] btrfs_alloc_tree_block+0x12f/0x4c0 [btrfs] btrfs_create_tree+0xbb/0x2a0 [btrfs] btrfs_create_uuid_tree+0x37/0x140 [btrfs] open_ctree+0x23c0/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> (&found->groups_sem){++++..} ops: 2134587 { HARDIRQ-ON-W at: down_write+0x3e/0xa0 __link_block_group+0x34/0x130 [btrfs] btrfs_read_block_groups+0x33d/0x7b0 [btrfs] open_ctree+0x2054/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 HARDIRQ-ON-R at: down_read+0x35/0x90 btrfs_calc_num_tolerated_disk_barrier_failures+0x113/0x1f0 [btrfs] open_ctree+0x207b/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 SOFTIRQ-ON-W at: down_write+0x3e/0xa0 __link_block_group+0x34/0x130 [btrfs] btrfs_read_block_groups+0x33d/0x7b0 [btrfs] open_ctree+0x2054/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 SOFTIRQ-ON-R at: down_read+0x35/0x90 btrfs_calc_num_tolerated_disk_barrier_failures+0x113/0x1f0 [btrfs] open_ctree+0x207b/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 INITIAL USE at: down_write+0x3e/0xa0 __link_block_group+0x34/0x130 [btrfs] btrfs_read_block_groups+0x33d/0x7b0 [btrfs] open_ctree+0x2054/0x2660 [btrfs] btrfs_mount+0xd36/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 btrfs_mount+0x18c/0xf90 [btrfs] mount_fs+0x3a/0x160 vfs_kern_mount+0x66/0x150 do_mount+0x1c1/0xcc0 SyS_mount+0x7e/0xd0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 } ... key at: [<ffffffffc0729488>] __key.59101+0x0/0xfffffffffff9ab78 [btrfs] ... acquired at: find_free_extent+0xcb4/0x12d0 [btrfs] btrfs_reserve_extent+0xd8/0x170 [btrfs] btrfs_alloc_tree_block+0x12f/0x4c0 [btrfs] __btrfs_cow_block+0x110/0x5b0 [btrfs] btrfs_cow_block+0xd7/0x290 [btrfs] btrfs_search_slot+0x1f6/0x960 [btrfs] btrfs_lookup_inode+0x2a/0x90 [btrfs] __btrfs_update_delayed_inode+0x65/0x210 [btrfs] btrfs_commit_inode_delayed_inode+0x121/0x130 [btrfs] btrfs_evict_inode+0x3fe/0x6a0 [btrfs] evict+0xc4/0x190 __dentry_kill+0xbf/0x170 dput+0x2ae/0x2f0 SyS_rename+0x2a6/0x3b0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 -> (&delayed_node->mutex){+.+.-.} ops: 5580204 { HARDIRQ-ON-W at: __mutex_lock+0x4e/0x8c0 btrfs_delayed_update_inode+0x46/0x6e0 [btrfs] btrfs_update_inode+0x83/0x110 [btrfs] btrfs_dirty_inode+0x62/0xe0 [btrfs] touch_atime+0x8c/0xb0 do_generic_file_read+0x818/0xb10 __vfs_read+0xdc/0x150 vfs_read+0x8a/0x130 SyS_read+0x45/0xa0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 SOFTIRQ-ON-W at: __mutex_lock+0x4e/0x8c0 btrfs_delayed_update_inode+0x46/0x6e0 [btrfs] btrfs_update_inode+0x83/0x110 [btrfs] btrfs_dirty_inode+0x62/0xe0 [btrfs] touch_atime+0x8c/0xb0 do_generic_file_read+0x818/0xb10 __vfs_read+0xdc/0x150 vfs_read+0x8a/0x130 SyS_read+0x45/0xa0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 IN-RECLAIM_FS-W at: __mutex_lock+0x4e/0x8c0 __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] btrfs_evict_inode+0x22c/0x6a0 [btrfs] evict+0xc4/0x190 dispose_list+0x35/0x50 prune_icache_sb+0x42/0x50 super_cache_scan+0x139/0x190 shrink_slab+0x262/0x5b0 shrink_node+0x2eb/0x2f0 kswapd+0x2eb/0x890 kthread+0x102/0x140 ret_from_fork+0x3a/0x50 INITIAL USE at: __mutex_lock+0x4e/0x8c0 btrfs_delayed_update_inode+0x46/0x6e0 [btrfs] btrfs_update_inode+0x83/0x110 [btrfs] btrfs_dirty_inode+0x62/0xe0 [btrfs] touch_atime+0x8c/0xb0 do_generic_file_read+0x818/0xb10 __vfs_read+0xdc/0x150 vfs_read+0x8a/0x130 SyS_read+0x45/0xa0 do_syscall_64+0x79/0x1e0 entry_SYSCALL_64_after_hwframe+0x42/0xb7 } ... key at: [<ffffffffc072d488>] __key.56935+0x0/0xfffffffffff96b78 [btrfs] ... acquired at: __lock_acquire+0x264/0x11c0 lock_acquire+0xbd/0x1e0 __mutex_lock+0x4e/0x8c0 __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] btrfs_evict_inode+0x22c/0x6a0 [btrfs] evict+0xc4/0x190 dispose_list+0x35/0x50 prune_icache_sb+0x42/0x50 super_cache_scan+0x139/0x190 shrink_slab+0x262/0x5b0 shrink_node+0x2eb/0x2f0 kswapd+0x2eb/0x890 kthread+0x102/0x140 ret_from_fork+0x3a/0x50 stack backtrace: CPU: 1 PID: 50 Comm: kswapd0 Tainted: G W 4.12.14-kvmsmall #8 SLE15 (unreleased) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 Call Trace: dump_stack+0x78/0xb7 print_irq_inversion_bug.part.38+0x19f/0x1aa check_usage_forwards+0x102/0x120 ? ret_from_fork+0x3a/0x50 ? check_usage_backwards+0x110/0x110 mark_lock+0x16c/0x270 __lock_acquire+0x264/0x11c0 ? pagevec_lookup_entries+0x1a/0x30 ? truncate_inode_pages_range+0x2b3/0x7f0 lock_acquire+0xbd/0x1e0 ? __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] __mutex_lock+0x4e/0x8c0 ? __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] ? __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] ? btrfs_evict_inode+0x1f6/0x6a0 [btrfs] __btrfs_release_delayed_node+0x3a/0x1f0 [btrfs] btrfs_evict_inode+0x22c/0x6a0 [btrfs] evict+0xc4/0x190 dispose_list+0x35/0x50 prune_icache_sb+0x42/0x50 super_cache_scan+0x139/0x190 shrink_slab+0x262/0x5b0 shrink_node+0x2eb/0x2f0 kswapd+0x2eb/0x890 kthread+0x102/0x140 ? mem_cgroup_shrink_node+0x2c0/0x2c0 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x3a/0x50 Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>